1
|
Datoo MS, Natama MH, Somé A, Traoré O, Rouamba T, Bellamy D, Yameogo P, Valia D, Tegneri M, Ouedraogo F, Soma R, Sawadogo S, Sorgho F, Derra K, Rouamba E, Orindi B, Ramos Lopez F, Flaxman A, Cappuccini F, Kailath R, Elias S, Mukhopadhyay E, Noe A, Cairns M, Lawrie A, Roberts R, Valéa I, Sorgho H, Williams N, Glenn G, Fries L, Reimer J, Ewer KJ, Shaligram U, Hill AVS, Tinto H. Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: a randomised controlled trial. Lancet 2021; 397:1809-1818. [PMID: 33964223 PMCID: PMC8121760 DOI: 10.1016/s0140-6736(21)00943-0] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Stalled progress in controlling Plasmodium falciparum malaria highlights the need for an effective and deployable vaccine. RTS,S/AS01, the most effective malaria vaccine candidate to date, demonstrated 56% efficacy over 12 months in African children. We therefore assessed a new candidate vaccine for safety and efficacy. METHODS In this double-blind, randomised, controlled, phase 2b trial, the low-dose circumsporozoite protein-based vaccine R21, with two different doses of adjuvant Matrix-M (MM), was given to children aged 5-17 months in Nanoro, Burkina Faso-a highly seasonal malaria transmission setting. Three vaccinations were administered at 4-week intervals before the malaria season, with a fourth dose 1 year later. All vaccines were administered intramuscularly into the thigh. Group 1 received 5 μg R21 plus 25 μg MM, group 2 received 5 μg R21 plus 50 μg MM, and group 3, the control group, received rabies vaccinations. Children were randomly assigned (1:1:1) to groups 1-3. An independent statistician generated a random allocation list, using block randomisation with variable block sizes, which was used to assign participants. Participants, their families, and the local study team were all masked to group allocation. Only the pharmacists preparing the vaccine were unmasked to group allocation. Vaccine safety, immunogenicity, and efficacy were evaluated over 1 year. The primary objective assessed protective efficacy of R21 plus MM (R21/MM) from 14 days after the third vaccination to 6 months. Primary analyses of vaccine efficacy were based on a modified intention-to-treat population, which included all participants who received three vaccinations, allowing for inclusion of participants who received the wrong vaccine at any timepoint. This trial is registered with ClinicalTrials.gov, NCT03896724. FINDINGS From May 7 to June 13, 2019, 498 children aged 5-17 months were screened, and 48 were excluded. 450 children were enrolled and received at least one vaccination. 150 children were allocated to group 1, 150 children were allocated to group 2, and 150 children were allocated to group 3. The final vaccination of the primary series was administered on Aug 7, 2019. R21/MM had a favourable safety profile and was well tolerated. The majority of adverse events were mild, with the most common event being fever. None of the seven serious adverse events were attributed to the vaccine. At the 6-month primary efficacy analysis, 43 (29%) of 146 participants in group 1, 38 (26%) of 146 participants in group 2, and 105 (71%) of 147 participants in group 3 developed clinical malaria. Vaccine efficacy was 74% (95% CI 63-82) in group 1 and 77% (67-84) in group 2 at 6 months. At 1 year, vaccine efficacy remained high, at 77% (67-84) in group 1. Participants vaccinated with R21/MM showed high titres of malaria-specific anti-Asn-Ala-Asn-Pro (NANP) antibodies 28 days after the third vaccination, which were almost doubled with the higher adjuvant dose. Titres waned but were boosted to levels similar to peak titres after the primary series of vaccinations after a fourth dose administered 1 year later. INTERPRETATION R21/MM appears safe and very immunogenic in African children, and shows promising high-level efficacy. FUNDING The European & Developing Countries Clinical Trials Partnership, Wellcome Trust, and National Institute for Health Research Oxford Biomedical Research Centre.
Collapse
Affiliation(s)
- Mehreen S Datoo
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Magloire H Natama
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Athanase Somé
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Ousmane Traoré
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Toussaint Rouamba
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Duncan Bellamy
- The Jenner Institute Laboratories, University of Oxford, UK
| | - Prisca Yameogo
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Daniel Valia
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Moubarak Tegneri
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Florence Ouedraogo
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Rachidatou Soma
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Seydou Sawadogo
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Faizatou Sorgho
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Karim Derra
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Eli Rouamba
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | | | - Fernando Ramos Lopez
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Amy Flaxman
- The Jenner Institute Laboratories, University of Oxford, UK
| | | | - Reshma Kailath
- The Jenner Institute Laboratories, University of Oxford, UK
| | - Sean Elias
- The Jenner Institute Laboratories, University of Oxford, UK
| | | | - Andres Noe
- The Jenner Institute Laboratories, University of Oxford, UK
| | - Matthew Cairns
- London School of Hygiene & Tropical Medicine, London, UK
| | - Alison Lawrie
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Rachel Roberts
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Innocent Valéa
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Hermann Sorgho
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | | | | | | | | | - Katie J Ewer
- The Jenner Institute Laboratories, University of Oxford, UK
| | | | - Adrian V S Hill
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK; The Jenner Institute Laboratories, University of Oxford, UK.
| | - Halidou Tinto
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso.
| |
Collapse
|
2
|
Teferi M, Desta M, Yeshitela B, Beyene T, Cruz Espinoza LM, Im J, Jeon HJ, Kim JH, Konings F, Kwon SY, Pak GD, Park JK, Park SE, Yedenekachew M, Kim J, Baker S, Sir WS, Marks F, Aseffa A, Panzner U. Acute Febrile Illness Among Children in Butajira, South-Central Ethiopia During the Typhoid Fever Surveillance in Africa Program. Clin Infect Dis 2020; 69:S483-S491. [PMID: 31665778 PMCID: PMC6821253 DOI: 10.1093/cid/ciz620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background Clearly differentiating causes of fever is challenging where diagnostic capacities are limited, resulting in poor patient management. We investigated acute febrile illness in children aged ≤15 years enrolled at healthcare facilities in Butajira, Ethiopia, during January 2012 to January 2014 for the Typhoid Fever Surveillance in Africa Program. Methods Blood culture, malaria microscopy, and blood analyses followed by microbiological, biochemical, and antimicrobial susceptibility testing of isolates were performed. We applied a retrospectively developed scheme to classify children as malaria or acute respiratory, gastrointestinal or urinary tract infection, or other febrile infections and syndromes. Incidence rates per 100 000 population derived from the classification scheme and multivariate logistic regression to determine fever predictors were performed. Results We rarely observed stunting (4/513, 0.8%), underweight (1/513, 0.2%), wasting (1/513, 0.2%), and hospitalization (21/513, 4.1%) among 513 children with mild transient fever and a mean disease severity score of 12 (95% confidence interval [CI], 11–13). Blood cultures yielded 1.6% (8/513) growth of pathogenic agents; microscopy detected 13.5% (69/513) malaria with 20 611/µL blood (95% CI, 15 352–25 870) mean parasite density. Incidences were generally higher in children aged ≤5 years than >5 to ≤15 years; annual incidences in young children were 301.3 (95% CI, 269.2–337.2) for malaria and 1860.1 (95% CI, 1778.0–1946.0) for acute respiratory and 379.9 (95% CI, 343.6–420.0) for gastrointestinal tract infections. Conclusions We could not detect the etiological agents in all febrile children. Our findings may prompt further investigations and the reconsideration of policies and frameworks for the management of acute febrile illness.
Collapse
Affiliation(s)
- Mekonnen Teferi
- Armauer Hansen Research Institute, Ministry of Health, Addis Ababa, Ethiopia
| | - Mulualem Desta
- International Vaccine Institute, Seoul, South Korea.,Technology and Innovation Institute, Addis Ababa, Ethiopia.,Graduate School of Public Health, Yonsei University, Seoul, South Korea
| | - Biruk Yeshitela
- Armauer Hansen Research Institute, Ministry of Health, Addis Ababa, Ethiopia
| | - Tigist Beyene
- Armauer Hansen Research Institute, Ministry of Health, Addis Ababa, Ethiopia
| | | | - Justin Im
- International Vaccine Institute, Seoul, South Korea
| | | | | | | | | | - Gi Deok Pak
- International Vaccine Institute, Seoul, South Korea
| | | | - Se Eun Park
- International Vaccine Institute, Seoul, South Korea.,Hospital for Tropical Diseases, Welcome Trust Major Overseas Program, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Melaku Yedenekachew
- Armauer Hansen Research Institute, Ministry of Health, Addis Ababa, Ethiopia
| | - Jerome Kim
- International Vaccine Institute, Seoul, South Korea
| | - Stephen Baker
- Hospital for Tropical Diseases, Welcome Trust Major Overseas Program, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Department of Medicine, University of Cambridge, United Kingdom
| | - Won Seok Sir
- Graduate School of Public Health, Yonsei University, Seoul, South Korea
| | - Florian Marks
- International Vaccine Institute, Seoul, South Korea.,Department of Medicine, University of Cambridge, United Kingdom
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Ministry of Health, Addis Ababa, Ethiopia
| | | |
Collapse
|
3
|
Safety and immunogenicity of the RTS,S/AS01 malaria vaccine in infants and children identified as HIV-infected during a randomized trial in sub-Saharan Africa. Vaccine 2019; 38:897-906. [PMID: 31708182 PMCID: PMC7613311 DOI: 10.1016/j.vaccine.2019.10.077] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 01/24/2023]
Abstract
Background We assessed the safety and immunogenicity of the RTS,S/AS01 malaria vaccine in a subset of children identified as HIV-infected during a large phase III randomized controlled trial conducted in seven sub-Saharan African countries. Methods Infants 6–12 weeks and children 5–17 months old were randomized to receive 4 RTS,S/AS01 doses (R3R group), 3 RTS,S/AS01 doses plus 1 comparator vaccine dose (R3C group), or 4 comparator vaccine doses (C3C group) at study months 0, 1, 2 and 20. Infants and children with WHO stage III/IV HIV disease were excluded but HIV testing was not routinely performed on all participants; our analyses included children identified as HIV-infected based on medical history or clinical suspicion and confirmed by polymerase chain reaction or antibody testing. Serious adverse events (SAEs) and anti-circumsporozoite (CS) antibodies were assessed. Results Of 15459 children enrolled in the trial, at least 1953 were tested for HIV and 153 were confirmed as HIV-infected (R3R: 51; R3C: 54; C3C: 48). Among these children, SAEs were reported for 92.2% (95% CI: 81.1–97.8) in the R3R, 85.2% (72.9–93.4) in the R3C and 87.5% (74.8–95.3) in the C3C group over a median follow-up of 39.3, 39.4 and 38.3 months, respectively. Fifteen HIV-infected participants in each group (R3R: 29.4%, R3C: 27.8%, C3C: 31.3%) died during the study. No deaths were considered vaccination-related. In a matched case-control analysis, 1 month post dose 3 anti-CS geometric mean antibody concentrations were 193.3 EU/mL in RTS,S/AS01-vaccinated HIV-infected children and 491.5 EU/mL in RTS,S/ AS01-vaccinated immunogenicity controls with unknown or negative HIV status (p = 0.0001). Conclusions The safety profile of RTS,S/AS01 in HIV-infected children was comparable to that of the comparator (meningococcal or rabies) vaccines. RTS,S/AS01 was immunogenic in HIV-infected children but antibody concentrations were lower than in children with an unknown or negative HIV status.
Collapse
|
4
|
Anti-malarial, cytotoxicity and molecular docking studies of quinolinyl chalcones as potential anti-malarial agent. J Comput Aided Mol Des 2019; 33:677-688. [DOI: 10.1007/s10822-019-00210-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/31/2019] [Indexed: 10/26/2022]
|
5
|
Guerra Mendoza Y, Garric E, Leach A, Lievens M, Ofori-Anyinam O, Pirçon JY, Stegmann JU, Vandoolaeghe P, Otieno L, Otieno W, Owusu-Agyei S, Sacarlal J, Masoud NS, Sorgho H, Tanner M, Tinto H, Valea I, Mtoro AT, Njuguna P, Oneko M, Otieno GA, Otieno K, Gesase S, Hamel MJ, Hoffman I, Kaali S, Kamthunzi P, Kremsner P, Lanaspa M, Lell B, Lusingu J, Malabeja A, Aide P, Akoo P, Ansong D, Asante KP, Berkley JA, Adjei S, Agbenyega T, Agnandji ST, Schuerman L. Safety profile of the RTS,S/AS01 malaria vaccine in infants and children: additional data from a phase III randomized controlled trial in sub-Saharan Africa. Hum Vaccin Immunother 2019; 15:2386-2398. [PMID: 31012786 PMCID: PMC6816384 DOI: 10.1080/21645515.2019.1586040] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A phase III, double-blind, randomized, controlled trial (NCT00866619) in sub-Saharan Africa showed RTS,S/AS01 vaccine efficacy against malaria. We now present in-depth safety results from this study. 8922 children (enrolled at 5–17 months) and 6537 infants (enrolled at 6–12 weeks) were 1:1:1-randomized to receive 4 doses of RTS,S/AS01 (R3R) or non-malaria control vaccine (C3C), or 3 RTS,S/AS01 doses plus control (R3C). Aggregate safety data were reviewed by a multi-functional team. Severe malaria with Blantyre Coma Score ≤2 (cerebral malaria [CM]) and gender-specific mortality were assessed post-hoc. Serious adverse event (SAE) and fatal SAE incidences throughout the study were 24.2%–28.4% and 1.5%–2.5%, respectively across groups; 0.0%–0.3% of participants reported vaccination-related SAEs. The incidence of febrile convulsions in children was higher during the first 2–3 days post-vaccination with RTS,S/AS01 than with control vaccine, consistent with the time window of post-vaccination febrile reactions in this study (mostly the day after vaccination). A statistically significant numerical imbalance was observed for meningitis cases in children (R3R: 11, R3C: 10, C3C: 1) but not in infants. CM cases were more frequent in RTS,S/AS01-vaccinated children (R3R: 19, R3C: 24, C3C: 10) but not in infants. All-cause mortality was higher in RTS,S/AS01-vaccinated versus control girls (2.4% vs 1.3%, all ages) in our setting with low overall mortality. The observed meningitis and CM signals are considered likely chance findings, that – given their severity – warrant further evaluation in phase IV studies and WHO-led pilot implementation programs to establish the RTS,S/AS01 benefit-risk profile in real-life settings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Seth Owusu-Agyei
- Kintampo Health Research Center , Kintampo , Ghana.,Diseases Control Department, London School of Hygiene and Tropical Medicine , London , UK
| | - Jahit Sacarlal
- Centro de Investigação em Saúde de Manhiça , Manhiça , Mozambique.,Faculdade de Medicina, Universidade Eduardo Mondlane (UEM) , Maputo , Mozambique
| | - Nahya Salim Masoud
- Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam and Ifakara Health Institute , Bagamoyo , Tanzania
| | - Hermann Sorgho
- Institut de Recherche en Science de la Santé , Nanoro , Burkina Faso
| | - Marcel Tanner
- Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam and Ifakara Health Institute , Bagamoyo , Tanzania.,Swiss Tropical and Public Health Institute , Basel , Switzerland.,Epidemiology and Medical Parasitology department, University of Basel , Basel , Switzerland
| | - Halidou Tinto
- Institut de Recherche en Science de la Santé , Nanoro , Burkina Faso
| | - Innocent Valea
- Institut de Recherche en Science de la Santé , Nanoro , Burkina Faso
| | - Ali Takadir Mtoro
- Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam and Ifakara Health Institute , Bagamoyo , Tanzania
| | - Patricia Njuguna
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Centre for Geographic Medicine Research , Kilifi , Kenya.,Pwani University , Kilifi , Kenya.,University of Oxford , Oxford , UK
| | - Martina Oneko
- Kenya Medical Research Institute, Centre for Global Health Research , Kisumu , Kenya
| | | | - Kephas Otieno
- Kenya Medical Research Institute, Centre for Global Health Research , Kisumu , Kenya
| | - Samwel Gesase
- National Institute for Medical Research , Korogwe , Tanzania
| | - Mary J Hamel
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention , Atlanta , GA , USA
| | - Irving Hoffman
- University of North Carolina Project , Lilongwe , Malawi
| | - Seyram Kaali
- Kintampo Health Research Center , Kintampo , Ghana
| | | | - Peter Kremsner
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon and Institute of Tropical Medicine, University of Tübingen , Tübingen , Germany
| | - Miguel Lanaspa
- Centro de Investigação em Saúde de Manhiça , Manhiça , Mozambique.,Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona , Barcelona , Spain
| | - Bertrand Lell
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon and Institute of Tropical Medicine, University of Tübingen , Tübingen , Germany
| | - John Lusingu
- National Institute for Medical Research , Korogwe , Tanzania
| | | | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça , Manhiça , Mozambique.,National Institute of Health, Ministry of Health , Maputo , Mozambique
| | - Pauline Akoo
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Centre for Geographic Medicine Research , Kilifi , Kenya
| | - Daniel Ansong
- Kwame Nkrumah University of Science and Technology , Kumasi , Ghana
| | | | - James A Berkley
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Centre for Geographic Medicine Research , Kilifi , Kenya.,University of Oxford , Oxford , UK
| | - Samuel Adjei
- Kwame Nkrumah University of Science and Technology , Kumasi , Ghana
| | - Tsiri Agbenyega
- Kwame Nkrumah University of Science and Technology , Kumasi , Ghana
| | - Selidji Todagbe Agnandji
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon and Institute of Tropical Medicine, University of Tübingen , Tübingen , Germany
| | | |
Collapse
|
6
|
Vandoolaeghe P, Schuerman L. [The RTS,S/AS01 malaria vaccine in children aged 5-17 months at first vaccination]. Pan Afr Med J 2018; 30:142. [PMID: 30374388 PMCID: PMC6201624 DOI: 10.11604/pamj.2018.30.142.13152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 02/08/2018] [Indexed: 11/18/2022] Open
Abstract
Le vaccin antipaludique RTS,S/AS01 a reçu un avis scientifique favorable de l’Agence Européenne des Médicaments (EMA) en Juillet 2015. L’Organisation Mondiale de la Santé (OMS) a recommandé l’introduction pilote de ce vaccin chez des enfants âgés d’au moins 5 mois en utilisant un schéma de vaccination comprenant 3 doses initiales espacées d’au moins un mois et une 4ème dose administrée 15 à 18 mois après la 3ème dose. Des essais cliniques et des modèles mathématiques ont montré que la protection partielle contre le paludisme conférée par le vaccin RTS,S/AS01 pourrait avoir un impact substantiel sur la santé publique si le vaccin est utilisé en association avec d’autres mesures de lutte antipaludique, en particulier dans les zones hautement endémiques. L’impact le plus important a été observé chez les enfants âgés de 5 mois ou plus ayant reçu 4 doses de RTS,S/AS01. Le vaccin sera ensuite évalué en situation réelle afin de déterminer son impact sur la mortalité, son innocuité dans le cadre d’une vaccination de routine, et la faisabilité opérationnelle d’administrer 4 doses du vaccin dont certaines nécessitant de nouveaux contacts dans le calendrier de vaccination. En cas de succès, cela permettra une mise en œuvre à plus grande échelle.
Collapse
|
7
|
Ward CL, Shaw D, Anane-Sarpong E, Sankoh O, Tanner M, Elger B. The Ethics of Health Care Delivery in a Pediatric Malaria Vaccine Trial: The Perspectives of Stakeholders From Ghana and Tanzania. J Empir Res Hum Res Ethics 2017; 13:26-41. [PMID: 29179625 DOI: 10.1177/1556264617742236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study explores ethical issues raised in providing medical care to participants and communities of low-resource settings involved in a Phase II/III pediatric malaria vaccine trial (PMVT). We conducted 52 key informant interviews with major stakeholders of an international multi-center PMVT (GSK/PATH-MVI RTS,S) (NCT00866619) in Ghana and Tanzania. Based on their stakeholder experiences, the responses fell into three main themes: (a) undue inducement, (b) community disparities, and (c) broad therapeutic misconceptions. The study identified the critical ethical aspects, from the perspectives of stakeholders, of delivering health care during a PMVT. The study showed that integrating research into health care services needs to be addressed in a manner that upholds the favorable risk-benefit ratio of research and attends to the health needs of local populations. The implementation of research should aim to improve local standards of care through building a collaborative agenda with local institutions and systems of health.
Collapse
|
8
|
Development of an Immunosensor for PfHRP 2 as a Biomarker for Malaria Detection. BIOSENSORS-BASEL 2017; 7:bios7030028. [PMID: 28718841 PMCID: PMC5618034 DOI: 10.3390/bios7030028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 11/17/2022]
Abstract
Plasmodium falciparum histidine-rich protein 2 (PfHRP 2) was selected in this work as the biomarker for the detection and diagnosis of malaria. An enzyme-linked immunosorbent assay (ELISA) was first developed to evaluate the immunoreagent’s suitability for the sensor’s development. A gold-based sensor with an integrated counter and an Ag/AgCl reference electrode was first selected and characterised and then used to develop the immunosensor for PfHRP 2, which enables a low cost, easy to use, and sensitive biosensor for malaria diagnosis. The sensor was applied to immobilise the anti-PfHRP 2 monoclonal antibody as the capture receptor. A sandwich ELISA assay format was constructed using horseradish peroxidase (HRP) as the enzyme label, and the electrochemical signal was generated using a 3, 3′, 5, 5′tetramethyl-benzidine dihydrochloride (TMB)/H2O2 system. The performance of the assay and the sensor were optimised and characterised, achieving a PfHRP 2 limit of detection (LOD) of 2.14 ng·mL−1 in buffer samples and 2.95 ng∙mL−1 in 100% spiked serum samples. The assay signal was then amplified using gold nanoparticles conjugated detection antibody-enzyme and a detection limit of 36 pg∙mL−1 was achieved in buffer samples and 40 pg∙mL−1 in serum samples. This sensor format is ideal for malaria detection and on-site analysis as a point-of-care device (POC) in resource-limited settings where the implementation of malaria diagnostics is essential in control and elimination efforts.
Collapse
|
9
|
Vandoolaeghe P, Schuerman L. The RTS,S/AS01 malaria vaccine in children 5 to 17 months of age at first vaccination. Expert Rev Vaccines 2016; 15:1481-1493. [DOI: 10.1080/14760584.2016.1236689] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Sauboin CJ, Van Bellinghen LA, Van De Velde N, Van Vlaenderen I. Potential public health impact of RTS,S malaria candidate vaccine in sub-Saharan Africa: a modelling study. Malar J 2015; 14:524. [PMID: 26702637 PMCID: PMC4690265 DOI: 10.1186/s12936-015-1046-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adding malaria vaccination to existing interventions could help to reduce the health burden due to malaria. This study modelled the potential public health impact of the RTS,S candidate malaria vaccine in 42 malaria-endemic countries in sub-Saharan Africa. METHODS An individual-based Markov cohort model was constructed with three categories of malaria transmission intensity and six successive malaria immunity levels. The cycle time was 5 days. Vaccination was assumed to reduce the risk of infection, with no other effects. Vaccine efficacy was assumed to wane exponentially over time. Malaria incidence and vaccine efficacy data were taken from a Phase III trial of the RTS,S vaccine with 18 months of follow-up (NCT00866619). The model was calibrated to reproduce the malaria incidence in the control arm of the trial in each transmission category and published age distribution data. Individual-level heterogeneity in malaria exposure and vaccine protection was accounted for. Parameter uncertainty and variability were captured by using stochastic model transitions. The model followed a cohort from birth to 10 years of age without malaria vaccination, or with RTS,S malaria vaccination administered at age 6, 10 and 14 weeks or at age 6, 7-and-a-half and 9 months. Median and 95% confidence intervals were calculated for the number of clinical malaria cases, severe cases, malaria hospitalizations and malaria deaths expected to be averted by each vaccination strategy. Univariate sensitivity analysis was conducted by varying the values of key input parameters. RESULTS Vaccination assuming the coverage of diphtheria-tetanus-pertussis (DTP3) at age 6, 10 and 14 weeks is estimated to avert over five million clinical malaria cases, 119,000 severe malaria cases, 98,600 malaria hospitalizations and 31,000 malaria deaths in the 42 countries over the 10-year period. Vaccination at age 6, 7-and-a-half and 9 months with 75% of DTP3 coverage is estimated to avert almost 12.5 million clinical malaria cases, 250,000 severe malaria cases, 208,000 malaria hospitalizations and 65,400 malaria deaths in the 42 countries. Univariate sensitivity analysis indicated that for both vaccination strategies, the parameters with the largest impact on the malaria mortality estimates were waning of vaccine efficacy and malaria case-fatality rate. CONCLUSIONS Addition of RTS,S malaria vaccination to existing malaria interventions is estimated to reduce substantially the incidence of clinical malaria, severe malaria, malaria hospitalizations and malaria deaths across 42 countries in sub-Saharan Africa.
Collapse
|
11
|
RTS,S: Toward a first landmark on the Malaria Vaccine Technology Roadmap. Vaccine 2015; 33:7425-32. [PMID: 26431982 DOI: 10.1016/j.vaccine.2015.09.061] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 09/08/2015] [Accepted: 09/15/2015] [Indexed: 01/07/2023]
Abstract
The Malaria Vaccine Technology Roadmap calls for a 2015 landmark goal of a first-generation malaria vaccine that has protective efficacy against severe disease and death, lasting longer than one year. This review focuses on product development efforts over the last five years of RTS,S, a pre-erythrocytic, recombinant subunit, adjuvanted, candidate malaria vaccine designed with this goal of a first-generation malaria vaccine in mind. RTS,S recently completed a successful pivotal Phase III safety, efficacy and immunogenicity study. Although vaccine efficacy was found to be modest, a substantial number of cases of clinical malaria were averted over a 3-4 years period, particularly in settings of significant disease burden. European regulators have subsequently adopted a positive opinion under the Article 58 procedure for an indication of active immunization of children aged 6 weeks up to 17 months against malaria caused by Plasmodium falciparum and against hepatitis B. Further evaluations of the benefit, risk, feasibility and cost-effectiveness of RTS,S are now anticipated through policy and financing reviews at the global and national levels.
Collapse
|
12
|
Severe malaria in children leads to a significant impairment of transitory otoacoustic emissions--a prospective multicenter cohort study. BMC Med 2015; 13:125. [PMID: 26021376 PMCID: PMC4457990 DOI: 10.1186/s12916-015-0366-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 05/13/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Severe malaria may influence inner ear function, although this possibility has not been examined prospectively. In a retrospective analysis, hearing impairment was found in 9 of 23 patients with cerebral malaria. An objective method to quickly evaluate the function of the inner ear are the otoacoustic emissions. Negative transient otoacoustic emissions are associated with a threshold shift of 20 dB and above. METHODS This prospective multicenter study analyses otoacoustic emissions in patients with severe malaria up to the age of 10 years. In three study sites (Ghana, Gabon, Kenya) 144 patients with severe malaria and 108 control children were included. All malaria patients were treated with parental artesunate. RESULTS In the control group, 92.6 % (n = 108, 95 % confidence interval 86.19-6.2 %) passed otoacoustic emission screening. In malaria patients, 58.5 % (n = 94, malaria vs controls p < 0.001, 95 % confidence interval 48.4-67.9 %) passed otoacoustic emission screening at the baseline measurement. The value increased to 65.2 % (n = 66, p < 0.001, 95 % confidence interval 53.1-75.5 %) at follow up 14-28 days after diagnosis of malaria. The study population was divided into severe non-cerebral malaria and severe malaria with neurological symptoms (cerebral malaria). Whereas otoacoustic emissions in severe malaria improved to a passing percentage of 72.9 % (n = 48, 95 % confidence interval 59-83.4 %) at follow-up, the patients with cerebral malaria showed a drop in the passing percentage to 33 % (n = 18) 3-7 days after diagnosis. This shows a significant impairment in the cerebral malaria group (p = 0.012 at days 3-7, 95 % confidence interval 16.3-56.3 %; p = 0.031 at day 14-28, 95 % confidence interval 24.5-66.3 %). CONCLUSION The presented data show that 40 % of children have involvement of the inner ear early in severe malaria. In children, audiological screening after severe malaria infection is not currently recommended, but is worth investigating in larger studies.
Collapse
|
13
|
Kinung'hi SM, Magnussen P, Kishamawe C, Todd J, Vennervald BJ. The impact of anthelmintic treatment intervention on malaria infection and anaemia in school and preschool children in Magu district, Tanzania: an open label randomised intervention trial. BMC Infect Dis 2015; 15:136. [PMID: 25887977 PMCID: PMC4391149 DOI: 10.1186/s12879-015-0864-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/02/2015] [Indexed: 01/12/2023] Open
Abstract
Background Some studies have suggested that helminth infections increase the risk of malaria infection and are associated with increased number of malaria attacks and anaemia. Thus interventions to control helminth infections may have an impact on incidence of clinical malaria and anaemia. The current study assessed the impact of two anthelmintic treatment approaches on malaria infection and on anaemia in school and pre-school children in Magu district, Tanzania. Methods A total of 765 children were enrolled into a prospective randomized anthelmintic intervention trial following a baseline study of 1546 children. Enrolled children were randomized to receive either repeated treatment with praziquantel and albendazole four times a year (intervention group, 394 children) or single dose treatment with praziquantel and albendazole once a year (control group, 371 children). Follow up examinations were conducted at 12 and 24 months after baseline to assess the impact of the intervention. Stool and urine samples were collected and examined for schistosome and soil transmitted helminth infections. Blood samples were also collected and examined for malaria parasites and haemoglobin concentrations. Monitoring of clinical malaria attacks was performed at each school during the two years of the intervention. Results Out of 1546 children screened for P. falciparum, S. mansoni, S. haematobium, hookworm and T. Trichiura at baseline, 1079 (69.8%) were infected with at least one of the four parasites. There was no significant difference in malaria infection (prevalence, parasite density and frequency of malaria attacks) and in the prevalence of anaemia between the repeated and single dose anthelmintic treatment groups at 12 and 24 months follow up (p > 0.05). However, overall, there was significant improvement in mean haemoglobin concentrations (p < 0.001) from baseline levels of 122.0g/L and 123.0g/L to 136.0g/L and 136.8g/L for the repeated and single dose treatment groups, respectively, at 24 months follow-up which resulted in significant reduction in prevalence of anaemia. Conclusions These results suggest that repeated anthelmintic treatment did not have an impact on malaria infection compared to single dose treatment. However, both treatment approaches had overall impact in terms of improvements of haemoglobin levels and hence reductions in prevalence of anaemia.
Collapse
Affiliation(s)
- Safari M Kinung'hi
- National Institute for Medical Research (NIMR), Mwanza Centre, Isamilo Road, PO Box 1462, Mwanza, Tanzania.
| | - Pascal Magnussen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 15 DK-1870 Frederiksberg C, Copenhagen, Denmark.
| | - Coleman Kishamawe
- National Institute for Medical Research (NIMR), Mwanza Centre, Isamilo Road, PO Box 1462, Mwanza, Tanzania.
| | - Jim Todd
- Depatment of Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E, 7HT, London, UK.
| | - Birgitte J Vennervald
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 15 DK-1870 Frederiksberg C, Copenhagen, Denmark.
| |
Collapse
|
14
|
|
15
|
Efficacy and safety of the RTS,S/AS01 malaria vaccine during 18 months after vaccination: a phase 3 randomized, controlled trial in children and young infants at 11 African sites. PLoS Med 2014; 11:e1001685. [PMID: 25072396 PMCID: PMC4114488 DOI: 10.1371/journal.pmed.1001685] [Citation(s) in RCA: 322] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 06/18/2014] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND A malaria vaccine could be an important addition to current control strategies. We report the safety and vaccine efficacy (VE) of the RTS,S/AS01 vaccine during 18 mo following vaccination at 11 African sites with varying malaria transmission. METHODS AND FINDINGS 6,537 infants aged 6-12 wk and 8,923 children aged 5-17 mo were randomized to receive three doses of RTS,S/AS01 or comparator vaccine. VE against clinical malaria in children during the 18 mo after vaccine dose 3 (per protocol) was 46% (95% CI 42% to 50%) (range 40% to 77%; VE, p<0.01 across all sites). VE during the 20 mo after vaccine dose 1 (intention to treat [ITT]) was 45% (95% CI 41% to 49%). VE against severe malaria, malaria hospitalization, and all-cause hospitalization was 34% (95% CI 15% to 48%), 41% (95% CI 30% to 50%), and 19% (95% CI 11% to 27%), respectively (ITT). VE against clinical malaria in infants was 27% (95% CI 20% to 32%, per protocol; 27% [95% CI 21% to 33%], ITT), with no significant protection against severe malaria, malaria hospitalization, or all-cause hospitalization. Post-vaccination anti-circumsporozoite antibody geometric mean titer varied from 348 to 787 EU/ml across sites in children and from 117 to 335 EU/ml in infants (per protocol). VE waned over time in both age categories (Schoenfeld residuals p<0.001). The number of clinical and severe malaria cases averted per 1,000 children vaccinated ranged across sites from 37 to 2,365 and from -1 to 49, respectively; corresponding ranges among infants were -10 to 1,402 and -13 to 37, respectively (ITT). Meningitis was reported as a serious adverse event in 16/5,949 and 1/2,974 children and in 9/4,358 and 3/2,179 infants in the RTS,S/AS01 and control groups, respectively. CONCLUSIONS RTS,S/AS01 prevented many cases of clinical and severe malaria over the 18 mo after vaccine dose 3, with the highest impact in areas with the greatest malaria incidence. VE was higher in children than in infants, but even at modest levels of VE, the number of malaria cases averted was substantial. RTS,S/AS01 could be an important addition to current malaria control in Africa. TRIAL REGISTRATION www.ClinicalTrials.gov NCT00866619 Please see later in the article for the Editors' Summary.
Collapse
|
16
|
Salvador A, Hernández RM, Pedraz JL, Igartua M. Plasmodium falciparummalaria vaccines: current status, pitfalls and future directions. Expert Rev Vaccines 2014; 11:1071-86. [DOI: 10.1586/erv.12.87] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Kumar D, Khan SI, Tekwani BL, Ponnan P, Rawat DS. Synthesis, antimalarial activity, heme binding and docking studies of 4-aminoquinoline–pyrimidine based molecular hybrids. RSC Adv 2014. [DOI: 10.1039/c4ra09768h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of novel 4-aminoquinoline–pyrimidine hybrids was synthesized and evaluated for their antimalarial activity.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Chemistry
- University of Delhi
- Delhi-110007, India
| | - Shabana I. Khan
- National Center for Natural Products Research
- University of Mississippi
- , USA
- Department of Biomolecular Sciences
- University of Mississippi
| | - Babu L. Tekwani
- National Center for Natural Products Research
- University of Mississippi
- , USA
- Department of Biomolecular Sciences
- University of Mississippi
| | - Prija Ponnan
- Department of Chemistry
- University of Delhi
- Delhi-110007, India
| | - Diwan S. Rawat
- Department of Chemistry
- University of Delhi
- Delhi-110007, India
| |
Collapse
|
18
|
Heppner DG. The malaria vaccine--status quo 2013. Travel Med Infect Dis 2013; 11:2-7. [PMID: 23454205 DOI: 10.1016/j.tmaid.2013.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 01/24/2013] [Accepted: 01/24/2013] [Indexed: 01/23/2023]
Abstract
It has been 40 years since David Clyde's landmark induction of sterile immunity against deadly falciparum malaria through immunization by exposure to 1000 irradiated mosquitoes, and the first recombinant Plasmodium falciparum vaccine, RTS,S/AS01, is now in Phase III testing. Interim reports from this largest ever Phase III pediatric trial in Africa show the malaria vaccine decreased clinical and severe disease by 56% and 47% respectively in 5-17 month olds, and by 31% and 26% respectively in infants participating in the Expanded Programme on Immunization. Final data in 2014 will more fully describe the efficacy of RTS,S/AS01 over time against all falciparum malaria cases under a variety of transmission conditions, results essential for decisions on licensure and deployment. Meanwhile, candidate components of a second-generation malaria vaccine are emerging. A field trial of the polymorphic blood stage vaccine AMA-1/AS02 demonstrated no overall efficacy (ve = 17%, P = 0.18), yet a sieve analysis revealed allele-specific efficacy (ve = 64%, P = 0.03) against the vaccine strain, suggesting AMA-1 antigens could be part of a multicomponent vaccine. Initial trials of new antigens include the highly conserved pre-erythrocytic candidate PfCelTOS, a synthetic Plasmodium vivax circumsporozoite antigen VMP-001, and sexual stage vaccines containing antigens from both P. falciparum (Pfs25) and P. vivax (Pvs25) intended to interrupt transmission. Targets for a vaccine to protect against placental malaria, the leading remediable cause of low birth weight infants in Africa, have been identified. Lastly, renewed efforts are underway to develop a practical attenuated-sporozoite vaccine to recapture the promise of David Clyde's experiment.
Collapse
Affiliation(s)
- D Gray Heppner
- Heppner Associates, LLC, 9441 Brenner Court, Vienna, VA 22180-3402, USA.
| |
Collapse
|
19
|
Cserti-Gazdewich CM, Dhabangi A, Musoke C, Ssewanyana I, Ddungu H, Nakiboneka-Ssenabulya D, Nabukeera-Barungi N, Mpimbaza A, Dzik WH. Inter-relationships of cardinal features and outcomes of symptomatic pediatric Plasmodium falciparum MALARIA in 1,933 children in Kampala, Uganda. Am J Trop Med Hyg 2013; 88:747-756. [PMID: 23358640 PMCID: PMC3617864 DOI: 10.4269/ajtmh.12-0668] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Malaria remains a challenging diagnosis with variable clinical presentation and a wide spectrum of disease severity. Using a structured case report form, we prospectively assessed 1,933 children at Mulago Hospital in Kampala, Uganda with acute Plasmodium falciparum malaria. Children with uncomplicated malaria significantly differed from those with severe disease for 17 features. Among 855 children with severe disease, the case-fatality rate increased as the number of severity features increased. Logistic regression identified five factors independently associated with death: cerebral malaria, hypoxia, severe thrombocytopenia, leukocytosis, and lactic acidosis. Cluster analysis identified two groups: one combining anemia, splenomegaly, and leukocytosis; and a second group centered on death, severe thrombocytopenia, and lactic acidosis, which included cerebral malaria, hypoxia, hypoglycemia, and hyper-parasitemia. Our report updates previous clinical descriptions of severe malaria, quantifies significant clinical and laboratory inter-relationships, and will assist clinicians treating malaria and those planning or assessing future research (NCT00707200) (www.clinicaltrials.gov).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Walter H. Dzik
- *Address correspondence to Walter H. Dzik, Department of Pathology, Blood Transfusion Service, J224, Harvard University, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114. E-mail:
| |
Collapse
|
20
|
Agnandji ST, Lell B, Fernandes JF, Abossolo BP, Methogo BGNO, Kabwende AL, Adegnika AA, Mordmüller B, Issifou S, Kremsner PG, Sacarlal J, Aide P, Lanaspa M, Aponte JJ, Machevo S, Acacio S, Bulo H, Sigauque B, Macete E, Alonso P, Abdulla S, Salim N, Minja R, Mpina M, Ahmed S, Ali AM, Mtoro AT, Hamad AS, Mutani P, Tanner M, Tinto H, D'Alessandro U, Sorgho H, Valea I, Bihoun B, Guiraud I, Kaboré B, Sombié O, Guiguemdé RT, Ouédraogo JB, Hamel MJ, Kariuki S, Oneko M, Odero C, Otieno K, Awino N, McMorrow M, Muturi-Kioi V, Laserson KF, Slutsker L, Otieno W, Otieno L, Otsyula N, Gondi S, Otieno A, Owira V, Oguk E, Odongo G, Woods JB, Ogutu B, Njuguna P, Chilengi R, Akoo P, Kerubo C, Maingi C, Lang T, Olotu A, Bejon P, Marsh K, Mwambingu G, Owusu-Agyei S, Asante KP, Osei-Kwakye K, Boahen O, Dosoo D, Asante I, Adjei G, Kwara E, Chandramohan D, Greenwood B, Lusingu J, Gesase S, Malabeja A, Abdul O, Mahende C, Liheluka E, Malle L, Lemnge M, Theander TG, Drakeley C, Ansong D, Agbenyega T, Adjei S, Boateng HO, Rettig T, Bawa J, Sylverken J, Sambian D, Sarfo A, Agyekum A, Martinson F, Hoffman I, Mvalo T, Kamthunzi P, Nkomo R, Tembo T, Tegha G, Tsidya M, Kilembe J, Chawinga C, Ballou WR, Cohen J, Guerra Y, Jongert E, Lapierre D, Leach A, Lievens M, Ofori-Anyinam O, Olivier A, Vekemans J, Carter T, Kaslow D, Leboulleux D, Loucq C, Radford A, Savarese B, Schellenberg D, Sillman M, Vansadia P. A phase 3 trial of RTS,S/AS01 malaria vaccine in African infants. N Engl J Med 2012; 367:2284-95. [PMID: 23136909 PMCID: PMC10915853 DOI: 10.1056/nejmoa1208394] [Citation(s) in RCA: 559] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND The candidate malaria vaccine RTS,S/AS01 reduced episodes of both clinical and severe malaria in children 5 to 17 months of age by approximately 50% in an ongoing phase 3 trial. We studied infants 6 to 12 weeks of age recruited for the same trial. METHODS We administered RTS,S/AS01 or a comparator vaccine to 6537 infants who were 6 to 12 weeks of age at the time of the first vaccination in conjunction with Expanded Program on Immunization (EPI) vaccines in a three-dose monthly schedule. Vaccine efficacy against the first or only episode of clinical malaria during the 12 months after vaccination, a coprimary end point, was analyzed with the use of Cox regression. Vaccine efficacy against all malaria episodes, vaccine efficacy against severe malaria, safety, and immunogenicity were also assessed. RESULTS The incidence of the first or only episode of clinical malaria in the intention-to-treat population during the 14 months after the first dose of vaccine was 0.31 per person-year in the RTS,S/AS01 group and 0.40 per person-year in the control group, for a vaccine efficacy of 30.1% (95% confidence interval [CI], 23.6 to 36.1). Vaccine efficacy in the per-protocol population was 31.3% (97.5% CI, 23.6 to 38.3). Vaccine efficacy against severe malaria was 26.0% (95% CI, -7.4 to 48.6) in the intention-to-treat population and 36.6% (95% CI, 4.6 to 57.7) in the per-protocol population. Serious adverse events occurred with a similar frequency in the two study groups. One month after administration of the third dose of RTS,S/AS01, 99.7% of children were positive for anti-circumsporozoite antibodies, with a geometric mean titer of 209 EU per milliliter (95% CI, 197 to 222). CONCLUSIONS The RTS,S/AS01 vaccine coadministered with EPI vaccines provided modest protection against both clinical and severe malaria in young infants. (Funded by GlaxoSmithKline Biologicals and the PATH Malaria Vaccine Initiative; RTS,S ClinicalTrials.gov number, NCT00866619.).
Collapse
|
21
|
Malaria vaccines: focus on adenovirus based vectors. Vaccine 2012; 30:5191-8. [PMID: 22683663 DOI: 10.1016/j.vaccine.2012.05.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/09/2012] [Accepted: 05/19/2012] [Indexed: 11/24/2022]
Abstract
Protection against malaria through vaccination is known to be achievable, as first demonstrated over 30 years ago. Vaccination via repeated bites with Plasmodium falciparum infected and irradiated mosquitoes provided short lived protection from malaria infection to these vaccinees. Though this method still remains the most protective malaria vaccine to date, it is likely impractical for widespread use. However, recent developments in sub-unit malaria vaccine platforms are bridging the gap between high levels of protection and feasibility. The current leading sub-unit vaccine, RTS,S (which consists of a fusion of a portion of the P. falciparum derived circumsporozoite protein to the Hepatitis B surface antigen), has demonstrated the ability to induce protection from malaria infection in up 56% of RTS,S vaccinees. Though encouraging, these results may fall short of protection levels generally considered to be required to achieve eradication of malaria. Therefore, the use of viral vectored vaccine platforms has recently been pursued to further improve the efficacy of malaria targeted vaccines. Adenovirus based vaccine platforms have demonstrated potent anti-malaria immune responses when used alone, as well when utilized in heterologous prime boost regimens. This review will provide an update as to the current advancements in malaria vaccine development, with a focus on the use of adenovirus vectored malaria vaccines.
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW To provide an updated perspective of the most common parasitic infections occurring in solid-organ transplant (SOT) recipients. RECENT FINDINGS Parasitic infections are an emerging problem in SOT programs and represent a diagnostic and therapeutic challenge. Transplantation in endemic areas - including medical tourism, international travel and migration - justify the necessity of considering parasitic infections in the differential diagnosis of posttransplant complications. Molecular techniques, such as PCR, may improve the diagnostic accuracy and help during the follow-up. SUMMARY Parasitic infections are an uncommon but potentially severe complication in SOT recipients. An increase of donors emigrated from tropical areas and more posttransplant patients traveling to endemic areas have led to a rise in parasitic infections reported among SOT recipients. Transplant physicians should get familiar with parasitic infections and promote adherence to preventive measures in SOT recipients.
Collapse
|
23
|
Agnandji ST, Lell B, Soulanoudjingar SS, Fernandes JF, Abossolo BP, Conzelmann C, Methogo BGNO, Doucka Y, Flamen A, Mordmüller B, Issifou S, Kremsner PG, Sacarlal J, Aide P, Lanaspa M, Aponte JJ, Nhamuave A, Quelhas D, Bassat Q, Mandjate S, Macete E, Alonso P, Abdulla S, Salim N, Juma O, Shomari M, Shubis K, Machera F, Hamad AS, Minja R, Mtoro A, Sykes A, Ahmed S, Urassa AM, Ali AM, Mwangoka G, Tanner M, Tinto H, D'Alessandro U, Sorgho H, Valea I, Tahita MC, Kaboré W, Ouédraogo S, Sandrine Y, Guiguemdé RT, Ouédraogo JB, Hamel MJ, Kariuki S, Odero C, Oneko M, Otieno K, Awino N, Omoto J, Williamson J, Muturi-Kioi V, Laserson KF, Slutsker L, Otieno W, Otieno L, Nekoye O, Gondi S, Otieno A, Ogutu B, Wasuna R, Owira V, Jones D, Onyango AA, Njuguna P, Chilengi R, Akoo P, Kerubo C, Gitaka J, Maingi C, Lang T, Olotu A, Tsofa B, Bejon P, Peshu N, Marsh K, Owusu-Agyei S, Asante KP, Osei-Kwakye K, Boahen O, Ayamba S, Kayan K, Owusu-Ofori R, Dosoo D, Asante I, Adjei G, Adjei G, Chandramohan D, Greenwood B, Lusingu J, Gesase S, Malabeja A, Abdul O, Kilavo H, Mahende C, Liheluka E, Lemnge M, Theander T, Drakeley C, Ansong D, Agbenyega T, Adjei S, Boateng HO, Rettig T, Bawa J, Sylverken J, Sambian D, Agyekum A, Owusu L, Martinson F, Hoffman I, Mvalo T, Kamthunzi P, Nkomo R, Msika A, Jumbe A, Chome N, Nyakuipa D, Chintedza J, Ballou WR, Bruls M, Cohen J, Guerra Y, Jongert E, Lapierre D, Leach A, Lievens M, Ofori-Anyinam O, Vekemans J, Carter T, Leboulleux D, Loucq C, Radford A, Savarese B, Schellenberg D, Sillman M, Vansadia P. First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children. N Engl J Med 2011; 365:1863-75. [PMID: 22007715 DOI: 10.1056/nejmoa1102287] [Citation(s) in RCA: 632] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND An ongoing phase 3 study of the efficacy, safety, and immunogenicity of candidate malaria vaccine RTS,S/AS01 is being conducted in seven African countries. METHODS From March 2009 through January 2011, we enrolled 15,460 children in two age categories--6 to 12 weeks of age and 5 to 17 months of age--for vaccination with either RTS,S/AS01 or a non-malaria comparator vaccine. The primary end point of the analysis was vaccine efficacy against clinical malaria during the 12 months after vaccination in the first 6000 children 5 to 17 months of age at enrollment who received all three doses of vaccine according to protocol. After 250 children had an episode of severe malaria, we evaluated vaccine efficacy against severe malaria in both age categories. RESULTS In the 14 months after the first dose of vaccine, the incidence of first episodes of clinical malaria in the first 6000 children in the older age category was 0.32 episodes per person-year in the RTS,S/AS01 group and 0.55 episodes per person-year in the control group, for an efficacy of 50.4% (95% confidence interval [CI], 45.8 to 54.6) in the intention-to-treat population and 55.8% (97.5% CI, 50.6 to 60.4) in the per-protocol population. Vaccine efficacy against severe malaria was 45.1% (95% CI, 23.8 to 60.5) in the intention-to-treat population and 47.3% (95% CI, 22.4 to 64.2) in the per-protocol population. Vaccine efficacy against severe malaria in the combined age categories was 34.8% (95% CI, 16.2 to 49.2) in the per-protocol population during an average follow-up of 11 months. Serious adverse events occurred with a similar frequency in the two study groups. Among children in the older age category, the rate of generalized convulsive seizures after RTS,S/AS01 vaccination was 1.04 per 1000 doses (95% CI, 0.62 to 1.64). CONCLUSIONS The RTS,S/AS01 vaccine provided protection against both clinical and severe malaria in African children. (Funded by GlaxoSmithKline Biologicals and the PATH Malaria Vaccine Initiative; RTS,S ClinicalTrials.gov number, NCT00866619 .).
Collapse
|
24
|
Lievens M, Aponte JJ, Williamson J, Mmbando B, Mohamed A, Bejon P, Leach A. Statistical methodology for the evaluation of vaccine efficacy in a phase III multi-centre trial of the RTS, S/AS01 malaria vaccine in African children. Malar J 2011; 10:222. [PMID: 21816030 PMCID: PMC3167766 DOI: 10.1186/1475-2875-10-222] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 08/04/2011] [Indexed: 11/24/2022] Open
Abstract
Background There has been much debate about the appropriate statistical methodology for the evaluation of malaria field studies and the challenges in interpreting data arising from these trials. Methods The present paper describes, for a pivotal phase III efficacy of the RTS, S/AS01 malaria vaccine, the methods of the statistical analysis and the rationale for their selection. The methods used to estimate efficacy of the primary course of vaccination, and of a booster dose, in preventing clinical episodes of uncomplicated and severe malaria, and to determine the duration of protection, are described. The interpretation of various measures of efficacy in terms of the potential public health impact of the vaccine is discussed. Conclusions The methodology selected to analyse the clinical trial must be scientifically sound, acceptable to regulatory authorities and meaningful to those responsible for malaria control and public health policy. Trial registration Clinicaltrials.gov NCT00866619
Collapse
|
25
|
Swysen C, Vekemans J, Bruls M, Oyakhirome S, Drakeley C, Kremsner P, Greenwood B, Ofori-Anyinam O, Okech B, Villafana T, Carter T, Savarese B, Duse A, Reijman A, Ingram C, Frean J, Ogutu B. Development of standardized laboratory methods and quality processes for a phase III study of the RTS, S/AS01 candidate malaria vaccine. Malar J 2011; 10:223. [PMID: 21816032 PMCID: PMC3220650 DOI: 10.1186/1475-2875-10-223] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 08/04/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A pivotal phase III study of the RTS,S/AS01 malaria candidate vaccine is ongoing in several research centres across Africa. The development and establishment of quality systems was a requirement for trial conduct to meet international regulatory standards, as well as providing an important capacity strengthening opportunity for study centres. METHODS Standardized laboratory methods and quality assurance processes were implemented at each of the study centres, facilitated by funding partners. RESULTS A robust protocol for determination of parasite density based on actual blood cell counts was set up in accordance with World Health Organization recommendations. Automated equipment including haematology and biochemistry analyzers were put in place with standard methods for bedside testing of glycaemia, base excess and lactacidaemia. Facilities for X-rays and basic microbiology testing were also provided or upgraded alongside health care infrastructure in some centres. External quality assurance assessment of all major laboratory methods was established and method qualification by each laboratory demonstrated. The resulting capacity strengthening has ensured laboratory evaluations are conducted locally to the high standards required in clinical trials. CONCLUSION Major efforts by study centres, together with support from collaborating parties, have allowed standardized methods and robust quality assurance processes to be put in place for the phase III evaluation of the RTS, S/AS01 malaria candidate vaccine. Extensive training programmes, coupled with continuous commitment from research centre staff, have been the key elements behind the successful implementation of quality processes. It is expected these activities will culminate in healthcare benefits for the subjects and communities participating in these trials. TRIAL REGISTRATION Clinicaltrials.gov NCT00866619.
Collapse
|
26
|
Leach A, Vekemans J, Lievens M, Ofori-Anyinam O, Cahill C, Owusu-Agyei S, Abdulla S, Macete E, Njuguna P, Savarese B, Loucq C, Ballou WR. Design of a phase III multicenter trial to evaluate the efficacy of the RTS,S/AS01 malaria vaccine in children across diverse transmission settings in Africa. Malar J 2011; 10:224. [PMID: 21816029 PMCID: PMC3199907 DOI: 10.1186/1475-2875-10-224] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 08/04/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND GlaxoSmithKline Biologicals and the PATH Malaria Vaccine Initiative are working in partnership to develop a malaria vaccine to protect infants and children living in malaria endemic regions of sub-Saharan Africa, which can be delivered through the Expanded Programme on Immunization. The RTS,S/AS candidate vaccine has been evaluated in multiple phase I/II studies and shown to have a favourable safety profile and to be well-tolerated in both adults and children. This paper details the design of the phase III multicentre efficacy trial of the RTS,S/AS01 malaria vaccine candidate, which is pivotal for licensure and policy decision-making. METHODS The phase III trial is a randomized, controlled, multicentre, participant- and observer-blind study on-going in 11 centres associated with different malaria transmission settings in seven countries in sub-Saharan Africa. A minimum of 6,000 children in each of two age categories (6-12 weeks, 5-17 months) have been enrolled. Children were randomized 1:1:1 to one of three study groups: (1) primary vaccination with RTS,S/AS01 and booster dose of RTS,S/AS01; (2) primary vaccination with RTS,S/AS01 and a control vaccine at time of booster; (3) primary vaccination with control vaccine and a control vaccine at time of booster. Primary vaccination comprises three doses at monthly intervals; the booster dose is administered at 18 months post-primary course. Subjects will be followed to study month 32. The co-primary objectives are the evaluation of efficacy over one year post-dose 3 against clinical malaria when primary immunization is delivered at: (1) 6-12 weeks of age, with co-administration of DTPwHepB/Hib antigens and OPV; (2) 5-17 months of age. Secondary objectives include evaluation of vaccine efficacy against severe malaria, anaemia, malaria hospitalization, fatal malaria, all-cause mortality and other serious illnesses including sepsis and pneumonia. Efficacy of the vaccine against clinical malaria under different transmission settings, the evolution of efficacy over time and the potential benefit of a booster will be evaluated. In addition, the effect of RTS,S/AS01 vaccination on growth, and the safety and immunogenicity in HIV-infected and malnourished children will be assessed. Safety of the primary course of immunization and the booster dose will be documented in both age categories. CONCLUSIONS This pivotal phase III study of the RTS,S/AS01 candidate malaria vaccine in African children was designed and implemented by the Clinical Trials Partnership Committee. The study will provide efficacy and safety data to fulfil regulatory requirements, together with data on a broad range of endpoints that will facilitate the evaluation of the public health impact of the vaccine and will aid policy and implementation decisions. TRIAL REGISTRATION Clinicaltrials.gov NCT00866619.
Collapse
Affiliation(s)
| | | | | | | | | | - Seth Owusu-Agyei
- Kintampo Health Research Centre, Ghana Health Service, Kintampo, Ghana
| | | | - Eusebio Macete
- Centro de Investigação em Saude de Manhiça, Manhiça, Mozambique
| | | | | | | | | |
Collapse
|