1
|
Impact of Uremic Toxins on Endothelial Dysfunction in Chronic Kidney Disease: A Systematic Review. Int J Mol Sci 2022; 23:ijms23010531. [PMID: 35008960 PMCID: PMC8745705 DOI: 10.3390/ijms23010531] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
Patients with chronic kidney disease (CKD) are at a highly increased risk of cardiovascular complications, with increased vascular inflammation, accelerated atherogenesis and enhanced thrombotic risk. Considering the central role of the endothelium in protecting from atherogenesis and thrombosis, as well as its cardioprotective role in regulating vasorelaxation, this study aimed to systematically integrate literature on CKD-associated endothelial dysfunction, including the underlying molecular mechanisms, into a comprehensive overview. Therefore, we conducted a systematic review of literature describing uremic serum or uremic toxin-induced vascular dysfunction with a special focus on the endothelium. This revealed 39 studies analyzing the effects of uremic serum or the uremic toxins indoxyl sulfate, cyanate, modified LDL, the advanced glycation end products N-carboxymethyl-lysine and N-carboxyethyl-lysine, p-cresol and p-cresyl sulfate, phosphate, uric acid and asymmetric dimethylarginine. Most studies described an increase in inflammation, oxidative stress, leukocyte migration and adhesion, cell death and a thrombotic phenotype upon uremic conditions or uremic toxin treatment of endothelial cells. Cellular signaling pathways that were frequently activated included the ROS, MAPK/NF-κB, the Aryl-Hydrocarbon-Receptor and RAGE pathways. Overall, this review provides detailed insights into pathophysiological and molecular mechanisms underlying endothelial dysfunction in CKD. Targeting these pathways may provide new therapeutic strategies reducing increased the cardiovascular risk in CKD.
Collapse
|
2
|
Paraoxonase 2 protects against the CML mediated mitochondrial dysfunction through modulating JNK pathway in human retinal cells. Biochim Biophys Acta Gen Subj 2021; 1866:130043. [PMID: 34710487 DOI: 10.1016/j.bbagen.2021.130043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Paraoxonase 2 (PON2) a known anti-apoptotic protein, has not been explored against Nε-(carboxymethyl)lysine (CML), induced mitochondrial dysfunction and apoptosis in human retinal cells. Hence this present study aims to investigate the potential role of PON2 in mitigating CML-induced mitochondrial dysfunction in these cells. METHODS PON2 protein was quantified in HRECs (Human retinal endothelial cells), ARPE-19 (Retinal pigment epithelial cells) cells upon CML treatment and also in cadaveric diabetic retina vs respective controls. ROS production, mitochondrial membrane potential (MMP), mitochondrial permeability transition pore (mPTP) opening, the release of Cyt-c, Bax, Caspase-3, Fis1, Mfn1, Mfn2, mitochondrial morphology, and the signaling pathway was assessed using DCFDA, JC-1, CoCl2, immunofluorescence or western blotting analysis in both loss-of-function or gain-of-function experiments. RESULTS PON2 protein was downregulated in HREC and ARPE-19 cells upon CML treatment as well as in the diabetic retina (p = 0.035). Decrease in PON2 augments Fis1 expression resulting in fragmentation of mitochondria and enhances the ROS production, decreases MMP, facilitates mPTP opening, and induces the release of Cyt-c, which activates the pro-apoptotic pathway. Whereas PON2 overexpression similar to SP600125 (a specific JNK inhibitor) was able to decrease Fis1 (p = 0.036) and reverse the Bcl-2 and Bax ratio, and inhibit the JNK1/2 signaling pathway. CONCLUSION Our results confirm that PON2 has an anti-apoptotic role against the CML mediated mitochondrial dysfunction and inhibits apoptosis through the JNK-Fis1 axis. GENERAL SIGNIFICANCE We hypothesis that enhancing PON2 may provide a better therapeutic potential against diabetic vascular disease.
Collapse
|
3
|
In Vitro Evaluation of the Toxicological Profile and Oxidative Stress of Relevant Diet-Related Advanced Glycation End Products and Related 1,2-Dicarbonyls. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9912240. [PMID: 34422213 PMCID: PMC8371648 DOI: 10.1155/2021/9912240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/10/2021] [Revised: 05/09/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022]
Abstract
During food processing and storage, and in tissues and fluids under physiological conditions, the Maillard reaction occurs. During this reaction, reactive 1,2-dicarbonyl compounds arise as intermediates that undergo further reactions to form advanced glycation end products (AGEs). Diet is the primary source of exogenous AGEs. Endogenously formed AGEs have been proposed as a risk factor in the pathogenesis of diet-related diseases such as diabetes, insulin resistance, cardiovascular diseases, or chronic disease. AGEs may differently contribute to the diet-related exacerbation of oxidative stress, inflammation, and protein modifications. Here, to understand the contribution of each compound, we tested individually, for the first time, the effect of five 1,2-dicarbonyl compounds 3-deoxyglucosone (3-DG), 3-deoxygalactosone (3-DGal), 3,4-dideoxyglucosone-3-ene (3,4-DGE), glyoxal (GO), and methylglyoxal (MGO) and four different glycated amino acids N-ε-(carboxyethyl)lysine (CEL), N-ε-(carboxymethyl)lysine (CML), methylglyoxal-derived hydroimidazolone-1 (MG-H1), and pyrraline (Pyrr) in a cell line of human keratinocytes (HaCaT). We found that most of the glycated amino acids, i.e., CEL, CML, and MG-H1, did not show any cytotoxicity. At the same time, 1,2-dicarbonyl compounds 3-DGal, 3,4-DGE, GO, and MGO increased the production of reactive oxygen species and induced cell death. MGO induced cell death by apoptosis, whereas 3-DGal and 3,4-DGE induced nuclear translocation of the proinflammatory NF-κB transcription pathway, and the activation of the pyroptosis-related NLRP3 inflammasome cascade. Overall, these results demonstrate the higher toxic impact of 1,2-dicarbonyl compounds on mucosal epithelial cells when compared to glycated amino acids and the selective activation of intracellular signaling pathways involved in the crosstalk mechanisms linking oxidative stress to excessive inflammation.
Collapse
|
4
|
Advanced Glycation End Products Impair Cardiac Atrial Appendage Stem Cells Properties. J Clin Med 2021; 10:jcm10132964. [PMID: 34279448 PMCID: PMC8269351 DOI: 10.3390/jcm10132964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND During myocardial infarction (MI), billions of cardiomyocytes are lost. The optimal therapy should effectively replace damaged cardiomyocytes, possibly with stem cells able to engraft and differentiate into adult functional cardiomyocytes. As such, cardiac atrial appendage stem cells (CASCs) are suitable candidates. However, the presence of elevated levels of advanced glycation end products (AGEs) in cardiac regions where CASCs are transplanted may affect their regenerative potential. In this study, we examine whether and how AGEs alter CASCs properties in vitro. METHODS AND RESULTS CASCs in culture were exposed to ranging AGEs concentrations (50 µg/mL to 400 µg/mL). CASCs survival, proliferation, and migration capacity were significantly decreased after 72 h of AGEs exposure. Apoptosis significantly increased with rising AGEs concentration. The harmful effects of these AGEs were partially blunted by pre-incubation with a receptor for AGEs (RAGE) inhibitor (25 µM FPS-ZM1), indicating the involvement of RAGE in the observed negative effects. CONCLUSION AGEs have a time- and concentration-dependent negative effect on CASCs survival, proliferation, migration, and apoptosis in vitro, partially mediated through RAGE activation. Whether anti-AGEs therapies are an effective treatment in the setting of stem cell therapy after MI warrants further examination.
Collapse
|
5
|
Li S, Xie Y, Yang B, Huang S, Zhang Y, Jia Z, Ding G, Zhang A. MicroRNA-214 targets COX-2 to antagonize indoxyl sulfate (IS)-induced endothelial cell apoptosis. Apoptosis 2020; 25:92-104. [PMID: 31820187 DOI: 10.1007/s10495-019-01582-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023]
Abstract
Cardiovascular disease (CVD) serves as the major cause of mortality in chronic kidney disease (CKD) patients. The injury of endothelium associated with the long-term challenge of uremic toxins including the toxic indoxyl sulfate (IS) is one of key pathological factors leading to CVD. However, the mechanisms of uremic toxins, especially the IS, resulting in endothelial injury, remain unclear. miR-214 was reported to contribute to the pathogenesis of cardiovascular diseases, while its role in IS-induced endothelial cell apoptosis is unknown. In this study, we investigated the role of microRNA-214 (miR-214) in IS-induced endothelial cell apoptosis and the underlying mechanisms using mouse aortic endothelial cells (MAECs). Following IS treatment, miR-214 was significantly downregulated in MAECs in line with enhanced cell apoptosis. Meanwhile, COX-2 was upregulated at both mRNA and protein levels along with increased secretion of PGE2 in medium. To define the role of miR-214 in IS-induced endothelial cell apoptosis, we modulated miR-214 level in MAECs and found that overexpression of miR-214 markedly attenuated endothelial cell apoptosis, while antagonism of miR-214 deteriorated cell death after IS challenge. Further analyses confirmed that COX-2 is a target gene of miR-214, and the inhibition of COX-2 by a specific COX-2 inhibitor NS-398 strikingly attenuated IS-induced endothelial cell apoptosis along with a significant blockade of PGE2 secretion. In conclusion, this study demonstrated an important role of miR-214 in protecting against endothelial cell damage induced by IS possibly by direct downregulation of COX-2/PGE2 axis.
Collapse
Affiliation(s)
- Shuzhen Li
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, People's Republic of China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Yifan Xie
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, People's Republic of China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Bingyu Yang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, People's Republic of China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, People's Republic of China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, People's Republic of China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, People's Republic of China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| | - Guixia Ding
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, People's Republic of China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, People's Republic of China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| |
Collapse
|
6
|
The Impact of Advanced Glycation End-Products (AGEs) on Proliferation and Apoptosis of Primary Stem Cells: A Systematic Review. Stem Cells Int 2020; 2020:8886612. [PMID: 33281904 PMCID: PMC7685833 DOI: 10.1155/2020/8886612] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/26/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Stem cell-based regenerative therapies hold great promises to treat a wide spectrum of diseases. However, stem cell engraftment and survival are still challenging due to an unfavorable transplantation environment. Advanced glycation end-products (AGEs) can contribute to the generation of these harmful conditions. AGEs are a heterogeneous group of glycated products, nonenzymatically formed when proteins and/or lipids become glycated and oxidized. Our typical Western diet as well as cigarettes contain high AGEs content. AGEs are also endogenously formed in our body and accumulate with senescence and in pathological situations. Whether AGEs have an impact on stem cell viability in regenerative medicine remains unclear, and research on the effect of AGEs on stem cell proliferation and apoptosis is still ongoing. Therefore, this systematic review provides a clear overview of the effects of glycated proteins on cell viability in various types of primary isolated stem cells used in regenerative medicine.
Collapse
|
7
|
Zhu Z, Zhu J, Du R, Zhang H, Ni J, Quan W, Hu J, Ding F, Yang Z, Zhang R. Efficacy of Zotarolimus-Eluting Stents in Treating Diabetic Coronary Lesions: An Optical Coherence Tomography Study. Adv Ther 2020; 37:1579-1590. [PMID: 32146703 DOI: 10.1007/s12325-020-01273-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/23/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) plays an important role in restenosis and late in-stent thrombosis (ST). The current study using optical coherence tomography (OCT) aims to compare target lesion neointima in patients with or without diabetes after zotarolimus-eluting stent (ZES) treatment. METHODS OCT images of 90,212 struts and quantitative coronary angiography (QCA) in 62 patients (32 with DM and 30 without DM) with 69 de novo coronary lesions (34 DM and 35 non-DM) both after ZES implantation and 12 ± 1 month angiographic follow-up were recorded. Patient characteristics, lesion characteristics, clinical outcomes, and OCT findings including neointimal thickness, coverage, malapposition, and intimal morphology were analyzed. RESULTS Baseline patient characteristics and lesion characteristics data were similar between the two groups. Higher neointimal thickness (0.14 ± 0.09 mm vs. 0.09 ± 0.04 mm, p = 0.021), more neovascularization (3.03 ± 6.24 vs. 0.52 ± 1.87, p = 0.017) and higher incidence of layered signal pattern (12.19 ± 19.91% vs. 4.28 ± 9.02%, p = 0.049) were observed in diabetic lesions comparing with non-diabetic lesions. No differences were found in malapposition, uncovered percentage, and thrombus between the two groups (all p > 0.05). Occurrence of clinical adverse events was also similar during the follow-up period (p > 0.05). CONCLUSION Although more neointimal proliferation and more neovascularization were found in diabetic coronary lesions when compared with non-diabetic lesions, treatment with ZES showed similar stent malapposition rate at 1-year follow-up. The data indicated that ZES treatment could possibly be effective in treating diabetic coronary lesions. TRIAL REGISTRATION ClinicalTrials.gov identifier, NCT01747356.
Collapse
Affiliation(s)
- Zhengbin Zhu
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Cardiovascular Research Institution, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinzhou Zhu
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Cardiovascular Research Institution, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Run Du
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Cardiovascular Research Institution, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haotian Zhang
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinwei Ni
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Quan
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Hu
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fenghua Ding
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Cardiovascular Research Institution, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenkun Yang
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruiyan Zhang
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Cardiovascular Research Institution, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
S100A12 inhibits fibroblast migration via the receptor for advanced glycation end products and p38 MAPK signaling. In Vitro Cell Dev Biol Anim 2019; 55:656-664. [PMID: 31297698 DOI: 10.1007/s11626-019-00384-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/04/2019] [Accepted: 07/01/2019] [Indexed: 01/11/2023]
Abstract
The migration of lung fibroblasts plays a pivotal role in wound repair and fibrotic processes in the lung. Although the receptor for advanced glycation end products (RAGE) has been implicated in the pathogenesis of lung diseases, its role in lung fibroblast migration is unclear. The current study examined the effect of three different RAGE ligands, namely, high mobility group box 1 (HMGB1), S100A12, and N-epsilon-(carboxymethyl) lysine (CML), on human fibronectin-directed human fetal lung fibroblast (HFL-1) migration. HMGB1 augmented, whereas S100A12 inhibited, HFL-1 migration in a concentration-dependent manner. CML did not affect HFL-1 migration. The effect of HMGB1 was not through RAGE. However, the effect of S100A12 was mediated by RAGE, but not Toll-like receptor 4. S100A12 did not exert a chemoattractant effect, but inhibited HFL-1 chemotaxis and/or chemokinesis. Moreover, S100A12 mediated HFL-1 migration through p38 mitogen-activated protein kinase (MAPK) but not through nuclear factor-kappa B, protein kinase A, phosphatase and tensin homolog deleted on chromosome 10, or cyclooxygenase. In addition, western blot analysis showed that S100A12 augmented p38 MAPK activity in the presence of human fibronectin. In conclusion, S100A12 inhibits lung fibroblast migration via RAGE-p38 MAPK signaling. This pathway could represent a therapeutic target for pulmonary conditions characterized by abnormal tissue repair and remodeling.
Collapse
|
9
|
Chen Y, Niu W, Chao YC, He Z, Ding R, Wu F, Liang C. Alagebrium targets the miR-27b/TSP-1 signaling pathway to rescue N ε-carboxymethyl-lysine-induced endothelial dysfunction. Am J Transl Res 2019; 11:1569-1580. [PMID: 30972183 PMCID: PMC6456531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/20/2018] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Nε-carboxymethyl-lysine (CML), a major isoform of advanced glycation end products (AGEs), plays a crucial role in the functional damage of diabetes mellitus. However, it is not clear whether ALT-711 (alagebrium), an inhibitor of AGEs, is capable to rescue CML-induced poor angiogenesis, as well as the underlying mechanism. MicroRNA-27b (miR-27b) promotes angiogenesis through down-regulation of anti-angiogenic protein thrombospondin-1 (TSP-1). Here, we used diabetic mice with hindlimb ischemia to investigate whether miR-27b/TSP-1 signaling is involved in the pathology of critical limb ischemia (CLI) in diabetes mellitus. We additionally examined the effect of ALT-711 on the tube formation of endothelial cells treated with CML-BSA. Compared with control group, the lower blood flow recovery was observed in the ischemic lower limbs of diabetic mice, with decreased expression of vascular endothelial growth factor (VEGF) and miR-27b and increased TSP-1 expression. CML-BSA reduced the tube formation ability of endothelial cells, decreased VEGF and miR-27b expression, and increased TSP-1 expression, whereas this trend was reversed by ALT-711. The miR-27b mimic promoted tube formation, increased VEGF expression, and decreased TSP-1 expression, whereas these effects were abolished by TSP-1 overexpression. Moreover, miR-27b silencing suppressed ALT-711-induced promotion of tube formation under CML-BSA treatment, with reduced VEGF and augmented TSP-1 expression. Taken together, the present study demonstrated that ALT-711 can rescue CML-induced functional angiogenesis damage via miR-27b/TSP-1 signaling cascades. These results indicate new therapeutic strategies for diabetes patients with CLI.
Collapse
Affiliation(s)
- Yihong Chen
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical UniversityNo. 415, Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Wenhao Niu
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical UniversityNo. 415, Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Yu-Chieh Chao
- Department of Cardiology, Shanghai Renji Hospital, School of Medicine, Shanghai Jiaotong UniversityNo. 1630, Dongfang Road, Pudong New District, Shanghai 200127, China
| | - Zhiqing He
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical UniversityNo. 415, Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Ru Ding
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical UniversityNo. 415, Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Feng Wu
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical UniversityNo. 415, Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Chun Liang
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical UniversityNo. 415, Fengyang Road, Huangpu District, Shanghai 200003, China
| |
Collapse
|
10
|
Sun JT, Yang K, Mao JY, Shen WF, Lu L, Wu QH, Wang YP, Wu LP, Zhang RY. Cyanate-Impaired Angiogenesis: Association With Poor Coronary Collateral Growth in Patients With Stable Angina and Chronic Total Occlusion. J Am Heart Assoc 2016; 5:JAHA.116.004700. [PMID: 27986757 PMCID: PMC5210395 DOI: 10.1161/jaha.116.004700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023]
Abstract
Background Cyanate has recently gained attention for its role in the pathogenesis of vascular injury. Nonetheless, the effect of cyanate on angiogenesis remains unclear. Methods and Results In this study, we demonstrated that oral administration of cyanate impaired blood perfusion recovery in a mouse hind‐limb ischemia model. A reduction in blood perfusion recovery at day 21 was observed in the ischemic tissue of cyanate‐treated mice. Likewise, there were fewer capillaries in the ischemic hind‐limb tissue of cyanate‐exposed mice. Our in vitro study showed that cyanate, together with its carbamylated products, inhibited the migration, proliferation, and tube‐formation abilities of endothelial cells. Further research revealed that cyanate regulated angiogenesis partly by interrupting the vascular endothelial growth factor receptor 2/phosphatidylinositol 3‐kinase/Akt pathway. The serum concentrations of homocitrulline, a marker of cyanate exposure, were determined in 117 patients with stable angina and chronic total occlusion. Consistent with the antiangiogenic role of cyanate, homocitrulline levels were increased in patients with poor coronary collateralization (n=58) compared with those with high collateralization (n=59; 21.09±13.08 versus 15.54±9.02 ng/mL, P=0.009). In addition, elevated homocitrulline concentration was a strong predictor of poor coronary collateral growth. Conclusions Impaired angiogenesis induced by cyanate might contribute to poor coronary collateral growth.
Collapse
Affiliation(s)
- Jia Teng Sun
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Yang
- Institute of Cardiovascular Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Yan Mao
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Wei Feng Shen
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Cardiovascular Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Lu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Hong Wu
- Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Ping Wang
- Institute of Cardiovascular Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Ping Wu
- Institute of Cardiovascular Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Yan Zhang
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Paudel G, Bilova T, Schmidt R, Greifenhagen U, Berger R, Tarakhovskaya E, Stöckhardt S, Balcke GU, Humbeck K, Brandt W, Sinz A, Vogt T, Birkemeyer C, Wessjohann L, Frolov A. Osmotic stress is accompanied by protein glycation in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6283-6295. [PMID: 27856706 PMCID: PMC5181577 DOI: 10.1093/jxb/erw395] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/20/2023]
Abstract
Among the environmental alterations accompanying oncoming climate changes, drought is the most important factor influencing crop plant productivity. In plants, water deficit ultimately results in the development of oxidative stress and accumulation of osmolytes (e.g. amino acids and carbohydrates) in all tissues. Up-regulation of sugar biosynthesis in parallel to the increasing overproduction of reactive oxygen species (ROS) might enhance protein glycation, i.e. interaction of carbonyl compounds, reducing sugars and α-dicarbonyls with lysyl and arginyl side-chains yielding early (Amadori and Heyns compounds) and advanced glycation end-products (AGEs). Although the constitutive plant protein glycation patterns were characterized recently, the effects of environmental stress on AGE formation are unknown so far. To fill this gap, we present here a comprehensive in-depth study of the changes in Arabidopsis thaliana advanced glycated proteome related to osmotic stress. A 3 d application of osmotic stress revealed 31 stress-specifically and 12 differentially AGE-modified proteins, representing altogether 56 advanced glycation sites. Based on proteomic and metabolomic results, in combination with biochemical, enzymatic and gene expression analysis, we propose monosaccharide autoxidation as the main stress-related glycation mechanism, and glyoxal as the major glycation agent in plants subjected to drought.
Collapse
Affiliation(s)
- Gagan Paudel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
| | - Tatiana Bilova
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
- Department of Plant Physiology and Biochemistry, St Petersburg State University, St Petersburg, Russia
| | - Rico Schmidt
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Uta Greifenhagen
- Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
| | - Robert Berger
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Elena Tarakhovskaya
- Department of Plant Physiology and Biochemistry, St Petersburg State University, St Petersburg, Russia
| | - Stefanie Stöckhardt
- Department of Plant Physiology, Martin-Luther Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Gerd Ulrich Balcke
- Department of Metabolic and Cell Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Klaus Humbeck
- Department of Plant Physiology, Martin-Luther Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Wolfgang Brandt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Thomas Vogt
- Department of Metabolic and Cell Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Claudia Birkemeyer
- Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
| | - Ludger Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
| |
Collapse
|
12
|
Awasthi S, Sankaranarayanan K, Saraswathi NT. Advanced glycation end products induce differential structural modifications and fibrillation of albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 163:60-67. [PMID: 27037764 DOI: 10.1016/j.saa.2016.03.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/12/2015] [Revised: 03/11/2016] [Accepted: 03/20/2016] [Indexed: 06/05/2023]
Abstract
Glycation induced amyloid fibrillation is fundamental to the development of many neurodegenerative and cardiovascular complications. Excessive non-enzymatic glycation in conditions such as hyperglycaemia results in the increased accumulation of advanced glycation end products (AGEs). AGEs are highly reactive pro-oxidants, which can lead to the activation of inflammatory pathways and development of oxidative stress. Recently, the effect of non-enzymatic glycation on protein structure has been the major research area, but the role of specific AGEs in such structural alteration and induction of fibrillation remains undefined. In this study, we determined the specific AGEs mediated structural modifications in albumin mainly considering carboxymethyllysine (CML), carboxyethyllysine (CEL), and argpyrimidine (Arg-P) which are the major AGEs formed in the body. We studied the secondary structural changes based on circular dichroism (CD) and spectroscopic analysis. The AGEs induced fibrillation was determined by Congo red binding and examination of scanning and transmission electron micrographs. The amyloidogenic regions in the sequence of BSA were determined using FoldAmyloid. It was observed that CEL modification of BSA leads to the development of fibrillar structures, which was evident from both secondary structure changes and TEM analysis.
Collapse
Affiliation(s)
- Saurabh Awasthi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamilnadu, India
| | - Kamatchi Sankaranarayanan
- DST-INSPIRE Faculty, Department of Energy and Environment, National Institute of Technology, Tiruchirappalli 620015, Tamilnadu, India
| | - N T Saraswathi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamilnadu, India.
| |
Collapse
|
13
|
Grange C, Bussolati B. Ex vivo manipulation of bone marrow cells to rescue uremia-induced dysfunction for autologous therapy. Stem Cell Res Ther 2015; 6:117. [PMID: 26062806 PMCID: PMC4462013 DOI: 10.1186/s13287-015-0108-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/22/2015] [Accepted: 06/01/2015] [Indexed: 12/04/2022] Open
Abstract
Uremic toxins are known to affect the regenerative properties of tissue-resident and circulating stem cells and thus appear to be a limiting factor for autologous stem cell-based approaches for treating chronic kidney disease. The recent article by van Koppen and colleagues in Stem Cell Research & Therapy provides evidence that an ex vivo short-term pre-treatment with statins reverts the dysfunction of bone marrow stem cells isolated from rats with renal impairment. Indeed, statin pre-treated cells improved renal function in a model of established chronic kidney disease. Our commentary discusses the potential of this approach in the context of autologous cell therapy and the available knowledge on the mechanisms involved in uremia-induced stem cell dysfunction.
Collapse
Affiliation(s)
- Cristina Grange
- Department of Medical Sciences, Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126, Torino, Italy
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126, Torino, Italy.
| |
Collapse
|
14
|
Mallipattu SK, Uribarri J. Advanced glycation end product accumulation: a new enemy to target in chronic kidney disease? Curr Opin Nephrol Hypertens 2015; 23:547-54. [PMID: 25160075 DOI: 10.1097/mnh.0000000000000062] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW The critical role of advanced glycation end products (AGEs) in the progression of chronic diseases and their complications has recently become more apparent. This review summarizes the recent contributions to the field of AGEs in chronic kidney disease (CKD). RECENT FINDINGS Over the past 3 decades, AGEs have been implicated in the progression of CKD, and specifically diabetic nephropathy. Although numerous in-vitro and in-vivo studies highlight the detrimental role of AGEs accumulation in tissue injury, few prospective human studies or clinical trials show that inhibiting this process ameliorates disease. Nonetheless, recent studies have focused on the novel mechanisms that contribute to end-organ injury as a result of AGEs accumulation, as well as novel targets of therapy in kidney disease. SUMMARY As the prevalence and the incidence of CKD rises in the United States, it is essential to identify therapeutic strategies that either delay the progression of CKD or improve mortality in this population. The focus of this review is on highlighting the recent studies that advance our current understanding of the mechanisms mediating AGEs-induced CKD progression, as well as novel treatment strategies that have the potential to abrogate this disease process. VIDEO ABSTRACT http://links.lww.com/CONH/A12.
Collapse
Affiliation(s)
- Sandeep K Mallipattu
- aDivision of Nephrology, Department of Medicine, Stony Brook University bDivision of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | | |
Collapse
|
15
|
Lisowska-Myjak B. Uremic toxins and their effects on multiple organ systems. Nephron Clin Pract 2014; 128:303-11. [PMID: 25531673 DOI: 10.1159/000369817] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022] Open
Abstract
Nearly all body organs and systems are affected by the toxicity of uremic compounds retained in the course of renal dysfunction. Knowledge about the origin, chemical structure and composition of the retained endogenous substances responsible for these symptoms is far from complete. Organic retention solutes present a great variety of properties which makes their accurate classification extremely difficult. Their potential toxicity remains to be elucidated with meticulous observation of clearly formulated rules guiding the process. Toxicity assessment is a complex process because not just one but several retained compounds may be simultaneously involved in the same biological and metabolic processes. The search for new uremic compounds and combining them into panels of substances involved in the same pathophysiological processes seems to offer a novel approach to identifying and explaining any so far unexplored specific effects of endogenous compounds on the body organs and systems.
Collapse
Affiliation(s)
- Barbara Lisowska-Myjak
- Department of Biochemistry and Clinical Chemistry, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
16
|
Wang CH, Huang PH, Chen JW, Lin SJ, Lee MF, Yang NI, Cherng WJ. Clinical Application of Endothelial Progenitor Cell: Are We Ready? ACTA CARDIOLOGICA SINICA 2013; 29:479-487. [PMID: 27122748 PMCID: PMC4805026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Academic Contribution Register] [Received: 12/02/2012] [Accepted: 06/04/2013] [Indexed: 06/05/2023]
Abstract
UNLABELLED The discovery of circulating endothelial progenitor cells (EPCs) opened up a new era of EPC-based therapies for cardiovascular diseases. While researchers are enthusiastic about applying EPCs to clinical therapy, progress has been substantially limited due to the lack of a thorough characterization and understanding of early and late outgrowth EPCs (also called endothelial colony-forming cell, ECFCs) biology. As a means of facilitating the understanding of how late EPCs can most effectively be applied to clinical therapeutics, this article reviews the recent progress covering 5 important issues: (1) The best passages of ex vivo-cultivated EPCs for cell therapy; (2) inflammatory activation of late EPCs: a real world consideration; (3) late EPC is not an endothelial cell: an issue of cell contamination; (4) ways to improve EPC function and differentiation; and (5) how to separate and delete smooth muscle progenitor cells (SPCs). KEY WORDS Cardiovascular disease; Cell therapy; Endothelial progenitor cell; Smooth muscle progenitor cell.
Collapse
Affiliation(s)
- Chao-Hung Wang
- Heart Failure Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung; Chang Gung University College of Medicine, Taoyuan
| | - Po-Hsun Huang
- Division of Cardiology, Taipei Veterans General Hospital; Institute of Clinical Medicine and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Jaw-Wen Chen
- Division of Cardiology, Taipei Veterans General Hospital; Institute of Clinical Medicine and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Shing-Jong Lin
- Division of Cardiology, Taipei Veterans General Hospital; Institute of Clinical Medicine and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Feng Lee
- Heart Failure Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung; Chang Gung University College of Medicine, Taoyuan
| | - Ning-I Yang
- Heart Failure Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung; Chang Gung University College of Medicine, Taoyuan
| | - Wen-Jin Cherng
- Heart Failure Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung; Chang Gung University College of Medicine, Taoyuan
| |
Collapse
|