1
|
Wang K, Hou M, Qiao C, Duan Y, Tao R, Wang X, Xiao K, Liu S, Zhao H, Wang J, Jia Z, Ding X. Icariin alleviates diabetic renal interstitial fibrosis aggravation by inhibiting miR-320a-3p targeting BMP6. J Pharmacol Sci 2024; 154:316-325. [PMID: 38485350 DOI: 10.1016/j.jphs.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
Diabetic nephropathy is a common complication of diabetes, accumulating evidence underscores the pivotal role of tubulointerstitial fibrosis in the progression of diabetic nephropathy. However, the underlying mechanisms remain incompletely understood. Although the mechanisms in diabetic nephropathy fibrosis have been the focus of many studies, only limited information is currently available concerning microRNA regulation in tubulointerstitial fibrosis. In this study, we aimed to investigate the roles of miR-320a-3p and bone morphogenetic protein-6 (BMP6) in tubulointerstitial fibrosis. After inducing fibrosis with high glucose in HK-2 cells, we found that miR-320a-3p is significantly up-regulated, whereas BMP6 is markedly down-regulated. These changes suggest close link between miR-320a-3p and BMP6 in tubulointerstitial fibrosis. To elucidate this phenomenon, miR-320a-3p mimic, inhibitor and siBMP6 were employed. We observed in miR-320a-3p mimic group the fibrosis marker include alpha smooth muscle actin and type I collagen was significantly up-regulated, whereas BMP6 exhibited the opposite trend. Additionally, we found icariin could alleviate tubulointerstitial fibrosis by downregulation the miR-320a-3p expression. In conclusion, miR-320a-3p promotes tubulointerstitial fibrosis during the development of DN by suppressing BMP signal pathway activity via inhibiting BMP6 expression. Suggesting that miR-320a-3p represents a potential therapeutic target for tubulointerstitial fibrosis induced by diabetic nephropathy.
Collapse
Affiliation(s)
- Kaiwei Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Mengjun Hou
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chen Qiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yalei Duan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Rongpin Tao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiniao Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Kang Xiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Shuo Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Hanzhen Zhao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiali Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhirong Jia
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Precision Medicine Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
2
|
Shen J, San W, Zheng Y, Zhang S, Cao D, Chen Y, Meng G. Different types of cell death in diabetic endothelial dysfunction. Biomed Pharmacother 2023; 168:115802. [PMID: 37918258 DOI: 10.1016/j.biopha.2023.115802] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
Diabetes mellitus is a metabolic disease caused by disorders of insulin secretion and utilization. Long-term hyperglycemia, insulin resistance, and disorders of glucose and lipid metabolism cause vascular endothelial cell damage. Endothelial dysfunction is a key feature of diabetic vascular complications such as diabetic nephropathy, retinopathy, neuropathy, and atherosclerosis. Importantly, cell death is thought to be a key factor contributing to vascular endothelial injury. Morphologically, cell death can be divided into three forms: type I apoptosis, type II autophagy, and type III necrosis. According to the difference in function, cell death can be divided into accidental cell death (ACD) and regulated cell death (RCD). RCD is a controlled process involving numerous proteins and precise signaling cascades. Multiple subroutines covered by RCD may be involved in diabetic endothelial dysfunction, including apoptosis, autophagy, necroptosis, pyroptosis, entosis, ferroptosis, ferroautophagy, parthanatos, netotic cell death, lysosome-dependent cell death, alkaliptosis, oxeiptosis, cuproptosis, and PANoptosis. This article briefly reviews the mechanism and significance of cell death associated with diabetic endothelial dysfunction, which will help deepen the understanding of diabetic endothelial cell death and provide new therapeutic ideas.
Collapse
Affiliation(s)
- Jieru Shen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Wenqing San
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yangyang Zheng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Shuping Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Danyi Cao
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yun Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
3
|
He C, Ye P, Zhang X, Esmaeili E, Li Y, Lü P, Cai C. The Role of TGF-β Signaling in Saphenous Vein Graft Failure after Peripheral Arterial Disease Bypass Surgery. Int J Mol Sci 2023; 24:10381. [PMID: 37373529 DOI: 10.3390/ijms241210381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Saphenous vein bypass grafting is an effective technique used to treat peripheral arterial disease (PAD). However, restenosis is the major clinical challenge for the graft vessel among people with PAD postoperation. We hypothesize that there is a common culprit behind arterial occlusion and graft restenosis. To investigate this hypothesis, we found TGF-β, a gene specifically upregulated in PAD arteries, by bioinformatics analysis. TGF-β has a wide range of biological activities and plays an important role in vascular remodeling. We discuss the molecular pathway of TGF-β and elucidate its mechanism in vascular remodeling and intimal hyperplasia, including EMT, extracellular matrix deposition, and fibrosis, which are the important pathways contributing to stenosis. Additionally, we present a case report of a patient with graft restenosis linked to the TGF-β pathway. Finally, we discuss the potential applications of targeting the TGF-β pathway in the clinic to improve the long-term patency of vein grafts.
Collapse
Affiliation(s)
- Changhuai He
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pin Ye
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuecheng Zhang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Elham Esmaeili
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ping Lü
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chuanqi Cai
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
4
|
Alur V, Raju V, Vastrad B, Vastrad C, Kavatagimath S, Kotturshetti S. Bioinformatics Analysis of Next Generation Sequencing Data Identifies Molecular Biomarkers Associated With Type 2 Diabetes Mellitus. Clin Med Insights Endocrinol Diabetes 2023; 16:11795514231155635. [PMID: 36844983 PMCID: PMC9944228 DOI: 10.1177/11795514231155635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/19/2023] [Indexed: 02/23/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is the most common metabolic disorder. The aim of the present investigation was to identify gene signature specific to T2DM. Methods The next generation sequencing (NGS) dataset GSE81608 was retrieved from the gene expression omnibus (GEO) database and analyzed to identify the differentially expressed genes (DEGs) between T2DM and normal controls. Then, Gene Ontology (GO) and pathway enrichment analysis, protein-protein interaction (PPI) network, modules, miRNA (micro RNA)-hub gene regulatory network construction and TF (transcription factor)-hub gene regulatory network construction, and topological analysis were performed. Receiver operating characteristic curve (ROC) analysis was also performed to verify the prognostic value of hub genes. Results A total of 927 DEGs (461 were up regulated and 466 down regulated genes) were identified in T2DM. GO and REACTOME results showed that DEGs mainly enriched in protein metabolic process, establishment of localization, metabolism of proteins, and metabolism. The top centrality hub genes APP, MYH9, TCTN2, USP7, SYNPO, GRB2, HSP90AB1, UBC, HSPA5, and SQSTM1 were screened out as the critical genes. ROC analysis provides prognostic value of hub genes. Conclusion The potential crucial genes, especially APP, MYH9, TCTN2, USP7, SYNPO, GRB2, HSP90AB1, UBC, HSPA5, and SQSTM1, might be linked with risk of T2DM. Our study provided novel insights of T2DM into genetics, molecular pathogenesis, and novel therapeutic targets.
Collapse
Affiliation(s)
- Varun Alur
- Department of Endocrinology, J.J.M
Medical College, Davanagere, Karnataka, India
| | - Varshita Raju
- Department of Obstetrics and
Gynecology, J.J.M Medical College, Davanagere, Karnataka, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry,
K.L.E. College of Pharmacy, Gadag, Karnataka, India
| | | | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E.
College of Pharmacy, Belagavi, Karnataka, India
| | | |
Collapse
|
5
|
Pauk M, Kufner V, Rumenovic V, Dumic-Cule I, Farkas V, Milosevic M, Bordukalo-Niksic T, Vukicevic S. Iron overload in aging Bmp6‑/‑ mice induces exocrine pancreatic injury and fibrosis due to acinar cell loss. Int J Mol Med 2021; 47:60. [PMID: 33649802 PMCID: PMC7910010 DOI: 10.3892/ijmm.2021.4893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/19/2021] [Indexed: 11/27/2022] Open
Abstract
The relationship between hemochromatosis and diabetes has been well established, as excessive iron deposition has been reported to result in impaired function of the endocrine and exocrine pancreas. Therefore, the objective of the present study was to analyze the effects of iron accumulation on the pancreata and glucose homeostasis in a bone morphogenetic protein 6-knockout (Bmp6−/−) mouse model of hemochromatosis. The sera and pancreatic tissues of wild-type (WT) and Bmp6−/− mice (age, 3 and 10 months) were subjected to biochemical and histological analyses. In addition, 18F-fluorodeoxyglucose biodistribution was evaluated in the liver, muscle, heart, kidney and adipose tissue of both animal groups. The results demonstrated that 3-month-old Bmp6−/− mice exhibited iron accumulation preferentially in the exocrine pancreas, with no signs of pancreatic injury or fibrosis. No changes were observed in the glucose metabolism, as pancreatic islet diameter, insulin and glucagon secretion, blood glucose levels and glucose uptake in the liver, muscle and adipose tissue remained comparable with those in the WT mice. Aging Bmp6−/− mice presented with progressive iron deposits in the exocrine pancreas, leading to pancreatic degeneration and injury that was characterized by acinar atrophy, fibrosis and the infiltration of inflammatory cells. However, the aging mice exhibited unaltered blood glucose levels and islet structure, normal insulin secretion and moderately increased α-cell mass compared with those in the age-matched WT mice. Additionally, iron overload and pancreatic damage were not observed in the aging WT mice. These results supported a pathogenic role of iron overload in aging Bmp6−/− mice leading to iron-induced exocrine pancreatic deficiency, whereas the endocrine pancreas retained normal function.
Collapse
Affiliation(s)
- Martina Pauk
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, HR‑10000 Zagreb, Croatia
| | - Vera Kufner
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, HR‑10000 Zagreb, Croatia
| | - Viktorija Rumenovic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, HR‑10000 Zagreb, Croatia
| | - Ivo Dumic-Cule
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, HR‑10000 Zagreb, Croatia
| | - Vladimir Farkas
- Molecular Biology Department, Rudjer Boskovic Institute, HR‑10000 Zagreb, Croatia
| | - Milan Milosevic
- Andrija Stampar School of Public Health, School of Medicine, University of Zagreb, HR‑10000 Zagreb, Croatia
| | - Tatjana Bordukalo-Niksic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, HR‑10000 Zagreb, Croatia
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, HR‑10000 Zagreb, Croatia
| |
Collapse
|
6
|
Lu W, Li X. Vascular stem/progenitor cells: functions and signaling pathways. Cell Mol Life Sci 2018; 75:859-869. [PMID: 28956069 PMCID: PMC11105279 DOI: 10.1007/s00018-017-2662-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/05/2017] [Accepted: 09/20/2017] [Indexed: 12/17/2022]
Abstract
Vascular stem/progenitor cells (VSCs) are an important source of all types of vascular cells needed to build, maintain, repair, and remodel blood vessels. VSCs, therefore, play critical roles in the development, normal physiology, and pathophysiology of numerous diseases. There are four major types of VSCs, including endothelial progenitor cells (EPCs), smooth muscle progenitor cells (SMPCs), pericytes, and mesenchymal stem cells (MSCs). VSCs can be found in bone marrow, circulating blood, vessel walls, and other extravascular tissues. During the past two decades, considerable progress has been achieved in the understanding of the derivation, surface markers, and differentiation of VSCs. Yet, the mechanisms regulating their functions and maintenance under normal and pathological conditions, such as in eye diseases, remain to be further elucidated. Owing to the essential roles of blood vessels in human tissues and organs, understanding the functional properties and the underlying molecular basis of VSCs is of critical importance for both basic and translational research.
Collapse
Affiliation(s)
- Weisi Lu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
| | - Xuri Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
7
|
Fadini GP. A reappraisal of the role of circulating (progenitor) cells in the pathobiology of diabetic complications. Diabetologia 2014; 57:4-15. [PMID: 24173366 DOI: 10.1007/s00125-013-3087-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/01/2013] [Indexed: 01/10/2023]
Abstract
Traditionally, the development of diabetic complications has been attributed to the biochemical pathways driving hyperglycaemic cell damage, while reparatory mechanisms have been long overlooked. A more comprehensive view of the balance between damage and repair suggests that an impaired regenerative capacity of bone marrow (BM)-derived cells strongly contributes to defective re-endothelisation and neoangiogenesis in diabetes. Although recent technological advances have redefined the biology and function of endothelial progenitor cells (EPCs), interest in BM-derived vasculotropic cells in the setting of diabetes and its complications remains high. Several circulating cell types of haematopoietic and non-haematopoietic origin are affected by diabetes and are potentially involved in the pathobiology of chronic complications. In addition to classical EPCs, these include circulating (pro-)angiogenic cells, polarised monocytes/macrophages (M1 and M2), myeloid calcifying cells and smooth muscle progenitor cells, having disparate roles in vascular biology. In parallel with the study of elusive progenitor cell phenotypes, it has been recognised that diabetes induces a profound remodelling of the BM stem cell niche. The alteration of circulating (progenitor) cells in the BM is now believed to be the link among distant end-organ complications. The field is rapidly evolving and interest is shifting from specific cell populations to the complex network of interactions that orchestrate trafficking of circulating vasculotropic cells.
Collapse
Affiliation(s)
- G P Fadini
- Department of Medicine, University Hospital of Padova, University of Padova, Via Giustiniani, 2, 35100, Padova, Italy,
| |
Collapse
|
8
|
Castiglione A, Guaran V, Astolfi L, Orioli E, Zeri G, Gemmati D, Bovo R, Montaldi A, Alghisi A, Martini A. Karyotype-phenotype correlation in partial trisomies of the short arm of chromosome 6: a family case report and review of the literature. Cytogenet Genome Res 2013; 141:243-59. [PMID: 23942271 DOI: 10.1159/000353846] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2013] [Indexed: 11/19/2022] Open
Abstract
The first child (proband) of nonconsanguineous Caucasian parents underwent genetic investigation because she was affected with congenital choanal atresia, heart defects and kidney hyposplasia with mild transient renal insufficiency. The direct DNA sequencing after PCR of the CHD7 gene, which is thought to be responsible for approximately 60-70% of the cases of CHARGE syndrome/association, found no mutations. The cytogenetic analysis (standard GTG banding karyotype) revealed the presence of extrachromosomal material on 10q. The chromosome analysis was completed with array CGH (30 kb resolution), MLPA and FISH, which allowed the identification of three 6p regions (6p.25.3p23 × 3): 2 of these regions are normally located on chromosome 6, and the third region is translocated to the long arm of chromosome 10. The same chromosomal rearrangement was subsequently found in the father, who was affected with congenital ptosis and progressive hearing loss, and in the proband's sister, the second child, who presented at birth with choanal atresia and congenital heart defects. The mutated karyotypes, which were directly inherited, are thought to be responsible for a variable phenotype, including craniofacial dysmorphisms, choanal atresia, congenital ptosis, sensorineural hearing loss, heart defects, developmental delay, and renal dysfunction. Nevertheless, to achieve a complete audiological assessment of the father, he underwent further investigation that revealed an increased level of the coagulation factor XIII (300% increased activity), fluctuating levels of fibrin D-dimer degradation products (from 296 to 1,587 ng/ml) and a homoplasmic mitochondrial DNA mutation: T961G in the MTRNR1 (12S rRNA) gene. He was made a candidate for cochlear implantation. Preoperative high-resolution computed tomography and magnetic resonance imaging of the temporal bone revealed the presence of an Arnold-Chiari malformation type I. To the best of our knowledge, this study is the second report on partial 6p trisomy that involves the 10q terminal region. Furthermore, we report the first case of documented Arnold-Chiari malformation type I and increased factor XIII activity associated with 6p trisomy. We present a comprehensive report of the familial cases and an exhaustive literature review.
Collapse
Affiliation(s)
- A Castiglione
- Department of Neurosciences, Complex Operative Unit of Otorhinolaryngology and Otosurgery, Padua University Hospital, Padua, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Westerweel PE, Teraa M, Rafii S, Jaspers JE, White IA, Hooper AT, Doevendans PA, Verhaar MC. Impaired endothelial progenitor cell mobilization and dysfunctional bone marrow stroma in diabetes mellitus. PLoS One 2013; 8:e60357. [PMID: 23555959 PMCID: PMC3610687 DOI: 10.1371/journal.pone.0060357] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 02/26/2013] [Indexed: 01/04/2023] Open
Abstract
Background Circulating Endothelial Progenitor Cell (EPC) levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired –at least partly– due to dysfunction of the bone marrow stromal compartment. Methods Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1+Flk-1+ EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34+ hematopoietic progenitor cells (HPC) and supporting stroma was assessed by co-cultures. To study progenitor cell–endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed. Results In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro. Conclusion EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients.
Collapse
Affiliation(s)
- Peter E. Westerweel
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
- Howard Hughes Medical Institute, The Ansary Stem Cell Center for Regenerative Medicine, Weill Cornell Medical College, New York, New York, United States of America
- Department of Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martin Teraa
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Vascular Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Shahin Rafii
- Howard Hughes Medical Institute, The Ansary Stem Cell Center for Regenerative Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Janneke E. Jaspers
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ian A. White
- Howard Hughes Medical Institute, The Ansary Stem Cell Center for Regenerative Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Andrea T. Hooper
- Howard Hughes Medical Institute, The Ansary Stem Cell Center for Regenerative Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Pieter A. Doevendans
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
10
|
Vcelakova J, Blatny R, Halbhuber Z, Kolar M, Neuwirth A, Petruzelkova L, Ulmannova T, Kolouskova S, Sumnik Z, Pithova P, Krivjanska M, Filipp D, Stechova K. The effect of diabetes-associated autoantigens on cell processes in human PBMCs and their relevance to autoimmune diabetes development. J Diabetes Res 2013; 2013:589451. [PMID: 23841104 PMCID: PMC3694381 DOI: 10.1155/2013/589451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/20/2013] [Indexed: 12/18/2022] Open
Abstract
Type 1 Diabetes (T1D) is considered to be a T-helper- (Th-) 1 autoimmune disease; however, T1D pathogenesis likely involves many factors, and sufficient tools for autoreactive T cell detection for the study of this disease are currently lacking. In this study, using gene expression microarrays, we analysed the effect of diabetes-associated autoantigens on peripheral blood mononuclear cells (PBMCs) with the purpose of identifying (pre)diabetes-associated cell processes. Twelve patients with recent onset T1D, 18 first-degree relatives of the TD1 patients (DRL; 9/18 autoantibody positive), and 13 healthy controls (DV) were tested. PBMCs from these individuals were stimulated with a cocktail of diabetes-associated autoantigens (proinsulin, IA-2, and GAD65-derived peptides). After 72 hours, gene expression was evaluated by high-density gene microarray. The greatest number of functional differences was observed between relatives and controls (69 pathways), from which 15% of the pathways belonged to "immune response-related" processes. In the T1D versus controls comparison, more pathways (24%) were classified as "immune response-related." Important pathways that were identified using data from the T1D versus controls comparison were pathways involving antigen presentation by MHCII, the activation of Th17 and Th22 responses, and cytoskeleton rearrangement-related processes. Genes involved in Th17 and TGF-beta cascades may represent novel, promising (pre)diabetes biomarkers.
Collapse
Affiliation(s)
- Jana Vcelakova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, V Uvalu 84, 15006 Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Guo J, Li D, Bai S, Xu T, Zhou Z, Zhang Y. Detecting DNA synthesis of neointimal formation after catheter balloon injury in GK and in Wistar rats: using 5-ethynyl-2'-deoxyuridine. Cardiovasc Diabetol 2012; 11:150. [PMID: 23237526 PMCID: PMC3537571 DOI: 10.1186/1475-2840-11-150] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/13/2012] [Indexed: 01/19/2023] Open
Abstract
Background Neointimal formation plays an important role in the pathogenesis of coronary restenosis after percutaneous coronary intervention (PCI), especially in patients with diabetes mellitus. Recently, some studies have shown that 5-ethynyl-2'-deoxyuridine (EdU) incorporation can serve as a novel alternative to the 5-bromo-2'-deoxyuridine (BrdU) antibody detection method for detection of DNA synthesis in regenerating avian cochlea, chick embryo and the adult nervous system. However, few studies have been performed to assess the suitability of EdU for detecting DNA synthesis in vascular neointima. Methods The carotid artery balloon injury model was established in Goto-Kakizaki (GK) and Wistar rats. A Cell-LightTM EdU Kit was used to detect EdU-labeled cell nuclei of common carotid arteries at day 7 after catheter balloon injury. Different methods of injecting EdU were tested. The protein levels of proliferating cell nuclear antigen (PCNA) and p-Akt (Ser473), as well as the mRNA levels of PCNA were evaluated by Western blotting and quantitative real-time PCR (qRT-PCR), respectively. Immunohistochemical staining was also employed to visualize PCNA-positive cells. Results At day 7 after catheter balloon injury, far more EdU-positive and PCNA-positive cells were observed in GK rats. When comparing groups that received different EdU doses, it was found that the percentage of EdU-positive cells at a dose of 100 mg/kg body weight was than at doses of 25 mg/kg and 50 mg/kg. The number of positive cells was significantly higher in the repeated injection group compared to the single injection group. Further, after balloon injury DNA synthesis in GK rats was more notable than in Wistar rats. Neointimal formation in GK rats was more obvious than in Wistar rats. The protein levels of PCNA and p-Akt (Ser473) and the mRNA levels of PCNA were increased in injured rats as compared to uninjured rats, and were significantly higher in GK rats than in Wistar rats. Conclusion By intraperitoneal injections of EdU at a dose of 100 mg/kg three times, EdU incorporation can detect carotid arterial DNA synthesis caused by neointimal formation in GK rats and Wistar rats at day 7 after balloon injury by the EdU click reaction quickly and effectively. Moreover, more obvious DNA synthesis in the vascular neointima could be observed in GK rats than in Wistar rats.
Collapse
Affiliation(s)
- Jingsheng Guo
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, 84 West Huaihai Road, Xuzhou, Jiangsu, Peoples Republic of China
| | | | | | | | | | | |
Collapse
|
12
|
Fledderus JO, van Oostrom O, de Kleijn DPV, den Ouden K, Penders AF, Gremmels H, de Bree P, Verhaar MC. Increased amount of bone marrow-derived smooth muscle-like cells and accelerated atherosclerosis in diabetic apoE-deficient mice. Atherosclerosis 2012; 226:341-7. [PMID: 23219222 DOI: 10.1016/j.atherosclerosis.2012.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 11/13/2012] [Accepted: 11/14/2012] [Indexed: 10/27/2022]
Abstract
AIMS Atherosclerotic plaque development is accelerated in patients with diabetes. Bone marrow-derived smooth muscle-like cells have been detected in neointima and diabetes has a numerical and functional effect on circulating vascular progenitor cells. We hypothesized that an increased number of bone marrow-derived smooth muscle-like cells correlates with accelerated atherosclerosis in diabetic apoE-deficient mice. METHODS ApoE(-/-) mice were subjected to total body irradiation and transplanted with bone marrow cells from GFP-transgenic mice. Mice were rendered diabetic by streptozotocin injection and examined after 4, 8, 11 and 15 weeks of diabetes. RESULTS Diabetic mice showed a larger plaque area and a higher number of smooth muscle-like cells compared to non-diabetic mice at 11 and 15 weeks after diabetes induction. Bone marrow-derived smooth muscle-like cells were detected in atherosclerotic plaques of both diabetic and control mice, but numbers were higher in plaques of diabetic mice 11 weeks after induction of diabetes. The higher number of bone marrow-derived smooth muscle-like cells in plaque was associated with an increase in in vitro differentiation of smooth muscle-like cells from spleen mononuclear cells in diabetic mice. CONCLUSIONS Diabetes increases the number of bone marrow-derived smooth muscle-like cells in atherosclerotic plaques and the differentiation of mononuclear cells towards smooth muscle-like cells, which may contribute to accelerated atherosclerotic plaque development in diabetic apoE(-/-) mice.
Collapse
Affiliation(s)
- J O Fledderus
- Laboratory of Renal and Vascular Biology, Department of Nephrology and Hypertension, F03.227, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Fadini GP, Avogaro A. It is all in the blood: the multifaceted contribution of circulating progenitor cells in diabetic complications. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:742976. [PMID: 22548049 PMCID: PMC3324138 DOI: 10.1155/2012/742976] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 01/27/2012] [Indexed: 12/21/2022]
Abstract
Diabetes mellitus (DM) is a worldwide growing disease and represents a huge social and healthcare problem owing to the burden of its complications. Micro- and macrovascular diabetic complications arise from excess damage through well-known biochemical pathways. Interestingly, microangiopathy hits the bone marrow (BM) microenvironment with features similar to retinopathy, nephropathy and neuropathy. The BM represents a reservoir of progenitor cells for multiple lineages, not limited to the hematopoietic system and including endothelial cells, smooth muscle cells, cardiomyocytes, and osteogenic cells. All these multiple progenitor cell lineages are profoundly altered in the setting of diabetes in humans and animal models. Reduction of endothelial progenitor cells (EPCs) along with excess smooth muscle progenitor (SMP) and osteoprogenitor cells creates an imbalance that promote the development of micro- and macroangiopathy. Finally, an excess generation of BM-derived fusogenic cells has been found to contribute to diabetic complications in animal models. Taken together, a growing amount of literature attributes to circulating progenitor cells a multi-faceted role in the pathophysiology of DM, setting a novel scenario that puts BM and the blood at the centre of the stage.
Collapse
Affiliation(s)
- Gian Paolo Fadini
- Department of Medicine, University of Padua, 35100 Padua, Italy
- Laboratory of Experimental Diabetology, Venetian Institute of Molecular Medicine (VIMM), 35100 Padua, Italy
| | - Angelo Avogaro
- Department of Medicine, University of Padua, 35100 Padua, Italy
| |
Collapse
|
14
|
Cell-based therapies for diabetic complications. EXPERIMENTAL DIABETES RESEARCH 2011; 2012:872504. [PMID: 21822425 PMCID: PMC3123995 DOI: 10.1155/2012/872504] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 03/21/2011] [Indexed: 12/19/2022]
Abstract
In recent years, accumulating experimental evidence supports the notion that diabetic patients may greatly benefit from cell-based therapies, which include the use of adult stem and/or progenitor cells. In particular, mesenchymal stem cells and the circulating pool of endothelial progenitor cells have so far been the most studied populations of cells proposed for the treatment of vascular complications affecting diabetic patients. We review the evidence supporting their use in this setting, the therapeutic benefits that these cells have shown so far as well as the challenges that cell-based therapies in diabetic complications put out.
Collapse
|
15
|
Li J, Jin C, Cleveland JC, Ao L, Xu D, Fullerton DA, Meng X. Enhanced inflammatory responses to toll-like receptor 2/4 stimulation in type 1 diabetic coronary artery endothelial cells: the effect of insulin. Cardiovasc Diabetol 2010; 9:90. [PMID: 21162749 PMCID: PMC3018430 DOI: 10.1186/1475-2840-9-90] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 12/16/2010] [Indexed: 02/07/2023] Open
Abstract
Background Endothelial inflammatory responses mediated by Toll-like receptors (TLRs), particularly TLR2 and TLR4, play an important role in atherogenesis. While Type 1 diabetes (T1D) promotes the development and progression of atherosclerosis, the effect of T1D on TLR2/4-mediated inflammatory responses in coronary artery endothelial cells (CAECs) remains unclear. Methods We tested the hypothesis that diabetic CAECs have enhanced inflammatory responses to TLR2/4 stimulation. Non-diabetic and diabetic CAECs were treated with TLR2 agonist peptidoglycan and TLR4 agonist lipopolysaccharide. The expression of ICAM-1, IL-6 and IL-8 were analyzed by real-time PCR, immunoblotting and ELISA, and NF-κB activation by immunoblotting and immunostaining. In additional experiments, insulin was added before TLR stimulation to determine whether insulin deficiency alone is responsible for the alteration of TLR2/4-mediated inflammatory responses. Results Stimulation of TLR2 or TLR4 induced NF-κB activation, and the expression of ICAM-1, IL-6 and IL-8. Interestingly, the expression of inflammatory mediators was significantly enhanced in diabetic cells. The enhanced inflammatory responses correlated with augmented NF-κB activation in the absence of a change in TLR2 or TLR4 protein levels. Further, pretreatment of diabetic cells with insulin failed to suppress the enhanced inflammatory responses. Conclusions Diabetic CAECs have enhanced inflammatory responses to stimulation of TLR2 or TLR4, and insulin alone is insufficient to correct the hyper-inflammatory responses. The mechanism underlying the enhanced inflammatory responses appears to be augmentation of pro-inflammatory signaling, rather than up-regulation of levels of TLR2 and TLR4. These findings suggest that diabetic CAECs adopt a hyper-inflammatory phenotype and that this endothelial phenotypic change may predispose coronary artery to atherogenesis.
Collapse
Affiliation(s)
- Jilin Li
- Department of Surgery, University of Colorado Denver, Aurora, Colorado, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Albiero M, Menegazzo L, Fadini GP. Circulating Smooth Muscle Progenitors and Atherosclerosis. Trends Cardiovasc Med 2010; 20:133-40. [DOI: 10.1016/j.tcm.2010.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 11/19/2010] [Indexed: 11/28/2022]
|