1
|
Ke Z, Zhang X, Cao Z, Ding Y, Li N, Cao L, Wang T, Zhang C, Ding G, Wang Z, Xu X, Xiao W. Drug discovery of neurodegenerative disease through network pharmacology approach in herbs. Biomed Pharmacother 2016; 78:272-279. [PMID: 26898452 DOI: 10.1016/j.biopha.2016.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 01/08/2016] [Accepted: 01/13/2016] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases, referring to as the progressive loss of structure and function of neurons, constitute one of the major challenges of modern medicine. Traditional Chinese herbs have been used as a major preventive and therapeutic strategy against disease for thousands years. The numerous species of medicinal herbs and Traditional Chinese Medicine (TCM) compound formulas in nervous system disease therapy make it a large chemical resource library for drug discovery. In this work, we collected 7362 kinds of herbs and 58,147 Traditional Chinese medicinal compounds (Tcmcs). The predicted active compounds in herbs have good oral bioavailability and central nervous system (CNS) permeability. The molecular docking and network analysis were employed to analyze the effects of herbs on neurodegenerative diseases. In order to evaluate the predicted efficacy of herbs, automated text mining was utilized to exhaustively search in PubMed by some related keywords. After that, receiver operator characteristic (ROC) curves was used to estimate the accuracy of predictions. Our study suggested that most herbs were distributed in family of Asteraceae, Fabaceae, Lamiaceae and Apocynaceae. The predictive model yielded good sensitivity and specificity with the AUC values above 0.800. At last, 504 kinds of herbs were obtained by using the optimal cutoff values in ROC curves. These 504 herbs would be the most potential herb resources for neurodegenerative diseases treatment. This study would give us an opportunity to use these herbs as a chemical resource library for drug discovery of anti-neurodegenerative disease.
Collapse
Affiliation(s)
- Zhipeng Ke
- National Key Laboratory of Pharmaceutical New Technology for Chinese Medicine, Kanion Pharmaceutical Corporation, Lianyungang, China
| | - Xinzhuang Zhang
- National Key Laboratory of Pharmaceutical New Technology for Chinese Medicine, Kanion Pharmaceutical Corporation, Lianyungang, China
| | - Zeyu Cao
- National Key Laboratory of Pharmaceutical New Technology for Chinese Medicine, Kanion Pharmaceutical Corporation, Lianyungang, China
| | - Yue Ding
- National Key Laboratory of Pharmaceutical New Technology for Chinese Medicine, Kanion Pharmaceutical Corporation, Lianyungang, China
| | - Na Li
- National Key Laboratory of Pharmaceutical New Technology for Chinese Medicine, Kanion Pharmaceutical Corporation, Lianyungang, China
| | - Liang Cao
- National Key Laboratory of Pharmaceutical New Technology for Chinese Medicine, Kanion Pharmaceutical Corporation, Lianyungang, China
| | - Tuanjie Wang
- National Key Laboratory of Pharmaceutical New Technology for Chinese Medicine, Kanion Pharmaceutical Corporation, Lianyungang, China
| | - Chenfeng Zhang
- National Key Laboratory of Pharmaceutical New Technology for Chinese Medicine, Kanion Pharmaceutical Corporation, Lianyungang, China
| | - Gang Ding
- National Key Laboratory of Pharmaceutical New Technology for Chinese Medicine, Kanion Pharmaceutical Corporation, Lianyungang, China
| | - Zhenzhong Wang
- National Key Laboratory of Pharmaceutical New Technology for Chinese Medicine, Kanion Pharmaceutical Corporation, Lianyungang, China
| | - Xiaojie Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| | - Wei Xiao
- National Key Laboratory of Pharmaceutical New Technology for Chinese Medicine, Kanion Pharmaceutical Corporation, Lianyungang, China.
| |
Collapse
|
2
|
Jabir NR, Firoz CK, Baeesa SS, Ashraf GM, Akhtar S, Kamal W, Kamal MA, Tabrez S. Synopsis on the linkage of Alzheimer's and Parkinson's disease with chronic diseases. CNS Neurosci Ther 2014; 21:1-7. [PMID: 25399848 DOI: 10.1111/cns.12344] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 12/12/2022] Open
Abstract
Neurodegeneration is the progressive loss of neuronal structure and function, which ultimately leads to neurological disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis, and Huntington's disease. Even after the recent significant advances in neurobiology, the above-mentioned disorders continue to haunt the global population. Several studies have suggested the role of specific environmental and genetic risk factors associated with these disorders. However, the exact mechanism associated with the progression of these disorders still needs to be elucidated. In the recent years, sophisticated research has revealed interesting association of prominent neurodegenerative disorders such as AD and PD with chronic diseases such as cancer, diabetes, and cardiovascular diseases. Several common molecular mechanisms such as generation of free radicals, oxidative DNA damage, aberrations in mitochondrial DNA, and dysregulation of apoptosis have been highlighted as possible points of connection. The present review summarizes the possible mechanism of coexistence of AD and PD with other chronic diseases.
Collapse
Affiliation(s)
- Nasimudeen R Jabir
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Džoljić E, Novaković I, Krajinovic M, Grbatinić I, Kostić V. Pharmacogenetics of drug response in Parkinson's disease. Int J Neurosci 2014; 125:635-44. [PMID: 25226559 DOI: 10.3109/00207454.2014.963851] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Parkinson's disease (PD) is a debilitating, demoralizing and financially devastating condition affecting 1% of population at the age of 60 years. Thus, very important issue to address is individual therapy optimization. Recent results have shown evidence that variable efficacy of treatment and risk of motor and mental complications could have genetic origin. Significant roles in that process play (pharmaco)genomic/genetic studies of PD. Variability in genes coding for drug-metabolizing enzymes, drug receptors and proteins involved in drug pathway signaling is an important factor determining inter-individual variability in drug responses. Interpersonal differences in drug responses are clearly documented although individualized treatment of PD is not widely known. Treatment with antiparkinsonian drugs is associated with the development of complications, such as L-DOPA-induced dyskinesia (LID), hallucinations and excessive daytime sleepiness. Carriers of specific genetic polymorphisms are particularly susceptible to development of some of these drug adverse effects. Pharmacogenomics aims to understand the relationship between genetic factors and inter-individual variations in drug responses, and to translate this information in therapy tailored to individual patient genetics. Relatively few efforts have been made to investigate the role of pharmacogenetics in the individual response to anti-PD drugs. Thus, many genetic variations and polymorphisms in myriad of different proteins can influence individual response to anti-PD drugs.
Collapse
Affiliation(s)
- Eleonora Džoljić
- 1Neurology Clinic, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | | | | | | |
Collapse
|
4
|
Brosnan C, Michael M. Enacting the 'neuro' in practice: translational research, adhesion and the promise of porosity. SOCIAL STUDIES OF SCIENCE 2014; 44:680-700. [PMID: 25362829 PMCID: PMC4230377 DOI: 10.1177/0306312714534333] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This article attends to the processes through which neuroscience and the neuro are enacted in a specific context: a translational neuroscience research group that was the setting of an ethnographic study. The article therefore provides a close-up perspective on the intersection of neuroscience and translational research. In the scientific setting we studied, the neuro was multiple and irreducible to any particular entity or set of practices across a laboratory and clinical divide. Despite this multiplicity, the group's work was held together through the 'promise of porosity'--that one day there would be translation of lab findings into clinically effective intervention. This promise was embodied in the figure of the Group Leader whose expertise spanned clinical and basic neurosciences. This is theorized in terms of a contrast between cohesion and adhesion in interdisciplinary groupings. We end by speculating on the role of 'vivification'--in our case mediated by the Group Leader--in rendering 'alive' the expectations of interdisciplinary collaboration.
Collapse
|
5
|
Neuroethics: A Moral Approach towards Neuroscience Research. ARCHIVES OF NEUROSCIENCE 2014. [DOI: 10.5812/archneurosci.19224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Behrmann J. The paucity of ethical analysis in allergology. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2013; 9:5. [PMID: 23388345 PMCID: PMC3573914 DOI: 10.1186/1710-1492-9-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/17/2013] [Indexed: 11/10/2022]
Abstract
While a growing body of research is uncovering the aetiology and effective treatments for allergy, research that assess the broader ethical implications of this disease is lacking significantly. This article will demonstrate both the paucity of academic research concerning ethical implications in allergy and explain why ethical analysis is integral to formulating effective health strategies for allergic disease. An exhaustive literature search of publications in French and English identified less than 35 academic articles focussed on the topic of ethics and allergy; this is a miniscule number when compared to the amount of articles published on ethical issues related to other chronic illnesses, such as obesity. It is important to demonstrate to allergy specialists the need for, and utility of, further incorporating ethical analyses in allergology; the current success of Ethical, Legal, Social Implications (ELSI) research programmes in human genetics and nanotechnology will serve as notable examples. Indeed, future research and innovation in allergy will undoubtedly encounter ethical dilemmas and the allergology community should play a significant role in helping to address these issues. However, incorporating ethical analyses in allergology does not imply that the allergology community must acquire extensive knowledge in bioethics; instead, interdisciplinary research that incorporates expertise from allergology and bioethics would enable allergy specialists to advance critical knowledge development in this largely overlooked domain of study.
Collapse
Affiliation(s)
- Jason Behrmann
- Institute for Gender, Sexuality, and Feminist Studies, McGill University, 3487 Peel Street, 2nd floor, Montréal H3A 1W7, Canada.
| |
Collapse
|