1
|
Fusion with the cold-active esterase facilitates autotransporter-based surface display of the 10th human fibronectin domain in Escherichia coli. Extremophiles 2017; 22:141-150. [PMID: 29256084 DOI: 10.1007/s00792-017-0990-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/08/2017] [Indexed: 10/24/2022]
Abstract
Cell surface display is a popular approach for the construction of whole-cell biocatalysts, live vaccines, and screening of combinatorial libraries. To develop a novel surface display system for the popular scaffold protein 10th human fibronectin type III domain (10Fn3) in Escherichia coli cells, we have used an α-helical linker and a C-terminal translocator domain from previously characterized autotransporter from Psychrobacter cryohalolentis K5T. The level of 10Fn3 passenger exposure at the cell surface provided by the hybrid autotransporter Fn877 and its C-terminal variants was low. To improve it, the fusion proteins containing 10Fn3 and the native autotransporter passenger Est877 or the cold-active esterase EstPc in different orientations were constructed and expressed as passenger domains. Using the whole-cell ELISA and activity assays, we have demonstrated that N-terminal position of EstPc in the passenger significantly improves the efficiency of the surface display of 10Fn3 in E. coli cells.
Collapse
|
2
|
Abstract
Type V secretion denotes a variety of secretion systems that cross the outer membrane in Gram-negative bacteria but that depend on the Sec machinery for transport through the inner membrane. They are possibly the simplest bacterial secretion systems, because they consist only of a single polypeptide chain (or two chains in the case of two-partner secretion). Their seemingly autonomous transport through the outer membrane has led to the term "autotransporters" for various subclasses of type V secretion. In this chapter, we review the structure and function of these transporters and review recent findings on additional factors involved in the secretion process, which have put the term "autotransporter" to debate.
Collapse
|
3
|
Wang LX, Mellon M, Bowder D, Quinn M, Shea D, Wood C, Xiang SH. Escherichia coli surface display of single-chain antibody VRC01 against HIV-1 infection. Virology 2014; 475:179-86. [PMID: 25482819 DOI: 10.1016/j.virol.2014.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/04/2014] [Accepted: 11/10/2014] [Indexed: 01/25/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) transmission and infection occur mainly via the mucosal surfaces. The commensal bacteria residing in these surfaces can potentially be employed as a vehicle for delivering inhibitors to prevent HIV-1 infection. In this study, we have employed a bacteria-based strategy to display a broadly neutralizing antibody VRC01, which could potentially be used to prevent HIV-1 infection. The VRC01 antibody mimics CD4-binding to gp120 and has broadly neutralization activities against HIV-1. We have designed a construct that can express the fusion peptide of the scFv-VRC01 antibody together with the autotransporter β-barrel domain of IgAP gene from Neisseria gonorrhoeae, which enabled surface display of the antibody molecule. Our results indicate that the scFv-VRC01 antibody molecule was displayed on the surface of the bacteria as demonstrated by flow cytometry and immunofluorescence microscopy. The engineered bacteria can capture HIV-1 particles via surface-binding and inhibit HIV-1 infection in cell culture.
Collapse
Affiliation(s)
- Lin-Xu Wang
- Nebraska Center for Virology, Lincoln, NE, USA; School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Michael Mellon
- Nebraska Center for Virology, Lincoln, NE, USA; School of Veterinary Medicine and Biomedical Sciences, Lincoln, NE, USA
| | - Dane Bowder
- Nebraska Center for Virology, Lincoln, NE, USA; School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Meghan Quinn
- Nebraska Center for Virology, Lincoln, NE, USA; School of Veterinary Medicine and Biomedical Sciences, Lincoln, NE, USA
| | - Danielle Shea
- Nebraska Center for Virology, Lincoln, NE, USA; School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Charles Wood
- Nebraska Center for Virology, Lincoln, NE, USA; School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Shi-Hua Xiang
- Nebraska Center for Virology, Lincoln, NE, USA; School of Veterinary Medicine and Biomedical Sciences, Lincoln, NE, USA.
| |
Collapse
|
4
|
Schüürmann J, Quehl P, Festel G, Jose J. Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application. Appl Microbiol Biotechnol 2014; 98:8031-46. [DOI: 10.1007/s00253-014-5897-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 11/24/2022]
|
5
|
van Ulsen P, Rahman SU, Jong WS, Daleke-Schermerhorn MH, Luirink J. Type V secretion: From biogenesis to biotechnology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1592-611. [DOI: 10.1016/j.bbamcr.2013.11.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/01/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022]
|
6
|
Decoration of outer membrane vesicles with multiple antigens by using an autotransporter approach. Appl Environ Microbiol 2014; 80:5854-65. [PMID: 25038093 DOI: 10.1128/aem.01941-14] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Outer membrane vesicles (OMVs) are spherical nanoparticles that naturally shed from Gram-negative bacteria. They are rich in immunostimulatory proteins and lipopolysaccharide but do not replicate, which increases their safety profile and renders them attractive vaccine vectors. By packaging foreign polypeptides in OMVs, specific immune responses can be raised toward heterologous antigens in the context of an intrinsic adjuvant. Antigens exposed at the vesicle surface have been suggested to elicit protection superior to that from antigens concealed inside OMVs, but hitherto robust methods for targeting heterologous proteins to the OMV surface have been lacking. We have exploited our previously developed hemoglobin protease (Hbp) autotransporter platform for display of heterologous polypeptides at the OMV surface. One, two, or three of the Mycobacterium tuberculosis antigens ESAT6, Ag85B, and Rv2660c were targeted to the surface of Escherichia coli OMVs upon fusion to Hbp. Furthermore, a hypervesiculating ΔtolR ΔtolA derivative of attenuated Salmonella enterica serovar Typhimurium SL3261 was generated, enabling efficient release and purification of OMVs decorated with multiple heterologous antigens, exemplified by the M. tuberculosis antigens and epitopes from Chlamydia trachomatis major outer membrane protein (MOMP). Also, we showed that delivery of Salmonella OMVs displaying Ag85B to antigen-presenting cells in vitro results in processing and presentation of an epitope that is functionally recognized by Ag85B-specific T cell hybridomas. In conclusion, the Hbp platform mediates efficient display of (multiple) heterologous antigens, individually or combined within one molecule, at the surface of OMVs. Detection of antigen-specific immune responses upon vesicle-mediated delivery demonstrated the potential of our system for vaccine development.
Collapse
|
7
|
Autodisplay of an archaeal γ-lactamase on the cell surface of Escherichia coli using Xcc_Est as an anchoring scaffold and its application for preparation of the enantiopure antiviral drug intermediate (-) vince lactam. Appl Microbiol Biotechnol 2014; 98:6991-7001. [PMID: 24756321 DOI: 10.1007/s00253-014-5704-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/30/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
Abstract
At present, autotransporter protein mediated surface display has opened a new dimension in the development of whole-cell biocatalysts. Here, we report the identification of a novel autotransporter Xcc_Est from Xanthomonas campestris pv campestris 8004 by bioinformatic analysis and application of Xcc_Est as an anchoring motif for surface display of γ-lactamase (Gla) from thermophilic archaeon Sulfolobus solfataricus P2 in Escherichia coli. The localization of γ-lactamase in the cell envelope was monitored by Western blot, activity assay and flow cytometry analysis. Either the full-length or truncated Xcc_Est could efficiently transport γ-lactamase to the cell surface. Compared with the free enzyme, the displayed γ-lactamase exhibited optimum temperature of 30 °C other than 90 °C, with a substantial decrease of 60 °C. Under the preparation system, the engineered E. coli with autodisplayed γ-lactamase converted 100 g racemic vince lactam to produce 49.2 g (-) vince lactam at 30 °C within 4 h. By using chiral HPLC, the ee value of the produced (-) vince lactam was determined to be 99.5 %. The whole-cell biocatalyst exhibited excellent stability under the operational conditions. Our results indicate that the E. coli with surface displayed γ-lactamase is an efficient and economical whole cell biocatalyst for preparing the antiviral drug intermediate (-) vince lactam at mild temperature, eliminating expensive energy cost performed at high temperature.
Collapse
|
8
|
Process optimization for increased yield of surface-expressed protein in Escherichia coli. Bioprocess Biosyst Eng 2014; 37:1685-93. [DOI: 10.1007/s00449-014-1141-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/28/2014] [Indexed: 12/26/2022]
|
9
|
Prevalence of autotransporters in Escherichia coli: what is the impact of phylogeny and pathotype? Int J Med Microbiol 2013; 304:243-56. [PMID: 24239047 DOI: 10.1016/j.ijmm.2013.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/30/2013] [Accepted: 10/13/2013] [Indexed: 11/23/2022] Open
Abstract
Autotransporter (AT) proteins are widespread surface-exposed or secreted factors in Escherichia coli. Several ATs have been correlated with pathogenesis or specific phylogenetic lineages. Therefore, an application as biomarkers for individual extraintestinal pathogenic E.coli (ExPEC) or intestinal pathogenic E.coli (IPEC) has been proposed. To put this assumption on a solid foundation, we analyzed 111 publicly available E. coli genome sequences and screened them bioinformatically for the presence of 18 ATs. We determined the highest AT prevalence per strain in phylogroup B2 isolates and showed that AT distribution correlates rather with phylogenetic lineages than with pathotypes. Although a strict dependence between AT prevalence and pathotype was not observed, EspP, EhaA, and EhaG cluster with IPEC of phylogroup B1 and E, respectively, whereas UpaH is predominantly present in ExPEC of phylogroup B2. Furthermore, PicU, SepA, UpaB, UpaI, and UpaJ were associated with phylogroup B2. We detected UpaI and its positional ortholog EhaC in 93% of the E.coli strains tested. This AT variant is thus the most prevalent in E.coli irrespective of pathotype or phylogenetic background. Compared with the ATs UpaB, UpaC, and UpaJ of uropathogenic E.coli strain 536, UpaI had redundant functions, contributing to autoaggregation, biofilm formation, and binding to extracellular matrix proteins. The functional redundancy and wide distribution of ATs among pathogenic and non-pathogenic E.coli indicates that ATs cannot generally be regarded as specific biomarkers and virulence factors. Our results demonstrate that phylogeny has a bigger impact on the distribution of AT variants in E.coli than initially thought, especially in ExPEC.
Collapse
|
10
|
Nicolay T, Vanderleyden J, Spaepen S. Autotransporter-based cell surface display in Gram-negative bacteria. Crit Rev Microbiol 2013; 41:109-23. [PMID: 23855358 DOI: 10.3109/1040841x.2013.804032] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cell surface display of proteins can be used for several biotechnological applications such as the screening of protein libraries, whole cell biocatalysis and live vaccine development. Amongst all secretion systems and surface appendages of Gram-negative bacteria, the autotransporter secretion pathway holds great potential for surface display because of its modular structure and apparent simplicity. Autotransporters are polypeptides made up of an N-terminal signal peptide, a secreted or surface-displayed passenger domain and a membrane-anchored C-terminal translocation unit. Genetic replacement of the passenger domain allows for the surface display of heterologous passengers. An autotransporter-based surface expression module essentially consists of an application-dependent promoter system, a signal peptide, a passenger domain of interest and the autotransporter translocation unit. The passenger domain needs to be compatible with surface translocation although till now no general rules have been determined to test this compatibility. The autotransporter technology for surface display of heterologous passenger domains is critically discussed for various applications.
Collapse
Affiliation(s)
- Toon Nicolay
- Centre of Microbial and Plant Genetics , Leuven , Belgium
| | | | | |
Collapse
|
11
|
Reed B, Chen R. Biotechnological applications of bacterial protein secretion: from therapeutics to biofuel production. Res Microbiol 2013; 164:675-82. [PMID: 23541476 DOI: 10.1016/j.resmic.2013.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/27/2013] [Indexed: 10/27/2022]
Abstract
Recent years have witnessed significant progresses in engineering of recombinant protein secretion. The relatively simple secretion mechanisms, Type I and Type V (autotransporters), are increasingly used for secretion of recombinant proteins. The secretion level of target proteins varied from milligrams to grams per liter. The range of proteins was significantly expanded beyond medical application. Notable additions include biofuel productions from renewable feedstock. Despite the progress, almost all successes in the engineering efforts come with significant trials and errors, highlighting the need for a better understanding of secretion systems and rational based methods.
Collapse
Affiliation(s)
- Ben Reed
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | |
Collapse
|
12
|
Nicolay T, Lemoine L, Lievens E, Balzarini S, Vanderleyden J, Spaepen S. Probing the applicability of autotransporter based surface display with the EstA autotransporter of Pseudomonas stutzeri A15. Microb Cell Fact 2012; 11:158. [PMID: 23237539 PMCID: PMC3546941 DOI: 10.1186/1475-2859-11-158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/11/2012] [Indexed: 11/10/2022] Open
Abstract
Background Autotransporters represent a widespread family of secreted proteins in Gram-negative bacteria. Their seemingly easy secretion mechanism and modular structure make them interesting candidates for cell surface display of heterologous proteins. The most widely applied host organism for this purpose is Escherichia coli. Pseudomonas stutzeri A15 is an interesting candidate host for environmentally relevant biotechnological applications. With the recently characterized P. stutzeri A15 EstA autotransporter at hand, all tools for developing a surface display system for environmental use are available. More general, this system could serve as a case-study to test the broad applicability of autotransporter based surface display. Results Based on the P. stutzeri A15 EstA autotransporter β-domain, a surface display expression module was constructed for use in P. stutzeri A15. Proof of concept of this module was presented by successful surface display of the original EstA passenger domain, which retained its full esterase activity. Almost all of the tested heterologous passenger domains however were not exposed at the cell surface of P. stutzeri A15, as assessed by whole cell proteinase K treatment. Only for a beta-lactamase protein, cell surface display in P. stutzeri A15 was comparable to presentation of the original EstA passenger domain. Development of expression modules based on the full-length EstA autotransporter did not resolve these problems. Conclusions Since only one of the tested heterologous passenger proteins could be displayed at the cell surface of P. stutzeri A15 to a notable extent, our results indicate that the EstA autotransporter cannot be regarded as a broad spectrum cell surface display system in P. stutzeri A15.
Collapse
Affiliation(s)
- Toon Nicolay
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001, Heverlee, Belgium
| | | | | | | | | | | |
Collapse
|
13
|
de Marco A. Recent contributions in the field of the recombinant expression of disulfide bonded proteins in bacteria. Microb Cell Fact 2012; 11:129. [PMID: 22978724 PMCID: PMC3462667 DOI: 10.1186/1475-2859-11-129] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 09/13/2012] [Indexed: 12/03/2022] Open
Abstract
The production of heterologous disulfide bonded proteins in bacteria remains a biotechnological challenge. A rapid literature survey results in the identification of some interesting proposals, such as the option of producing functional proteins in the cytoplasm in the presence of sulfhydryl oxidases and isomerases. Furthermore, an ever-increasing number of applications refers to recombinant proteins displayed at the bacterial surface. Time will tell whether these developments will lead to universally accepted laboratory protocols.
Collapse
|
14
|
A structurally informed autotransporter platform for efficient heterologous protein secretion and display. Microb Cell Fact 2012; 11:85. [PMID: 22709508 PMCID: PMC3521207 DOI: 10.1186/1475-2859-11-85] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/07/2012] [Indexed: 11/17/2022] Open
Abstract
Background The self-sufficient autotransporter (AT) pathway, ubiquitous in Gram-negative bacteria, combines a relatively simple protein secretion mechanism with a high transport capacity. ATs consist of a secreted passenger domain and a β-domain that facilitates transfer of the passenger across the cell-envelope. They have a great potential for the extracellular expression of recombinant proteins but their exploitation has suffered from the limited structural knowledge of carrier ATs. Capitalizing on its crystal structure, we have engineered the Escherichia coli AT Hemoglobin protease (Hbp) into a platform for the secretion and surface display of heterologous proteins, using the Mycobacterium tuberculosis vaccine target ESAT6 as a model protein. Results Based on the Hbp crystal structure, five passenger side domains were selected and one by one replaced by ESAT6, whereas a β-helical core structure (β-stem) was left intact. The resulting Hbp-ESAT6 chimeras were efficiently and stably secreted into the culture medium of E. coli. On the other hand, Hbp-ESAT6 fusions containing a truncated β-stem appeared unstable after translocation, demonstrating the importance of an intact β-stem. By interrupting the cleavage site between passenger and β-domain, Hbp-ESAT6 display variants were constructed that remain cell associated and facilitate efficient surface exposure of ESAT6 as judged by proteinase K accessibility and whole cell immuno-EM analysis. Upon replacement of the passenger side domain of an alternative AT, EspC, ESAT6 was also efficiently secreted, showing the approach is more generally applicable to ATs. Furthermore, Hbp-ESAT6 was efficiently displayed in an attenuated Salmonella typhimurium strain upon chromosomal integration of a single encoding gene copy, demonstrating the potential of the Hbp platform for live vaccine development. Conclusions We developed the first structurally informed AT platform for efficient secretion and surface display of heterologous proteins. The platform has potential with regard to the development of recombinant live vaccines and may be useful for other biotechnological applications that require high-level secretion or display of recombinant proteins by bacteria.
Collapse
|