1
|
Bahri BA, Parvathaneni RK, Spratling WT, Saxena H, Sapkota S, Raymer PL, Martinez-Espinoza AD. Whole genome sequencing of Clarireedia aff. paspali reveals potential pathogenesis factors in Clarireedia species, causal agents of dollar spot in turfgrass. Front Genet 2023; 13:1033437. [PMID: 36685867 PMCID: PMC9849252 DOI: 10.3389/fgene.2022.1033437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/21/2022] [Indexed: 01/06/2023] Open
Abstract
Dollar spot is one of the most damaging diseases in turfgrass, reducing its quality and playability. Two species, Clarireedia monteithiana and C. jacksonii (formerly Sclerotinia homoeocarpa) have been reported so far in the United States To study the Clarireedia genome, two isolates H2 and H3, sampled from seashore paspalum in Hawaii in 2019 were sequenced via Illumina paired-end sequencing by synthesis technology and PacBio SMRT sequencing. Both isolates were identified as C. aff. paspali, a novel species in the United States Using short and long reads, C. aff. paspali H3 contained 193 contigs with 48.6 Mbp and presented the most completed assembly and annotation among Clarireedia species. Out of the 13,428 protein models from AUGUSTUS, 349 cytoplasmic effectors and 13 apoplastic effectors were identified by EffectorP. To further decipher Clarireedia pathogenicity, C. aff. paspali genomes (H2 and H3), as well as available C. jacksonii (LWC-10 and HRI11), C. monteithiana (DRR09 and RB-19) genomes were screened for fifty-four pathogenesis determinants, previously identified in S. sclerotiorum. Seventeen orthologs of pathogenicity genes have been identified in Clarireedia species involved in oxalic acid production (pac1, nox1), mitogen-activated protein kinase cascade (pka1, smk3, ste12), appressorium formation (caf1, pks13, ams2, rgb1, rhs1) and glycolytic pathway (gpd). Within these genes, 366 species-specific SNPs were recorded between Clarireedia species; twenty-eight were non-synonymous and non-conservative. The predicted protein structure of six of these genes showed superimposition of the models among Clarireedia spp. The genomic variations revealed here could potentially lead to differences in pathogenesis and other physiological functions among Clarireedia species.
Collapse
Affiliation(s)
- Bochra Amina Bahri
- Department of Plant Pathology, University of Georgia, Griffin, GA, United States,Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, GA, United States,*Correspondence: Bochra Amina Bahri,
| | - Rajiv Krishna Parvathaneni
- Department of Plant Pathology, University of Georgia, Griffin, GA, United States,Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, GA, United States
| | | | - Harshita Saxena
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, GA, United States
| | - Suraj Sapkota
- Department of Plant Pathology, University of Georgia, Griffin, GA, United States
| | - Paul L. Raymer
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, GA, United States,Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, United States
| | | |
Collapse
|
4
|
Bastard K, Perret A, Mariage A, Bessonnet T, Pinet-Turpault A, Petit JL, Darii E, Bazire P, Vergne-Vaxelaire C, Brewee C, Debard A, Pellouin V, Besnard-Gonnet M, Artiguenave F, Médigue C, Vallenet D, Danchin A, Zaparucha A, Weissenbach J, Salanoubat M, de Berardinis V. Parallel evolution of non-homologous isofunctional enzymes in methionine biosynthesis. Nat Chem Biol 2017; 13:858-866. [PMID: 28581482 DOI: 10.1038/nchembio.2397] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 03/22/2017] [Indexed: 12/30/2022]
Abstract
Experimental validation of enzyme function is crucial for genome interpretation, but it remains challenging because it cannot be scaled up to accommodate the constant accumulation of genome sequences. We tackled this issue for the MetA and MetX enzyme families, phylogenetically unrelated families of acyl-L-homoserine transferases involved in L-methionine biosynthesis. Members of these families are prone to incorrect annotation because MetX and MetA enzymes are assumed to always use acetyl-CoA and succinyl-CoA, respectively. We determined the enzymatic activities of 100 enzymes from diverse species, and interpreted the results by structural classification of active sites based on protein structure modeling. We predict that >60% of the 10,000 sequences from these families currently present in databases are incorrectly annotated, and suggest that acetyl-CoA was originally the sole substrate of these isofunctional enzymes, which evolved to use exclusively succinyl-CoA in the most recent bacteria. We also uncovered a divergent subgroup of MetX enzymes in fungi that participate only in L-cysteine biosynthesis as O-succinyl-L-serine transferases.
Collapse
Affiliation(s)
- Karine Bastard
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Alain Perret
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Aline Mariage
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Thomas Bessonnet
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Agnès Pinet-Turpault
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Jean-Louis Petit
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Ekaterina Darii
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Pascal Bazire
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Carine Vergne-Vaxelaire
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Clémence Brewee
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Adrien Debard
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Virginie Pellouin
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Marielle Besnard-Gonnet
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | | | - Claudine Médigue
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - David Vallenet
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Antoine Danchin
- Institute of Cardiometabolism and Nutrition (ICAN), Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Anne Zaparucha
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Jean Weissenbach
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Marcel Salanoubat
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Véronique de Berardinis
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| |
Collapse
|
7
|
Tavares LS, Silva CSF, de Souza VC, da Silva VL, Diniz CG, Santos MO. Strategies and molecular tools to fight antimicrobial resistance: resistome, transcriptome, and antimicrobial peptides. Front Microbiol 2013; 4:412. [PMID: 24427156 PMCID: PMC3876575 DOI: 10.3389/fmicb.2013.00412] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/15/2013] [Indexed: 11/13/2022] Open
Abstract
The increasing number of antibiotic resistant bacteria motivates prospective research toward discovery of new antimicrobial active substances. There are, however, controversies concerning the cost-effectiveness of such research with regards to the description of new substances with novel cellular interactions, or description of new uses of existing substances to overcome resistance. Although examination of bacteria isolated from remote locations with limited exposure to humans has revealed an absence of antibiotic resistance genes, it is accepted that these genes were both abundant and diverse in ancient living organisms, as detected in DNA recovered from Pleistocene deposits (30,000 years ago). Indeed, even before the first clinical use of antibiotics more than 60 years ago, resistant organisms had been isolated. Bacteria can exhibit different strategies for resistance against antibiotics. New genetic information may lead to the modification of protein structure affecting the antibiotic carriage into the cell, enzymatic inactivation of drugs, or even modification of cellular structure interfering in the drug-bacteria interaction. There are still plenty of new genes out there in the environment that can be appropriated by putative pathogenic bacteria to resist antimicrobial agents. On the other hand, there are several natural compounds with antibiotic activity that may be used to oppose them. Antimicrobial peptides (AMPs) are molecules which are wide-spread in all forms of life, from multi-cellular organisms to bacterial cells used to interfere with microbial growth. Several AMPs have been shown to be effective against multi-drug resistant bacteria and have low propensity to resistance development, probably due to their unique mode of action, different from well-known antimicrobial drugs. These substances may interact in different ways with bacterial cell membrane, protein synthesis, protein modulation, and protein folding. The analysis of bacterial transcriptome may contribute to the understanding of microbial strategies under different environmental stresses and allows the understanding of their interaction with novel AMPs.
Collapse
Affiliation(s)
| | - Carolina S. F. Silva
- Department of Microbiology, Immunology and Infectious Diseases, University of Juiz de ForaJuiz de Fora, Brazil
| | | | - Vânia L. da Silva
- Department of Microbiology, Immunology and Infectious Diseases, University of Juiz de ForaJuiz de Fora, Brazil
| | - Cláudio G. Diniz
- Department of Microbiology, Immunology and Infectious Diseases, University of Juiz de ForaJuiz de Fora, Brazil
| | - Marcelo O. Santos
- Department of Biology, University of Juiz de ForaJuiz de Fora, Brazil
| |
Collapse
|
10
|
Pinto M, Rougeot C, Gracia L, Rosa M, Garcı́a A, Arsequell G, Valencia G, Centeno NB. Proposed Bioactive Conformations of Opiorphin, an Endogenous Dual APN/NEP Inhibitor. ACS Med Chem Lett 2012; 3:20-4. [PMID: 24900367 DOI: 10.1021/ml200182v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 11/17/2011] [Indexed: 11/28/2022] Open
Abstract
The conformational profiles for the endogenous peptide Opiorphin and a set of seven analogues exhibiting different inhibitory activities toward human aminopeptidase N (hAPN) and human neprilysin (hNEP) were independently computed to deduce a bioactive conformation that Opiorphin may adopt when binding these two enzymes. The conformational space was thoroughly sampled using an iterative simulated annealing protocol, and a library of low-energy conformers was generated for each peptide. Bioactive Opiorphin conformations fitting our experimental structure-activity relationship data were identified for hAPN and hNEP using computational pairwise comparisons between each of the unique low-energy conformations of Opiorphin and its analogues. The obtained results provide a structural explanation for the dual hAPN and hNEP inhibitory activity of Opiorphin and show that the inborn flexibility of Opiorphin is essential for its analgesic activity.
Collapse
Affiliation(s)
- Marta Pinto
- Computer-Assisted Drug Design
Laboratory, Research Programme on Biomedical Informatics (GRIB), IMIM-Universitat Pompeu Fabra, Dr. Aiguader 88, E-08003
Barcelona, Spain
| | - Catherine Rougeot
- Institut Pasteur−Unité de Biochimie Structurale et Cellulaire/URA2185−CNRS, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Luis Gracia
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, New
York, New York 10065, United States
| | - Mònica Rosa
- Unit of Glycoconjugate Chemistry, Instituto de Química Avanzada de Catalunya (IQAC−CSIC), Jordi Girona
18-26, E-08034 Barcelona, Spain
| | - Andrés Garcı́a
- Computer-Assisted Drug Design
Laboratory, Research Programme on Biomedical Informatics (GRIB), IMIM-Universitat Pompeu Fabra, Dr. Aiguader 88, E-08003
Barcelona, Spain
| | - Gemma Arsequell
- Unit of Glycoconjugate Chemistry, Instituto de Química Avanzada de Catalunya (IQAC−CSIC), Jordi Girona
18-26, E-08034 Barcelona, Spain
| | - Gregorio Valencia
- Unit of Glycoconjugate Chemistry, Instituto de Química Avanzada de Catalunya (IQAC−CSIC), Jordi Girona
18-26, E-08034 Barcelona, Spain
| | - Nuria B. Centeno
- Computer-Assisted Drug Design
Laboratory, Research Programme on Biomedical Informatics (GRIB), IMIM-Universitat Pompeu Fabra, Dr. Aiguader 88, E-08003
Barcelona, Spain
| |
Collapse
|