1
|
Wissner JL, Parada-Fabián JC, Márquez-Velázquez NA, Escobedo-Hinojosa W, Gaudêncio SP, Prieto-Davó A. Diversity and Bioprospection of Gram-positive Bacteria Derived from a Mayan Sinkhole. MICROBIAL ECOLOGY 2024; 87:77. [PMID: 38806738 PMCID: PMC11133088 DOI: 10.1007/s00248-024-02392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
Water-filled sinkholes known locally as cenotes, found on the Yucatán Peninsula, have remarkable biodiversity. The primary objective of this study was to explore the biotechnological potential of Gram-positive cultivable bacteria obtained from sediment samples collected at the coastal cenote Pol-Ac in Yucatán, Mexico. Specifically, the investigation aimed to assess production of hydrolytic enzymes and antimicrobial compounds. 16 S rRNA gene sequencing led to the identification of 49 Gram-positive bacterial isolates belonging to the phyla Bacillota (n = 29) and Actinomycetota (n = 20) divided into the common genera Bacillus and Streptomyces, as well as the genera Virgibacillus, Halobacillus, Metabacillus, Solibacillus, Neobacillus, Rossellomorea, Nocardiopsis and Corynebacterium. With growth at 55ºC, 21 of the 49 strains were classified as moderately thermotolerant. All strains were classified as halotolerant and 24 were dependent on marine water for growth. Screening for six extracellular hydrolytic enzymes revealed gelatinase, amylase, lipase, cellulase, protease and chitinase activities in 93.9%, 67.3%, 63.3%, 59.2%, 59.2% and 38.8%, of isolated strains, respectively. The genes for polyketide synthases type I, were detected in 24 of the strains. Of 18 strains that achieved > 25% inhibition of growth in the bacterial pathogen Staphylococcus aureus ATCC 6538, 4 also inhibited growth in Escherichia coli ATCC 35,218. Isolates Streptomyces sp. NCA_378 and Bacillus sp. NCA_374 demonstrated 50-75% growth inhibition against at least one of the two pathogens tested, along with significant enzymatic activity across all six extracellular enzymes. This is the first comprehensive report on the biotechnological potential of Gram-positive bacteria isolated from sediments in the cenotes of the Yucatán Peninsula.
Collapse
Affiliation(s)
- Julian L Wissner
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de abrigo s/n, Sisal, Yucatán, 97356, México
| | - José Carlos Parada-Fabián
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de abrigo s/n, Sisal, Yucatán, 97356, México
| | - Norma Angélica Márquez-Velázquez
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de abrigo s/n, Sisal, Yucatán, 97356, México
| | - Wendy Escobedo-Hinojosa
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de abrigo s/n, Sisal, Yucatán, 97356, México
| | - Susana P Gaudêncio
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, 2819-516, Portugal
- Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA Faculty of Sciences and Technology, UCIBIO, NOVA University of Lisbon, Lisbon, 2819-516, Portugal
| | - Alejandra Prieto-Davó
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de abrigo s/n, Sisal, Yucatán, 97356, México.
| |
Collapse
|
2
|
Al'Abri IS, Haller DJ, Li Z, Crook N. Inducible directed evolution of complex phenotypes in bacteria. Nucleic Acids Res 2022; 50:e58. [PMID: 35150576 PMCID: PMC9177967 DOI: 10.1093/nar/gkac094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 12/22/2021] [Accepted: 02/01/2022] [Indexed: 11/15/2022] Open
Abstract
Directed evolution is a powerful method for engineering biology in the absence of detailed sequence-function relationships. To enable directed evolution of complex phenotypes encoded by multigene pathways, we require large library sizes for DNA sequences >5–10 kb in length, elimination of genomic hitchhiker mutations, and decoupling of diversification and screening steps. To meet these challenges, we developed Inducible Directed Evolution (IDE), which uses a temperate bacteriophage to package large plasmids and transfer them to naive cells after intracellular mutagenesis. To demonstrate IDE, we evolved a 5-gene pathway from Bacillus licheniformis that accelerates tagatose catabolism in Escherichia coli, resulting in clones with 65% shorter lag times during growth on tagatose after only two rounds of evolution. Next, we evolved a 15.4 kb, 10-gene pathway from Bifidobacterium breve UC2003 that aids E. coli’s utilization of melezitose. After three rounds of IDE, we isolated evolved pathways that both reduced lag time by more than 2-fold and enabled 150% higher final optical density. Taken together, this work enhances the capacity and utility of a whole pathway directed evolution approach in E. coli.
Collapse
Affiliation(s)
- Ibrahim S Al'Abri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Daniel J Haller
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Zidan Li
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
3
|
Hirose N, Kazama I, Sato R, Tanaka T, Aso Y, Ohara H. Microbial fuel cells using α-amylase-displaying Escherichia coli with starch as fuel. J Biosci Bioeng 2021; 132:519-523. [PMID: 34454829 DOI: 10.1016/j.jbiosc.2021.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/18/2022]
Abstract
Escherichia coli JM109 (pGV3-SBA) can assimilate starch by fusing the starch-digesting enzyme α-amylase from Streptococcus bovis NRIC1535 to an OprI' lipoprotein anchor on the cell membrane. This study shows microbial fuel cells (MFCs) development using this recombinant type of E. coli and starch as fuel. We observed the current generation of MFCs with E. coli JM109 (pGV3-SBA) for 120 h. During this period, it consumed 7.1 g/L of starch. A mediator in the form of anthraquinone-2,6-disulfonic acid disodium salt at 0.2, 0.4, and 0.8 mM was added to the MFCs. The highest maximum-current density (271 mA/m2) and maximum-power density (29.3 mW/m2) performances occurred in the 0.4 mM mediator solution. Coulomb yields were calculated as 3.4%, 3.0%, and 3.5% in 1.0, 5.0, and 10.0 g/L of initial starch, respectively. The concentrations of acetic acid, succinic acid, fumaric acid, and ethanol as metabolites were determined. In particular, 38.3 mM of ethanol was produced from 7.1 g/L of starch. This study suggests the use of recombinant E. coli which can assimilate starch present in starch-fueled MFCs. Moreover, it proposes the possibility of gene recombination technology for using wide variety of biomass as fuel and improving MFC's performance.
Collapse
Affiliation(s)
- Naoto Hirose
- Department of Biobased Materials Science, Kyoto Institute of Technology, Hashigami-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Iori Kazama
- Department of Biobased Materials Science, Kyoto Institute of Technology, Hashigami-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Rintaro Sato
- Department of Biobased Materials Science, Kyoto Institute of Technology, Hashigami-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Tomonari Tanaka
- Department of Biobased Materials Science, Kyoto Institute of Technology, Hashigami-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yuji Aso
- Department of Biobased Materials Science, Kyoto Institute of Technology, Hashigami-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hitomi Ohara
- Department of Biobased Materials Science, Kyoto Institute of Technology, Hashigami-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
4
|
Schmeyers L, Hoffmann J, Schulz S. [Laboratory study on bacteriological aspects of beverages and thickeners for dysphagia patients : Growth survey of Escherichia coli on thickeners and beverages]. Z Gerontol Geriatr 2021; 55:412-417. [PMID: 33909130 DOI: 10.1007/s00391-021-01898-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/31/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Currently, there is little evidence-based guidance on bacteriological aspects of thickeners or beverages for dysphagia patients in Germany that can be recommended to prevent aspiration pneumonia. Therefore, the aim of this study was to evaluate the lowest cell amount of E. coli on M9 agar media with beverages and thickeners. METHODOLOGY In the laboratory experiment 1 · 107 cells of E. coli were plated on a defined minimal medium (M9 agar plates) with different carbon sources and incubated at 37 °C for 2 days. The increase in cell number was determined using a photometer. Carbon sources were water, beer, orange juice, thickened beer, maltodextrin-xanthan gum-based thickeners, corn starch-based thickeners and potato starch-based thickeners. RESULTS The lowest E. coli cell amount was measured on water compared to beer, orange juice and all thickeners. A higher E. coli cell count was measured on maltodextrin-based thickeners than on potato starch-based and corn starch-based thickeners. DISCUSSION In the present laboratory experiment, no individual risk factors for the development of aspiration pneumonia in humans were considered; however, initial bacteriological evidence for dysphagia patients could be collected. Due to the high growth of E. coli on maltodextrin, yeast, fructose and glucose, these ingredients should be used with caution by dysphagia patients. Further research on thickeners and beverages is needed to make a comprehensive recommendation for action in this aspect.
Collapse
Affiliation(s)
- Lena Schmeyers
- Health Care Management, Universität Greifswald, Greifswald, Deutschland.
| | | | - Steffen Schulz
- Europäische Fachhochschule Rostock, Rostock, Deutschland
| |
Collapse
|
5
|
Mazumdar R, Nöbauer K, Hummel K, Hess M, Bilic I. Molecular characterization of Histomonas meleagridis exoproteome with emphasis on protease secretion and parasite-bacteria interaction. PLoS One 2019; 14:e0212429. [PMID: 30807611 PMCID: PMC6391000 DOI: 10.1371/journal.pone.0212429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 02/01/2019] [Indexed: 11/18/2022] Open
Abstract
The exoproteome of parasitic protists constitutes extracellular proteins that play a fundamental role in host-parasite interactions. Lytic factors, especially secreted proteases, are capable of modulating tissue invasion, thereby aggravating host susceptibility. Despite the important role of exoproteins during infection, the exoproteomic data on Histomonas meleagridis are non-existent. The present study employed traditional 1D-in-gel-zymography (1D-IGZ) and micro-LC-ESI-MS/MS (shotgun proteomics), to investigate H. meleagridis exoproteomes, obtained from a clonal virulent and an attenuated strain. Both strains were maintained as mono-eukaryotic monoxenic cultures with Escherichia coli. We demonstrated active in vitro secretion kinetics of proteases by both parasite strains, with a widespread proteolytic activity ranging from 17 kDa to 120 kDa. Based on protease inhibitor susceptibility assay, the majority of proteases present in both exoproteomes belonged to the family of cysteine proteases and showed stronger activity in the exoproteome of a virulent H. meleagridis. Shotgun proteomics, aided by customized database search, identified 176 proteins including actin, potential moonlighting glycolytic enzymes, lytic molecules such as pore-forming proteins (PFPs) and proteases like cathepsin-L like cysteine protease. To quantify the exoproteomic differences between the virulent and the attenuated H. meleagridis cultures, a sequential window acquisition of all theoretical spectra mass spectrometric (SWATH-MS) approach was applied. Surprisingly, results showed most of the exoproteomic differences to be of bacterial origin, especially targeting metabolism and locomotion. By deciphering such molecular signatures, novel insights into a complex in vitro protozoan- bacteria relationship were elucidated.
Collapse
Affiliation(s)
- Rounik Mazumdar
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Katharina Nöbauer
- VetCORE, Facility for Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karin Hummel
- VetCORE, Facility for Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Poultry Vaccines (IPOV), University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ivana Bilic
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
6
|
Kadiyala U, Kotov NA, VanEpps JS. Antibacterial Metal Oxide Nanoparticles: Challenges in Interpreting the Literature. Curr Pharm Des 2018; 24:896-903. [PMID: 29468956 PMCID: PMC5959755 DOI: 10.2174/1381612824666180219130659] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/15/2018] [Indexed: 02/07/2023]
Abstract
Metal oxide nanoparticles (MO-NPs) are known to effectively inhibit the growth of a wide range of Gram-positive and Gram-negative bacteria. They have emerged as promising candidates to challenge the rising global issue of antimicrobial resistance. However, a comprehensive understanding of their mechanism of action and identifying the most promising NP materials for future clinical translation remain a major challenge due to variations in NP preparation and testing methods. With various types of MO-NPs being rapidly developed, a robust, standardized, in vitro assessment protocol for evaluating the antibacterial potency and efficiency of these NPs is needed. Calculating the number of NPs that actively interact with each bacterial cell is critical for assessing the dose response for toxicity. Here we discuss methods to evaluate MO-NPs antibacterial efficiency with focus on issues related to NPs in these assays. We also highlight sources of experimental variability including NP preparation, initial bacterial concentration, bacterial strains tested, culture microenvironment, and reported dose.
Collapse
Affiliation(s)
- Usha Kadiyala
- Department of Emergency Medicine; University of Michigan; Ann Arbor, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, USA
- Michigan Center for Integrative Research in Critical Care; University of Michigan; Ann Arbor, USA
| | - Nicholas A. Kotov
- Department of Biomedical Engineering; University of Michigan; Ann Arbor, USA
- Department of Chemical Engineering, Ann Arbor, MI, USA
- Department of Materials Science and Engineering, Ann Arbor, MI, USA
- Departmentof Macromolecular Science and Engineering, Ann Arbor, MI, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, USA
| | - J. Scott VanEpps
- Department of Emergency Medicine; University of Michigan; Ann Arbor, USA
- Department of Biomedical Engineering; University of Michigan; Ann Arbor, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, USA
- Michigan Center for Integrative Research in Critical Care; University of Michigan; Ann Arbor, USA
| |
Collapse
|
7
|
Acetate accumulation enhances mixed culture fermentation of biomass to lactic acid. Appl Microbiol Biotechnol 2016; 100:8337-48. [PMID: 27170325 DOI: 10.1007/s00253-016-7578-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/20/2016] [Accepted: 04/25/2016] [Indexed: 10/21/2022]
Abstract
Lactic acid is a high-in-demand chemical, which can be produced through fermentation of lignocellulosic feedstock. However, fermentation of complex substrate produces a mixture of products at efficiencies too low to justify a production process. We hypothesized that the background acetic acid concentration plays a critical role in lactic acid yield; therefore, its retention via selective extraction of lactic acid or its addition would improve overall lactic acid production and eliminate net production of acetic acid. To test this hypothesis, we added 10 g/L of acetate to fermentation broth to investigate its effect on products composition and concentration and bacterial community evolution using several substrate-inoculum combinations. With rumen fluid inoculum, lactate concentrations increased by 80 ± 12 % (cornstarch, p < 0.05) and 16.7 ± 0.4 % (extruded grass, p < 0.05) while with pure culture inoculum (Lactobacillus delbrueckii and genetically modified (GM) Escherichia coli), a 4 to 23 % increase was observed. Using rumen fluid inoculum, the bacterial community was enriched within 8 days to >69 % lactic acid bacteria (LAB), predominantly Lactobacillaceae. Higher acetate concentration promoted a more diverse LAB population, especially on non-inoculated bottles. In subsequent tests, acetate was added in a semi-continuous percolation system with grass as substrate. These tests confirmed our findings producing lactate at concentrations 26 ± 5 % (p < 0.05) higher than the control reactor over 20 days operation. Overall, our work shows that recirculating acetate has the potential to boost lactic acid production from waste biomass to levels more attractive for application.
Collapse
|
8
|
Analysis on evolutionary relationship of amylases from archaea, bacteria and eukaryota. World J Microbiol Biotechnol 2016; 32:24. [PMID: 26745984 PMCID: PMC4706583 DOI: 10.1007/s11274-015-1979-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/16/2015] [Indexed: 12/16/2022]
Abstract
Amylase is one of the earliest characterized enzymes and has many applications in clinical and industrial settings. In biotechnological industries, the amylase activity is enhanced through modifying amylase structure and through cloning and expressing targeted amylases in different species. It is important to understand how engineered amylases can survive from generation to generation. This study used phylogenetic and statistical approaches to explore general patterns of amylases evolution, including 3118 α-amylases and 280 β-amylases from archaea, eukaryota and bacteria with fully documented taxonomic lineage. First, the phylogenetic tree was created to analyze the evolution of amylases with focus on individual amylases used in biofuel industry. Second, the average pairwise p-distance was computed for each kingdom, phylum, class, order, family and genus, and its diversity implies multi-time and multi-clan evolution. Finally, the variance was further partitioned into inter-clan variance and intra-clan variance for each taxonomic group, and they represent horizontal and vertical gene transfer. Theoretically, the results show a full picture on the evolution of amylases in manners of vertical and horizontal gene transfer, and multi-time and multi-clan evolution as well. Practically, this study provides the information on the surviving chance of desired amylase in a given taxonomic group, which may potentially enhance the successful rate of cloning and expression of amylase gene in different species.
Collapse
|