1
|
Ray SK, Mukherjee S. Hypoxia-Inducible Factors-Based Single Nucleotide Polymorphism in Breast Cancer with More Cancer Susceptibility. Curr Mol Med 2023; 23:285-288. [PMID: 35570541 DOI: 10.2174/1566524022666220513124853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022]
Abstract
Hypoxia-inducible factors (HIFs) are a collection of transcriptional factors that engage in the regulation of oxygen homeostasis. They are hypoxia-responsive stress factors whose expression is linked to tumor growth and angiogenesis. HIF is a crucial player in the progression of breast cancer. Patients with high levels of hypoxia-inducible HIFs in their primary tumor biopsies had a higher chance of metastasis, the leading cause of breast cancer-related death. HIF polymorphisms have been shown in several epidemiological studies to influence breast cancer susceptibility. In the oxygendependent degradation domain, several short nucleotide polymorphisms (SNPs) of the HIF gene have been connected with higher HIF activity. To find SNP that make up the genetic diversity that underpins the phenotypic difference found between individuals in their susceptibility to cancer and the course of their disease, researchers used a variety of potential pathway-based approaches.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent Researcher, Bhopal, Madhya Pradesh-462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020. India
| |
Collapse
|
2
|
Xu M, Wu S, Wang Y, Zhao Y, Wang X, Wei C, Liu X, Hao F, Hu C. Association between high-dose methotrexate-induced toxicity and polymorphisms within methotrexate pathway genes in acute lymphoblastic leukemia. Front Pharmacol 2022; 13:1003812. [PMID: 36532750 PMCID: PMC9748425 DOI: 10.3389/fphar.2022.1003812] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/21/2022] [Indexed: 09/22/2023] Open
Abstract
Methotrexate (MTX) is a folic acid antagonist, the mechanism of action is to inhibit DNA synthesis, repair and cell proliferation by decreasing the activities of several folate-dependent enzymes. It is widely used as a chemotherapy drug for children and adults with malignant tumors. High-dose methotrexate (HD-MTX) is an effective treatment for extramedullary infiltration and systemic consolidation in children with acute lymphoblastic leukemia (ALL). However, significant toxicity results in most patients treated with HD-MTX, which limits its use. HD-MTX-induced toxicity is heterogeneous, and this heterogeneity may be related to gene polymorphisms in related enzymes of the MTX intracellular metabolic pathway. To gain a deeper understanding of the differences in toxicity induced by HD-MTX in individuals, the present review examines the correlation between HD-MTX-induced toxicity and the gene polymorphisms of related enzymes in the MTX metabolic pathway in ALL. In this review, we conclude that only the association of SLCO1B1 and ARID5B gene polymorphisms with plasma levels of MTX and MTX-related toxicity is clearly described. These results suggest that SLCO1B1 and ARID5B gene polymorphisms should be evaluated before HD-MTX treatment. In addition, considering factors such as age and race, the other exact predictor of MTX induced toxicity in ALL needs to be further determined.
Collapse
Affiliation(s)
- Meng Xu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
- School of Laboratory Medicine, Beihua University, Jilin, China
| | - Shuangshuang Wu
- Department of Pediatric Hematology, The First Hospital of Jilin University, Changchun, China
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yue Wang
- Department of Pediatric Hematology, The First Hospital of Jilin University, Changchun, China
| | - Yundong Zhao
- School of Laboratory Medicine, Beihua University, Jilin, China
| | - Ximin Wang
- Jilin Drug Inspection Center, Changchun, China
| | - Changhong Wei
- Department of Hematology, The Linyi Central Hospital, Linyi, China
| | - Xueying Liu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
- School of Laboratory Medicine, Beihua University, Jilin, China
| | - Feng Hao
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Cheng Hu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| |
Collapse
|
3
|
Huerta-García AP, Rodríguez-Báez AS, Medellín-Garibay SE, Portales-Pérez DP, Martínez-Martínez MU, Abud-Mendoza C, Herrera-Van Oostdam D, Romano-Moreno S, Milán-Segovia RDC. Methotrexate Triglutamate as a Determinant of Clinical Response in Mexican Patients With Rheumatoid Arthritis: Pharmacokinetics and Dose Recommendation. J Clin Pharmacol 2021; 61:1118-1130. [PMID: 33595870 DOI: 10.1002/jcph.1837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/14/2021] [Indexed: 01/28/2023]
Abstract
Methotrexate is the gold standard treatment in rheumatoid arthritis. Once absorbed, it is internalized in cells, where glutamate residues are added to produce polyglutamated forms, which are responsible for the effect of methotrexate. The aim of the current study is to determine the relationship between methotrexate triglutamate concentrations and the clinical evolution in rheumatoid arthritis patients, as well as to characterize the variability in both features to propose strategies for low-dose methotrexate optimization. The quantification of methotrexate triglutamate concentration in red blood cells was performed through ultra-performance liquid chromatography coupled with mass spectrometry. Polymorphisms of genes involved in the formation of polyglutamates were determined by real-time polymerase chain reaction. A multivariate regression was performed to determine the covariates involved in the variability of methotrexate triglutamate concentrations and a population pharmacokinetics model was developed through nonlinear mixed-effects modeling. Disease activity score changed according to methotrexate triglutamate concentrations; patients with good response to treatment had higher concentrations than moderate or nonresponding patients. The methotrexate triglutamate concentrations were related to time under treatment, dose, red blood cells, and body mass index. A 1-compartment open model was selected to estimate the pharmacokinetic parameters; the typical total clearance (L/day) was determined as 1.45 * (body mass index/28 kg/m2 ) * (red blood cells/4.6 × 106 cells/μL) and the volume of distribution was 52.4 L, with an absorption rate of 0.0346/day and a fraction metabolized of 1.03%. Through the application of the model, the initial dose of methotrexate is proposed on the basis of stochastic simulations and considering methotrexate triglutamate concentrations found in responders patients.
Collapse
Affiliation(s)
- Ana P Huerta-García
- Faculty of Chemical Sciences, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Ana S Rodríguez-Báez
- Faculty of Chemical Sciences, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | | | - Diana P Portales-Pérez
- Faculty of Chemical Sciences, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | | | - Carlos Abud-Mendoza
- Department of Rheumatology, Hospital Central "Dr. Ignacio Morones Prieto", San Luis Potosí, México
| | | | - Silvia Romano-Moreno
- Faculty of Chemical Sciences, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | | |
Collapse
|
4
|
Genetic variants associated with methotrexate-induced mucositis in cancer treatment: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2021; 161:103312. [PMID: 33794308 DOI: 10.1016/j.critrevonc.2021.103312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Methotrexate (MTX), an important chemotherapeutic agent, is often accompanied with mucositis. The occurrence and severity are unpredictable and show large interindividual variability. In this study, we review and meta-analyze previously studied genetic variants in relation to MTX-induced mucositis. We conducted a systematic search in Medline and Embase. We included genetic association studies of MTX-induced mucositis in cancer patients. A meta-analysis was conducted for single nucleotide polymorphisms (SNPs) for which at least two studies found a statistically significant association. A total of 34 SNPs were associated with mucositis in at least one study of the 57 included studies. Two of the seven SNPs included in our meta-analysis were statistically significantly associated with mucositis: MTHFR c.677C > T (recessive, grade ≥3 vs grade 0-2, OR 2.53, 95 %CI [1.48-4.32], False Discovery Rate[FDR]-corrected p-value 0.011) and MTRR c.66A > G (overdominant, grade ≥1 vs grade 0, OR 2.08, 95 %CI [1.16-3.73], FDR-corrected p-value 0.042).
Collapse
|
5
|
Wang SM, Kong XY, Li M, Sun LL, Yan D. Association of GGH Promoter Methylation Levels with Methotrexate Concentrations in Chinese Children with Acute Lymphoblastic Leukemia. Pharmacotherapy 2020; 40:614-622. [PMID: 32476160 DOI: 10.1002/phar.2430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND It is known that γ-glutamyl hydrolase (GGH) is involved in the disposition of methotrexate (MTX), and GGH activity is regulated by DNA methylation in acute lymphoblastic leukemia (ALL) cells. The present study explores the methylation status of the GGH promoter in peripheral blood and its association with MTX levels and toxicities in Chinese children with ALL. METHODS Serum MTX concentrations were determined by fluorescence polarization immunoassay. Methylation quantification and genotyping for GGH rs3758149 and rs11545078 was performed by Sequenom MassARRAY in 50 pediatric patients with ALL. RESULTS Overall, the investigated region of the GGH promoter was in hypomethylated status. The methylation levels of cytosine phosphate guanine (CpG)_7, CpG_12, CpG_17, and CpG_20 were significantly higher in patients with B-cell ALL than other immunotypes (p<0.05). The methylation levels of CpG_13.14, CpG_17, and CpG_19 showed a significant negative correlation with MTX C24 hr (p<0.05). The methylation level of CpG_8.9 correlated significantly with MTX C42 hrs (p<0.05). The methylation level of CpG_19 was significantly lower in patients with MTX toxicities (p<0.05). CONCLUSIONS The methylation levels of the GGH promoter might affect MTX exposure and toxicities. These findings provided reasonable explanations for the variability of MTX responses in patients with childhood ALL.
Collapse
Affiliation(s)
- Shu-Mei Wang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China.,International Cooperation & Joint Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China
| | - Xiao-Yan Kong
- Department of Pharmacy, Armed Police Beijing Corps Hospital, Beijing, China
| | - Miao Li
- Department of Pediatrics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lu-Lu Sun
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Dan Yan
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China.,International Cooperation & Joint Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China
| |
Collapse
|
6
|
Kodidela S, Dorababu P, Thakkar DN, Dubashi B, Sundaram R, Muralidharan N, Nidanapu RP, Aribandi A, Pradhan SC, Uppugunduri CRS. Association of NUDT15*3 and FPGS 2572C>T Variants with the Risk of Early Hematologic Toxicity During 6-MP and Low-Dose Methotrexate-Based Maintenance Therapy in Indian Patients with Acute Lymphoblastic Leukemia. Genes (Basel) 2020; 11:genes11060594. [PMID: 32481505 PMCID: PMC7349017 DOI: 10.3390/genes11060594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/13/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023] Open
Abstract
Genetic variants influencing the pharmacokinetics and/or pharmacodynamics of the chemotherapeutic drugs used in Acute Lymphoblastic Leukemia (ALL) therapy often contribute to the occurrence of treatment related toxicity (TRT). In this study, we explored the association of candidate genetic variants with early hematological TRT (grade 3–4) occurring within the first 100 days of low-dose methotrexate and 6-mercaptopurine based maintenance therapy (n = 73). Fourteen variants in the following candidate genes were genotyped using allele discrimination assay by real-time PCR: ABCB1, DHFR, GGH, FPGS, MTHFR, RFC1, SLCO1B1, TPMT, and NUDT15. Methotrexate polyglutamate (MTXPG3-5) levels in red blood cells were measured by LC-MS/MS. Early hematological TRT (grade 3–4) was seen in 54.9% of patients. The NUDT15c.415T allele was associated with early TRT occurrence [HR: 3.04 (95% CI: 1.5–6.1); p = 0.007]. Sensitivity of early TRT prediction improved (from 30.7% to 89.7%) by considering FPGS variant (rs1544105’T’) carrier status along with NUDT15c.415T allele [HR = 2.7 (1.5–4.7, p = 0.008)]. None of the considered genetic variants were associated with MTXPG3-5 levels, which in turn were not associated with early TRT. NUDT15c.415T allele carrier status could be used as a stratifying marker for Indian ALL patients to distinguish patients at high or low risk of developing early hematological TRT.
Collapse
Affiliation(s)
- Sunitha Kodidela
- College of Pharmacy, University of Tennessee Heath Science Center, Memphis, TN 38163, USA
- Correspondence: (S.K.); (C.R.S.U.)
| | - Patchava Dorababu
- Department of Pharmacology, Apollo Institute of Medical Sciences and Research, Hyderabad 500090, India;
| | - Dimpal N. Thakkar
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research, Pondicherry 605006, India; (D.N.T.); (R.S.); (R.P.N.)
| | - Biswajit Dubashi
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education & Research, Pondicherry 605006, India;
| | - Rajan Sundaram
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research, Pondicherry 605006, India; (D.N.T.); (R.S.); (R.P.N.)
| | - Niveditha Muralidharan
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education & Research, Pondicherry 605006, India;
| | - Ravi Prasad Nidanapu
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research, Pondicherry 605006, India; (D.N.T.); (R.S.); (R.P.N.)
| | - Anil Aribandi
- Division of Haemato-Oncology, Care Hospitals, Hyderabad 500019, India;
- American Oncology Institute, Nallagandla Serilingampalli, Hyderabad 500019, India
| | - Suresh Chandra Pradhan
- Department of Pharmacology, Kalinga Institute of Medical Sciences, Bhubaneswar 751024, India;
| | - Chakradhara Rao Satyanarayana Uppugunduri
- Onco-Hematology Unit, Research Platform of Pediatric Onco-Hematology, Department of Paediatrics, Gynaecology and Obstetrics, University Hospitals of Geneva, University of Geneva, 1205 Geneva, Switzerland
- Correspondence: (S.K.); (C.R.S.U.)
| |
Collapse
|
7
|
Kim SE. Enzymes involved in folate metabolism and its implication for cancer treatment. Nutr Res Pract 2020; 14:95-101. [PMID: 32256983 PMCID: PMC7075736 DOI: 10.4162/nrp.2020.14.2.95] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND/OBJECTIVES Folate plays a critical role in DNA synthesis and methylation. Intracellular folate homeostasis is maintained by the enzymes folylpolyglutamate synthase (FPGS) and γ-glutamyl hydrolase (GGH). FPGS adds glutamate residues to folate upon its entry into the cell through a process known as polyglutamylation to enhance folate retention in the cell and to maintain a steady supply of utilizable folate derivatives for folate-dependent enzyme reactions. Thereafter, GGH catalyzes the hydrolysis of polyglutamylated folate into monoglutamylated folate, which can subsequently be exported from the cell. The objective of this review is to summarize the scientific evidence available on the effects of intracellular folate homeostasis-associated enzymes on cancer chemotherapy. METHODS This review discusses the effects of FPGS and GGH on chemosensitivity to cancer chemotherapeutic agents such as antifolates, such as methotrexate, and 5-fluorouracil. RESULTS AND DISCUSSION Polyglutamylated (anti)folates are better substrates for intracellular folate-dependent enzymes and retained for longer within cells. In addition to polyglutamylation of (anti)folates, FPGS and GGH modulate intracellular folate concentrations, which are an important determinant of chemosensitivity of cancer cells toward chemotherapeutic agents. Therefore, FPGS and GGH affect chemosensitivity to antifolates and 5-fluorouracil by altering intracellular retention status of antifolates and folate cofactors such as 5,10-methylenetetrahydrofolate, subsequently influencing the cytotoxic effects of 5-fluorouracil, respectively. Generally, high FPGS and/or low GGH activity is associated with increased chemosensitivity of cancer cells to methotrexate and 5-fluorouracil, while low FPGS and/or high GGH activity seems to correspond to resistance to these drugs. Further preclinical and clinical studies elucidating the pharmocogenetic ramifications of these enzyme-induced changes are warranted to provide a framework for developing rational, effective, safe, and customized chemotherapeutic practices.
Collapse
Affiliation(s)
- Sung-Eun Kim
- Department of Food and Nutrition, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| |
Collapse
|
8
|
Significance of genetic polymorphisms in hematological malignancies: implications of risk factors for prognosis and relapse. MEMO-MAGAZINE OF EUROPEAN MEDICAL ONCOLOGY 2018. [DOI: 10.1007/s12254-018-0446-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Liu SG, Gao C, Zhang RD, Zhao XX, Cui L, Li WJ, Chen ZP, Yue ZX, Zhang YY, Wu MY, Wang JX, Li ZG, Zheng HY. Polymorphisms in methotrexate transporters and their relationship to plasma methotrexate levels, toxicity of high-dose methotrexate, and outcome of pediatric acute lymphoblastic leukemia. Oncotarget 2018; 8:37761-37772. [PMID: 28525903 PMCID: PMC5514947 DOI: 10.18632/oncotarget.17781] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/14/2017] [Indexed: 11/25/2022] Open
Abstract
High-dose methotrexate (HDMTX) plays an important role in the treatment of acute lymphoblastic leukemia (ALL) although there is great inter-patient variability in the efficacy and toxicity of MTX. The relationship between polymorphisms in genes encoding MTX transporters and MTX response is controversial. In the present study, 322 Chinese children with standard- and intermediate-risk ALL were genotyped for 12 polymorphisms. SLCO1B1 rs10841753 showed a significant association with plasma MTX levels at 48 h (P = 0.017). Patients who had the ABCB1 rs1128503 C allele had longer duration of hospitalization than did those with the TT genotype (P = 0.006). No association was found between oral mucositis and any polymorphism. Long-term outcome was worse in patients with the SLCO1B1 rs4149056 CC genotype than in patients with TT or TC (5-year event-free survival [EFS] 33.3 ± 19.2% vs. 90.5 ± 1.7%, P < 0.001), and was worse in patients with the SCL19A1 rs2838958 AA genotype than in patients with AG or GG (5-year EFS 78.5 ± 4.6% vs. 92.2 ± 1.8%, P = 0.008). Multiple Cox regression analyses revealed associations of minimal residual disease (MRD) at day 33 (hazard ratio 3.458; P = 0.002), MRD at day 78 (hazard ratio 6.330; P = 0.001), SLCO1B1 rs4149056 (hazard ratio 12.242; P < 0.001), and SCL19A1 rs2838958 (hazard ratio 2.324; P = 0.019) with EFS. Our findings show that polymorphisms in genes encoding MTX transporters substantially influence the kinetics and response to HDMTX therapy in childhood ALL.
Collapse
Affiliation(s)
- Shu-Guang Liu
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Chao Gao
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China.,Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 30020, China
| | - Rui-Dong Zhang
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Xiao-Xi Zhao
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Lei Cui
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Wei-Jing Li
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Zhen-Ping Chen
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Zhi-Xia Yue
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Yuan-Yuan Zhang
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Min-Yuan Wu
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Jian-Xiang Wang
- Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 30020, China
| | - Zhi-Gang Li
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Hu-Yong Zheng
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| |
Collapse
|
10
|
A folylpoly-γ-glutamate synthase single nucleotide polymorphism associated with response to pemetrexed treatment combined with platinum for non-small cell lung cancer. Lung Cancer 2016; 102:15-20. [PMID: 27987582 DOI: 10.1016/j.lungcan.2016.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/07/2016] [Accepted: 10/18/2016] [Indexed: 11/22/2022]
Abstract
OBJECTIVES In this study, we investigated whether single nucleotide polymorphisms (SNPs) in folylpoly-γ-glutamate synthase (FPGS), which catalyzes the polyglutamation of pemetrexed (PEM), is related to FPGS expression and the response to PEM in non-small cell lung cancer (NSCLC). MATERIALS AND METHODS We first examined FPGS protein expressions according to FPGS SNPs genotype groups in 15 lung adenocarcinoma cell lines. Next, 101 non-squamous NSCLC patients treated with PEM and platinum drugs were classified into FPGS SNP genotype groups to investigate the relation between FPGS SNP genotypes and treatment outcome. RESULTS When the 15 adenocarcinoma cell lines were classified into FPGS SNP 2572C>T genotype groups, we found that the FPGS protein expression was significantly higher in the CC genotype group than in the TT+CT genotype group (p=0.0022). In contrast, there was no significant difference in FPGS expression when another FPGS SNP was analyzed. We also examined the FPGS SNP 2572C>T genotype in 101 non-squamous NSCLC patients treated with PEM and platinum drugs. Among these 101 patients, response rate was significantly higher in the CC genotype group than in the TT+CT genotype group (p=0.0034). When we examined the patients treated with PEM, platinum drugs and Bev, almost all (29/33) were classified into the TT+CT genotype group. The response rate, progression-free survival, and over-all survival were all significantly better in the patients of the TT+CT genotype group who also received Bev than in those who did not receive Bev (p=0.034, 0.021, 0.018, respectively). CONCLUSION FPGS SNP 2572C>T is a predictive marker of the efficacy of PEM and platinum drugs for NSCLC.
Collapse
|
11
|
|
12
|
Raz S, Stark M, Assaraf YG. Folylpoly-γ-glutamate synthetase: A key determinant of folate homeostasis and antifolate resistance in cancer. Drug Resist Updat 2016; 28:43-64. [PMID: 27620954 DOI: 10.1016/j.drup.2016.06.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/10/2016] [Accepted: 06/16/2016] [Indexed: 01/26/2023]
Abstract
Mammalians are devoid of autonomous biosynthesis of folates and hence must obtain them from the diet. Reduced folate cofactors are B9-vitamins which play a key role as donors of one-carbon units in the biosynthesis of purine nucleotides, thymidylate and amino acids as well as in a multitude of methylation reactions including DNA, RNA, histone and non-histone proteins, phospholipids, as well as intermediate metabolites. The products of these S-adenosylmethionine (SAM)-dependent methylations are involved in the regulation of key biological processes including transcription, translation and intracellular signaling. Folate-dependent one-carbon metabolism occurs in several subcellular compartments including the cytoplasm, mitochondria, and nucleus. Since folates are essential for DNA replication, intracellular folate cofactors play a central role in cancer biology and inflammatory autoimmune disorders. In this respect, various folate-dependent enzymes catalyzing nucleotide biosynthesis have been targeted by specific folate antagonists known as antifolates. Currently, antifolates are used in drug treatment of multiple human cancers, non-malignant chronic inflammatory disorders as well as bacterial and parasitic infections. An obligatory key component of intracellular folate retention and intracellular homeostasis is (anti)folate polyglutamylation, mediated by the unique enzyme folylpoly-γ-glutamate synthetase (FPGS), which resides in both the cytoplasm and mitochondria. Consistently, knockout of the FPGS gene in mice results in embryonic lethality. FPGS catalyzes the addition of a long polyglutamate chain to folates and antifolates, hence rendering them polyanions which are efficiently retained in the cell and are now bound with enhanced affinity by various folate-dependent enzymes. The current review highlights the crucial role that FPGS plays in maintenance of folate homeostasis under physiological conditions and delineates the plethora of the molecular mechanisms underlying loss of FPGS function and consequent antifolate resistance in cancer.
Collapse
Affiliation(s)
- Shachar Raz
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Michal Stark
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
13
|
Piwkham D, Siriboonpiputtana T, Beuten J, Pakakasama S, Gelfond JA, Paisooksantivatana K, Tomlinson GE, Rerkamnuaychoke B. Mutation Screening and Association Study of the Folylpolyglutamate Synthetase (FPGS) Gene with Susceptibility to Childhood Acute Lymphoblastic Leukemia. Asian Pac J Cancer Prev 2016; 16:4727-32. [PMID: 26107232 DOI: 10.7314/apjcp.2015.16.11.4727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Folylpolyglutamate synthetase (FPGS), an important enzyme in the folate metabolic pathway, plays a central role in intracellular accumulation of folate and antifolate in several mammalian cell types. Loss of FPGS activity results in decreased cellular levels of antifolates and consequently to polyglutamatable antifolates in acute lymphoblastic leukemia (ALL). MATERIALS AND METHODS During May 1997 and December 2003, 134 children diagnosed with ALL were recruited from one hospital in Thailand. We performed a mutation analysis in the coding regions of the FPGS gene and the association between single nucleotide polymorphisms (SNPs) within FPGS in a case-control sample of childhood ALL patients. Mutation screening was conducted by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) and subsequently with direct sequencing (n=72). Association analysis between common FPGS variants and ALL risk was done in 98 childhood ALL cases and 95 healthy volunteers recruited as controls. RESULTS Seven SNPs in the FPGS coding region were identified by mutation analysis, 3 of which (IVS13+55C>T, g.1297T>G, and g.1508C>T) were recognized as novel SNPs. Association analysis revealed 3 of 6 SNPs to confer significant increase in ALL risk these being rs7039798 (p= 0.014, OR=2.14), rs1544105 (p=0.010, OR= 2.24), and rs10106 (p=0.026, OR= 1.99). CONCLUSIONS These findings suggested that common genetic polymorphisms in the FPGS coding region including rs7039789, rs1544105, and rs10106 are significantly associated with increased ALL risk in Thai children.
Collapse
Affiliation(s)
- Duangjai Piwkham
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand E-mail :
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Chen Y, Shen Z. Gene polymorphisms in the folate metabolism and their association with MTX-related adverse events in the treatment of ALL. Tumour Biol 2015; 36:4913-21. [PMID: 26022160 DOI: 10.1007/s13277-015-3602-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 05/20/2015] [Indexed: 01/22/2023] Open
Abstract
The antifolate drug methotrexate (MTX) is widely used in the treatment of various neoplastic diseases, including acute lymphoblastic leukemia (ALL). MTX significantly increases cure rates and improves patients' prognosis. Despite that it achieved remarkable clinical success, a large number of patients still suffer from treatment toxicities or side effects. Even to this date, chemotherapeutic regiments have not been personalized because of interindividual differences that affect MTX response, especially polymorphisms in key genes. The pharmacological pathway of MTX in cells is useful to identify gene polymorphisms that influence the process of treatment. The aim of this review was to discuss the gene polymorphisms of drug-metabolizing enzymes in the MTX pathway and their toxicities on ALL treatment.
Collapse
Affiliation(s)
- Yang Chen
- Centre of Clinical Laboratory, Anhui Provincial Hospital Affiliated of Anhui Medical University, Hefei, 230001, China
| | | |
Collapse
|
15
|
Miao C, Liu D, Zhang F, Wang Y, Zhang Y, Yu J, Zhang Z, Liu G, Li B, Liu X, Luo C. Association of FPGS genetic polymorphisms with primary retroperitoneal liposarcoma. Sci Rep 2015; 5:9079. [PMID: 25765001 PMCID: PMC5390907 DOI: 10.1038/srep09079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/16/2015] [Indexed: 01/06/2023] Open
Abstract
Primary retroperitoneal liposarcoma is generally regarded as a genetic disorder. We have retrospectively genotyped 8 single nucleotide polymorphisms (SNPs) in 6 candidate genes (MDM2, CDK4, CDC27, FPGS, IGFN1, and PRAMEF13) in 138 patients and 131 healthy control subjects to evaluate the effects of genetic factors on individual susceptibility to primary retroperitoneal liposarcoma in Chinese population. Three SNPs (rs2870820, rs1695147, rs3730536) of MDM2 showed significant differences in single-loci genotypes and allele frequencies between case and control groups (p < 0.05). The minor allele G of SNP rs10760502 in FPGS (folylpolyglutamate synthase) gene was significantly associated with increased risk for primary retroperitoneal liposarcoma, compared with major allele A. Our data suggest that FPGS variant in Chinese population may affect individual susceptibility to primary retroperitoneal liposarcoma.
Collapse
Affiliation(s)
- Chengli Miao
- 1] Retroperitoneal Tumors Center, Peking University International Hospital, Beijing, P.R. China [2] Department of Surgical Oncology, Beijing Shijitan Hospital, Capital Medical University (The 9th affiliated hospital of Peking University), Beijing, P.R. China
| | - Ding Liu
- Department of Neurology, The Third Hospital of Xiangya, Central South University, Changsha, Hunan, P.R. China
| | - Feng Zhang
- 1] National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, Jilin Province, P.R. China [2] Chinese Academy of Sciences Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Youxin Wang
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yanbin Zhang
- Department of Surgical Oncology, Beijing Shijitan Hospital, Capital Medical University (The 9th affiliated hospital of Peking University), Beijing, P.R. China
| | - Junhui Yu
- Department of Surgical Oncology, Beijing Shijitan Hospital, Capital Medical University (The 9th affiliated hospital of Peking University), Beijing, P.R. China
| | - Zhanzhi Zhang
- Department of Surgical Oncology, Beijing Shijitan Hospital, Capital Medical University (The 9th affiliated hospital of Peking University), Beijing, P.R. China
| | - Gang Liu
- Department of Surgical Oncology, Beijing Shijitan Hospital, Capital Medical University (The 9th affiliated hospital of Peking University), Beijing, P.R. China
| | - Bing Li
- Department of Surgical Oncology, Beijing Shijitan Hospital, Capital Medical University (The 9th affiliated hospital of Peking University), Beijing, P.R. China
| | - Xing Liu
- Department of Surgical Oncology, Beijing Shijitan Hospital, Capital Medical University (The 9th affiliated hospital of Peking University), Beijing, P.R. China
| | - Chenghua Luo
- Retroperitoneal Tumors Center, Peking University International Hospital, Beijing, P.R. China
| |
Collapse
|
16
|
SNP 1772 C > T of HIF-1α gene associates with breast cancer risk in a Taiwanese population. Cancer Cell Int 2014; 14:87. [PMID: 25302049 PMCID: PMC4190286 DOI: 10.1186/s12935-014-0087-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 08/25/2014] [Indexed: 02/07/2023] Open
Abstract
Background Hypoxia inducible factor 1α (HIF-1α) is a stress-responsive transcription factor to hypoxia and its expression is correlated to tumor progression and angiogenesis. Several single nucleotide polymorphisms (SNPs) of HIF-1α gene in the oxygen-dependent degradation (ODD) domain was reportedly associated with increased HIF-1α activity. Results In this study, we focused on the relationship between SNP 1772 C > T (rs11549465) of HIF-1α gene and its breast cancer risk, as well as its correlation with HIF-1α expression and tumor angiogenesis. Ninety six breast cancer patients and 120 age-matched controls were enrolled. We found that 1772 T allele of HIF-1α gene was associated with increased breast cancer risk (adjusted OR = 14.51; 95% CI: 6.74-31.24). This SNP was not associated with clinicopathologic features of angiogenesis such as VEGF activity and the micro-vessel density and survival of breast cancer patients. Conclusion Taken together, the 1772 C > T of HIF-1α gene is a potential biomarker for breast cancer susceptibility.
Collapse
|