1
|
Pollard EJM, MacLaren D, Russell TL, Burkot TR. Protecting the peri-domestic environment: the challenge for eliminating residual malaria. Sci Rep 2020; 10:7018. [PMID: 32341476 PMCID: PMC7184721 DOI: 10.1038/s41598-020-63994-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 04/07/2020] [Indexed: 11/09/2022] Open
Abstract
Malaria transmission after universal access and use of malaria preventive services is known as residual malaria transmission. The concurrent spatial-temporal distributions of people and biting mosquitoes in malaria endemic villages determines where and when residual malaria transmission occurs. Understanding human and vector population behaviors and movements is a critical first step to prevent mosquito bites to eliminate residual malaria transmission. This study identified where people in the Solomon Islands are over 24-hour periods. Participants (59%) were predominantly around the house but not in their house when most biting by Anopheles farauti, the dominant malaria vector, occurs. While 84% of people slept under a long-lasting insecticide-treated bed net (LLIN), on average only 7% were under an LLIN during the 18:00 to 21:00 h peak mosquito biting period. On average, 34% of participants spend at least one night away from their homes each fortnight. Despite high LLIN use while sleeping, most human biting by An. farauti occurs early in the evening before people go to sleep when people are in peri-domestic areas (predominantly on verandas or in kitchen areas). Novel vector control tools that protect individuals from mosquito bites between sundown and when people sleep are needed for peri-domestic areas.
Collapse
Affiliation(s)
- Edgar J M Pollard
- James Cook University, Australian Institute of Tropical Health and Medicine, Cairns, QLD 4870, Australia.
| | - David MacLaren
- James Cook University, Australian Institute of Tropical Health and Medicine, Cairns, QLD 4870, Australia
| | - Tanya L Russell
- James Cook University, Australian Institute of Tropical Health and Medicine, Cairns, QLD 4870, Australia
| | - Thomas R Burkot
- James Cook University, Australian Institute of Tropical Health and Medicine, Cairns, QLD 4870, Australia.
| |
Collapse
|
2
|
Quah YW, Waltmann A, Karl S, White MT, Vahi V, Darcy A, Pitakaka F, Whittaker M, Tisch DJ, Barry A, Barnadas C, Kazura J, Mueller I. Molecular epidemiology of residual Plasmodium vivax transmission in a paediatric cohort in Solomon Islands. Malar J 2019; 18:106. [PMID: 30922304 PMCID: PMC6437916 DOI: 10.1186/s12936-019-2727-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/14/2019] [Indexed: 01/03/2023] Open
Abstract
Background Following the scale-up of intervention efforts, malaria burden has decreased dramatically in Solomon Islands (SI). Submicroscopic and asymptomatic Plasmodium vivax infections are now the major challenge for malaria elimination in this country. Since children have higher risk of contracting malaria, this study investigated the dynamics of Plasmodium spp. infections among children including the associated risk factors of residual P. vivax burden. Methods An observational cohort study was conducted among 860 children aged 0.5–12 years in Ngella (Central Islands Province, SI). Children were monitored by active and passive surveillances for Plasmodium spp. infections and illness. Parasites were detected by quantitative real-time PCR (qPCR) and genotyped. Comprehensive statistical analyses of P. vivax infection prevalence, molecular force of blood stage infection (molFOB) and infection density were conducted. Results Plasmodium vivax infections were common (overall prevalence: 11.9%), whereas Plasmodium falciparum infections were rare (0.3%) but persistent. Although children acquire an average of 1.1 genetically distinct P. vivax blood-stage infections per year, there was significant geographic heterogeneity in the risks of P. vivax infections across Ngella (prevalence: 1.2–47.4%, p < 0.01; molFOB: 0.05–4.6/year, p < 0.01). Malaria incidence was low (IR: 0.05 episodes/year-at-risk). Age and measures of high exposure were the key risk factors for P. vivax infections and disease. Malaria incidence and infection density decreased with age, indicating significant acquisition of immunity. G6PD deficient children (10.8%) that did not receive primaquine treatment had a significantly higher prevalence (aOR: 1.77, p = 0.01) and increased risk of acquiring new bloodstage infections (molFOB aIRR: 1.51, p = 0.03), underscoring the importance of anti-relapse treatment. Conclusion Residual malaria transmission in Ngella exhibits strong heterogeneity and is characterized by a high proportion of submicroscopic and asymptomatic P. vivax infections, alongside sporadic P. falciparum infections. Implementing an appropriate primaquine treatment policy to prevent P. vivax relapses and specific targeting of control interventions to high risk areas will be required to accelerate ongoing control and elimination activities. Electronic supplementary material The online version of this article (10.1186/s12936-019-2727-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi Wan Quah
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Andreea Waltmann
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Stephan Karl
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Michael T White
- Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Ventis Vahi
- National Health Training & Research Institute, Ministry of Health, Honiara, Solomon Islands
| | - Andrew Darcy
- National Health Training & Research Institute, Ministry of Health, Honiara, Solomon Islands
| | - Freda Pitakaka
- National Health Training & Research Institute, Ministry of Health, Honiara, Solomon Islands
| | - Maxine Whittaker
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | | | - Alyssa Barry
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Celine Barnadas
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - James Kazura
- Case Western Reserve University, Cleveland, OH, USA
| | - Ivo Mueller
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia. .,Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.
| |
Collapse
|
3
|
White SE, Harvey SA, Meza G, Llanos A, Guzman M, Gamboa D, Vinetz JM. Acceptability of a herd immunity-focused, transmission-blocking malaria vaccine in malaria-endemic communities in the Peruvian Amazon: an exploratory study. Malar J 2018; 17:179. [PMID: 29703192 PMCID: PMC5921293 DOI: 10.1186/s12936-018-2328-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/18/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND A transmission-blocking vaccine (TBV) to prevent malaria-infected humans from infecting mosquitoes has been increasingly considered as a tool for malaria control and elimination. This study tested the hypothesis that a malaria TBV would be acceptable among residents of a malaria-hypoendemic region. METHODS The study was carried out in six Spanish-speaking rural villages in the Department of Loreto in the Peruvian Amazon. These villages comprise a cohort of 430 households associated with the Peru-Brazil International Centre for Excellence in Malaria Research. Individuals from one-third (143) of enrolled households in an ongoing longitudinal, prospective cohort study in 6 communities in Loreto, Peru, were randomly selected to participate by answering a pre-validated questionnaire. RESULTS All 143 participants expressed desire for a malaria vaccine in general; only 1 (0.7%) expressed unwillingness to receive a transmission-blocking malaria vaccine. Injection was considered most acceptable for adults (97.2%); for children drops in the mouth were preferred (96.8%). Acceptability waned marginally with the prospect of multiple injections (83.8%) and different projected efficacies at 70 and 50% (90.1 and 71.8%, respectively). Respondents demonstrated clear understanding that the vaccine was for community, rather than personal, protection against malaria infection. DISCUSSION In this setting of the Peruvian Amazon, a transmission-blocking malaria vaccine was found to be almost universally acceptable. This study is the first to report that residents of a malaria-endemic region have been queried regarding a malaria vaccine strategy that policy-makers in the industrialized world often dismiss as altruistic.
Collapse
Affiliation(s)
- Sara E White
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego School of Medicine, 9500 Gilman Drive 0760, Biomedical Research Facility Room 4A16, La Jolla, CA, 92093-0760, USA
| | - Steven A Harvey
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St. E5030, Baltimore, MD, 21205, USA.
| | - Graciela Meza
- Facultad de Medicina Humana, Universidad Nacional de la Amazonia Peruana, Iquitos, Peru
| | - Alejandro Llanos
- Malaria and Leishmaniasis Division, Instituto de Medicina Tropical Alexander von Humboldt, Av. Honorio Delgado 430, San Martín de Porres, Lima, Peru
| | - Mitchel Guzman
- Malaria and Leishmaniasis Division, Instituto de Medicina Tropical Alexander von Humboldt, Av. Honorio Delgado 430, San Martín de Porres, Lima, Peru
| | - Dionicia Gamboa
- Malaria and Leishmaniasis Division, Instituto de Medicina Tropical Alexander von Humboldt, Av. Honorio Delgado 430, San Martín de Porres, Lima, Peru.,Department of Cellular and Molecular Sciences, Faculty of Sciences and Laboratory of Research and Development, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego School of Medicine, 9500 Gilman Drive 0760, Biomedical Research Facility Room 4A16, La Jolla, CA, 92093-0760, USA. .,Malaria and Leishmaniasis Division, Instituto de Medicina Tropical Alexander von Humboldt, Av. Honorio Delgado 430, San Martín de Porres, Lima, Peru. .,Department of Cellular and Molecular Sciences, Faculty of Sciences and Laboratory of Research and Development, Universidad Peruana Cayetano Heredia, Lima, Peru.
| |
Collapse
|
4
|
Martin TCS, Vinetz JM. Asymptomatic Plasmodium vivax parasitaemia in the low-transmission setting: the role for a population-based transmission-blocking vaccine for malaria elimination. Malar J 2018; 17:89. [PMID: 29466991 PMCID: PMC5822557 DOI: 10.1186/s12936-018-2243-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/17/2018] [Indexed: 12/21/2022] Open
Abstract
Plasmodium vivax remains an important cause of morbidity and mortality across the Americas, Horn of Africa, East and South East Asia. Control of transmission has been hampered by emergence of chloroquine resistance and several intrinsic characteristics of infection including asymptomatic carriage, challenges with diagnosis, difficulty eradicating the carrier state and early gametocyte appearance. Complex human-parasite-vector immunological interactions may facilitate onward infection of mosquitoes. Given these challenges, new therapies are being explored including the development of transmission to mosquito blocking vaccines. Herein, the case supporting the need for transmission-blocking vaccines to augment control of P. vivax parasite transmission and explore factors that are limiting eradication efforts is discussed.
Collapse
Affiliation(s)
- Thomas C S Martin
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Joseph M Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Nationwide genetic surveillance of Plasmodium vivax in Papua New Guinea reveals heterogeneous transmission dynamics and routes of migration amongst subdivided populations. INFECTION GENETICS AND EVOLUTION 2017; 58:83-95. [PMID: 29313805 DOI: 10.1016/j.meegid.2017.11.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/27/2017] [Accepted: 11/30/2017] [Indexed: 11/20/2022]
Abstract
The Asia Pacific Leaders in Malaria Alliance (APLMA) have committed to eliminate malaria from the region by 2030. Papua New Guinea (PNG) has the highest malaria burden in the Asia-Pacific region but with the intensification of control efforts since 2005, transmission has been dramatically reduced and Plasmodium vivax is now the dominant malaria infection in some parts of the country. To gain a better understanding of the transmission dynamics and migration patterns of P. vivax in PNG, here we investigate population structure in eight geographically and ecologically distinct regions of the country. A total of 219 P. vivax isolates (16-30 per population) were successfully haplotyped using 10 microsatellite markers. A wide range of genetic diversity (He=0.37-0.87, Rs=3.60-7.58) and significant multilocus linkage disequilibrium (LD) was observed in six of the eight populations (IAS=0.08-0.15 p-value<0.05) reflecting a spectrum of transmission intensities across the country. Genetic differentiation between regions was evident (Jost's D=0.07-0.72), with increasing divergence of populations with geographic distance. Overall, P. vivax isolates clustered into three major genetic populations subdividing the Mainland lowland and coastal regions, the Islands and the Highlands. P. vivax gene flow follows major human migration routes, and there was higher gene flow amongst Mainland parasite populations than among Island populations. The Central Province (samples collected in villages close to the capital city, Port Moresby), acts as a sink for imported infections from the three major endemic areas. These insights into P. vivax transmission dynamics and population networks will inform targeted strategies to contain malaria infections and to prevent the spread of drug resistance in PNG.
Collapse
|
6
|
Larocca A, Moro Visconti R, Marconi M. Malaria diagnosis and mapping with m-Health and geographic information systems (GIS): evidence from Uganda. Malar J 2016; 15:520. [PMID: 27776516 PMCID: PMC5075756 DOI: 10.1186/s12936-016-1546-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 10/05/2016] [Indexed: 11/17/2022] Open
Abstract
Background Rural populations experience several barriers to accessing clinical facilities for malaria diagnosis. Increasing penetration of ICT and mobile-phones and subsequent m-Health applications can contribute overcoming such obstacles. Methods GIS is used to evaluate the feasibility of m-Health technologies as part of anti-malaria strategies. This study investigates where in Uganda: (1) malaria affects the largest number of people; (2) the application of m-Health protocol based on the mobile network has the highest potential impact. Results About 75% of the population affected by Plasmodium falciparum malaria have scarce access to healthcare facilities. The introduction of m-Health technologies should be based on the 2G protocol, as 3G mobile network coverage is still limited. The western border and the central-Southeast are the regions where m-Health could reach the largest percentage of the remote population. Six districts (Arua, Apac, Lira, Kamuli, Iganga, and Mubende) could have the largest benefit because they account for about 28% of the remote population affected by falciparum malaria with access to the 2G mobile network. Conclusions The application of m-Health technologies could improve access to medical services for distant populations. Affordable remote malaria diagnosis could help to decongest health facilities, reducing costs and contagion. The combination of m-Health and GIS could provide real-time and geo-localized data transmission, improving anti-malarial strategies in Uganda. Scalability to other countries and diseases looks promising.
Collapse
Affiliation(s)
| | | | - Michele Marconi
- Research and Consulting GIS, Natural Resources Management, Marine Ecology, Disaster Risk Reduction, Hue, Vietnam
| |
Collapse
|
7
|
Whittaker M, Smith C. Reimagining malaria: five reasons to strengthen community engagement in the lead up to malaria elimination. Malar J 2015; 14:410. [PMID: 26474852 PMCID: PMC4608300 DOI: 10.1186/s12936-015-0931-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 10/02/2015] [Indexed: 11/10/2022] Open
Abstract
Although community engagement has been recognized as an important element of public health since the Alma Ata declaration, in practice community engagement has played a marginal role within malaria control programmes. As more countries move toward elimination, malaria elimination programmes will need to reimagine malaria in a number of ways. An important element of this will be to re-conceptualize and better strategize community engagement, which will become increasingly important for programme success as countries near elimination. This commentary intends to begin a conversation on re-imagining community engagement in an elimination setting, by outlining five ways that community engagement should be strengthened and re-strategized in the lead up to malaria elimination.
Collapse
Affiliation(s)
- Maxine Whittaker
- University of Queensland School of Public Health, Herston, QLD, Australia.
| | - Catherine Smith
- Asia Research Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
8
|
Watanabe N, Kaneko A, Yamar S, Taleo G, Tanihata T, Lum JK, Larson PS, Shearer NBC. A prescription for sustaining community engagement in malaria elimination on Aneityum Island, Vanuatu: an application of Health Empowerment Theory. Malar J 2015; 14:291. [PMID: 26228787 PMCID: PMC4521369 DOI: 10.1186/s12936-015-0779-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/28/2015] [Indexed: 11/16/2022] Open
Abstract
Background Community engagement has contributed to disease control and elimination in many countries. Community engagement in malaria elimination (ME) on Aneityum Island has been sustained since its introduction in the early 1990s. Capacity developed within this population has led to a health empowered community response. Health Empowerment Theory (HET) can account for the innovative community actions and capacity development efforts taken to realize and sustain meaningful changes in well-being. This study used the HET framework to investigate participant perceptions of ME efforts on the island focusing on two HET elements, personal and social-contextual resources. The purpose of this study was to explore the role of empowerment as a critical element of community engagement. Methods Six focus group discussions, ten key informant interviews and 17 in-depth interviews were conducted in July 2012 on Aneityum. Both deductive and inductive approaches to qualitative content analysis were used to identify themes, which were condensed, coded and classified based on the HET elements above. Results Awareness and use of personal and social-contextual resources played an important role in ME efforts. Most participants shared their knowledge to prevent malaria reintroduction. Many participants reported their skills needed for behavioral maintenance, problem-solving or leadership. Participants who perceived a threat took preventive actions even in the dry season. Community leaders focused on second generation capacity development. A local health coalition provided ME services. Members of networks were sources of information and assistance. Face-to-face was the preferred method of communication. Barriers to engagement (e.g., financial difficulties, health literacy issues and underdeveloped infrastructure) were minimized through active collaboration and mutual assistance. Conclusions In the community engagement continuum, health empowerment develops incrementally overtime as people gain their knowledge and skills, form coalitions and develop collaborative networks (social capital) to make decisions and take action for change. Community engagement, which facilitates local personal and social-contextual resource development, has potential for ME and multilevel empowerment through community-based capacity development processes. These self-empowered communities have written and will continue to write a ‘prescription’ for sustaining high levels of engagement. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0779-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Noriko Watanabe
- Department of Parasitology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Akira Kaneko
- Department of Parasitology, Osaka City University Graduate School of Medicine, Osaka, Japan. .,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Sam Yamar
- Ministry of Health, Port Vila, Vanuatu.
| | | | - Takeo Tanihata
- Department of Infectious Disease Control, Healthcare Centre of Kobe, Kobe, Japan.
| | - J Koji Lum
- Department of Anthropology and Biological Sciences, Binghamton University, Binghamton, NY, USA.
| | - Peter S Larson
- Nagasaki University Institute of Tropical Medicine, Nagasaki, Japan. .,University of Michigan School of Natural Resources and Environment, Ann Arbor, MI, USA.
| | - Nelma B C Shearer
- Hartford Centre of Gerontological Nursing Excellence, College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, USA.
| |
Collapse
|
9
|
Oloifana-Polosovai H, Gwala J, Harrington H, Massey PD, Ribeyro E, Flores A, Speare C, McBride E, MacLaren D, Speare R. A marked decline in the incidence of malaria in a remote region of Malaita, Solomon Islands, 2008 to 2013. Western Pac Surveill Response J 2014; 5:30-9. [PMID: 25320674 PMCID: PMC4197191 DOI: 10.5365/wpsar.2014.5.3.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SETTING Atoifi Adventist Hospital (AAH), Solomon Islands, the only hospital in the East Kwaio region. OBJECTIVE To use routine surveillance data to assess the trends in malaria from 2008 to 2013. DESIGN Descriptive study of records from (1) AAH laboratory malaria records; (2) admissions to AAH for malaria; and (3) malaria treatments from outpatient records. RESULTS AAH examined 35 608 blood films and diagnosed malaria in 4443 samples comprised of 2667 Plasmodium falciparum (Pf) and 1776 Plasmodium vivax (Pv). Between 2008 and 2013 the total number of malaria cases detected annually decreased by 86.5%, Pf by 96.7% and Pv by 65.3%. The ratio of Pf to Pv reversed in 2010 from 2.06 in 2008 to 0.19 in 2013. For 2013, Pf showed a seasonal pattern with no cases diagnosed in four months. From 2008 to 2013 admissions in AAH for malaria declined by 90.8%, and malaria mortality fell from 54 per 100 000 to zero. The annual parasite index (API) for 2008 and 2013 was 195 and 24, respectively. Village API has identified a group of villages with higher malaria incidence rates. CONCLUSION The decline in malaria cases in the AAH catchment area has been spectacular, particularly for Pf. This was supported by three sources of hospital surveillance data (laboratory, admissions and treatment records). The decline was associated with the use of artemisinin-based combined therapy and improved vertical social capital between the AAH and the local communities. Calculating village-specific API has highlighted which villages need to be targeted by the AAH malaria control team.
Collapse
Affiliation(s)
| | - John Gwala
- Atoifi Adventist Hospital, Atoifi, Malaita, Solomon Islands
| | | | - Peter D Massey
- Health Protection, Hunter New England Population Health, Tamworth, Australia
| | - Elmer Ribeyro
- Atoifi Adventist Hospital, Atoifi, Malaita, Solomon Islands
| | | | | | - Edwin McBride
- College of Medicine and Dentistry, James Cook University, Cairns, Australia
| | - David MacLaren
- College of Medicine and Dentistry, James Cook University, Cairns, Australia
| | - Rick Speare
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
| |
Collapse
|
10
|
Marston L, Kelly GC, Hale E, Clements ACA, Hodge A, Jimenez-Soto E. Cost analysis of the development and implementation of a spatial decision support system for malaria elimination in Solomon Islands. Malar J 2014; 13:325. [PMID: 25130064 PMCID: PMC4148529 DOI: 10.1186/1475-2875-13-325] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 08/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The goal of malaria elimination faces numerous challenges. New tools are required to support the scale up of interventions and improve national malaria programme capacity to conduct detailed surveillance. This study investigates the cost factors influencing the development and implementation of a spatial decision support system (SDSS) for malaria elimination in the two elimination provinces of Isabel and Temotu, Solomon Islands. METHOD Financial and economic costs to develop and implement a SDSS were estimated using the Solomon Islands programme's financial records. Using an ingredients approach, verified by stakeholders and operational reports, total costs for each province were quantified. A budget impact sensitivity analysis was conducted to investigate the influence of variations in standard budgetary components on the costs and to identify potential cost savings. RESULTS A total investment of US$ 96,046 (2012 constant dollars) was required to develop and implement the SDSS in two provinces (Temotu Province US$ 49,806 and Isabel Province US$ 46,240). The single largest expense category was for computerized equipment totalling approximately US$ 30,085. Geographical reconnaissance was the most expensive phase of development and implementation, accounting for approximately 62% of total costs. Sensitivity analysis identified different cost factors between the provinces. Reduced equipment costs would deliver a budget saving of approximately 10% in Isabel Province. Combined travel costs represented the greatest influence on the total budget in the more remote Temotu Province. CONCLUSION This study provides the first cost analysis of an operational surveillance tool used specifically for malaria elimination in the South-West Pacific. It is demonstrated that the costs of such a decision support system are driven by specialized equipment and travel expenses. Such factors should be closely scrutinized in future programme budgets to ensure maximum efficiencies are gained and available resources are allocated effectively.
Collapse
Affiliation(s)
| | | | | | | | - Andrew Hodge
- The University of Queensland, School of Population Health, Public Health Building, Herston Road, Herston, Brisbane, QLD 4006, Australia.
| | | |
Collapse
|
11
|
Rovers J, Andreski M, Gitua J, Bagayoko A, DeVore J. Expanding the scope of medical mission volunteer groups to include a research component. Global Health 2014; 10:7. [PMID: 24555713 PMCID: PMC3938823 DOI: 10.1186/1744-8603-10-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 12/16/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Serving on volunteer groups undertaking medical mission trips is a common activity for health care professionals and students. Although volunteers hope such work will assist underserved populations, medical mission groups have been criticized for not providing sustainable health services that focus on underlying health problems. As members of a volunteer medical mission group, we performed a bed net indicator study in rural Mali. We undertook this project to demonstrate that volunteers are capable of undertaking small-scale research, the results of which offer locally relevant results useful for disease prevention programs. The results of such projects are potentially sustainable beyond the duration of a mission trip. METHODS Volunteers with Medicine for Mali interviewed 108 households in Nana Kenieba, Mali during a routine two-week medical mission trip. Interviewees were asked structured questions about family demographics, use of insecticide treated bed nets the previous evening, as well as about benefits of net use and knowledge of malaria. Survey results were analyzed using logistic regression. RESULTS We found that 43.7% of households had any family member sleep under a bed net the previous evening. Eighty seven percent of households owned at least one ITN and the average household owned 1.95 nets. The regression model showed that paying for a net was significantly correlated with its use, while low perceived mosquito density, obtaining the net from the public sector and more than four years of education in the male head of the household were negatively correlated with net use. These results differ from national Malian data and peer-reviewed studies of bed net use. CONCLUSIONS We completed a bed net study that provided results that were specific to our service area. Since these results were dissimilar to peer-reviewed literature and Malian national level data on bed net use, the results will be useful to develop locally specific teaching materials on malaria prevention. This preventive focus is potentially more sustainable than clinical services for malaria treatment. Although we were not able to demonstrate that our work is sustainable, our study shows that volunteer groups are capable of undertaking research that is relevant to their service area.
Collapse
Affiliation(s)
- John Rovers
- Drake University, College of Pharmacy & Health Sciences, 2507 University Avenue, Des Moines, IA 50311, USA.
| | | | | | | | | |
Collapse
|
12
|
Cotter C, Sturrock HJW, Hsiang MS, Liu J, Phillips AA, Hwang J, Gueye CS, Fullman N, Gosling RD, Feachem RGA. The changing epidemiology of malaria elimination: new strategies for new challenges. Lancet 2013; 382:900-11. [PMID: 23594387 PMCID: PMC10583787 DOI: 10.1016/s0140-6736(13)60310-4] [Citation(s) in RCA: 449] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Malaria-eliminating countries achieved remarkable success in reducing their malaria burdens between 2000 and 2010. As a result, the epidemiology of malaria in these settings has become more complex. Malaria is increasingly imported, caused by Plasmodium vivax in settings outside sub-Saharan Africa, and clustered in small geographical areas or clustered demographically into subpopulations, which are often predominantly adult men, with shared social, behavioural, and geographical risk characteristics. The shift in the populations most at risk of malaria raises important questions for malaria-eliminating countries, since traditional control interventions are likely to be less effective. Approaches to elimination need to be aligned with these changes through the development and adoption of novel strategies and methods. Knowledge of the changing epidemiological trends of malaria in the eliminating countries will ensure improved targeting of interventions to continue to shrink the malaria map.
Collapse
Affiliation(s)
- Chris Cotter
- The Global Health Group, University of California, San Francisco, CA 94105, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kelly GC, Hale E, Donald W, Batarii W, Bugoro H, Nausien J, Smale J, Palmer K, Bobogare A, Taleo G, Vallely A, Tanner M, Vestergaard LS, Clements ACA. A high-resolution geospatial surveillance-response system for malaria elimination in Solomon Islands and Vanuatu. Malar J 2013; 12:108. [PMID: 23514410 PMCID: PMC3618239 DOI: 10.1186/1475-2875-12-108] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/14/2013] [Indexed: 11/30/2022] Open
Abstract
Background A high-resolution surveillance-response system has been developed within a geographic information system (GIS) to support malaria elimination in the Pacific. This paper examines the application of a GIS-based spatial decision support system (SDSS) to automatically locate and map the distribution of confirmed malaria cases, rapidly classify active transmission foci, and guide targeted responses in elimination zones. Methods Customized SDSS-based surveillance-response systems were developed in the three elimination provinces of Isabel and Temotu, Solomon Islands and Tafea, Vanuatu. Confirmed malaria cases were reported to provincial malaria offices upon diagnosis and updated into the respective SDSS as part of routine operations throughout 2011. Cases were automatically mapped by household within the SDSS using existing geographical reconnaissance (GR) data. GIS queries were integrated into the SDSS-framework to automatically classify and map transmission foci based on the spatiotemporal distribution of cases, highlight current areas of interest (AOI) regions to conduct foci-specific targeted response, and extract supporting household and population data. GIS simulations were run to detect AOIs triggered throughout 2011 in each elimination province and conduct a sensitivity analysis to calculate the proportion of positive cases, households and population highlighted in AOI regions of a varying geographic radius. Results A total of 183 confirmed cases were reported and mapped using the SDSS throughout 2011 and used to describe transmission within a target population of 90,354. Automatic AOI regions were also generated within each provincial SDSS identifying geographic areas to conduct response. 82.5% of confirmed cases were automatically geo-referenced and mapped at the household level, with 100% of remaining cases geo-referenced at a village level. Data from the AOI analysis indicated different stages of progress in each province, highlighting operational implications with regards to strategies for implementing surveillance-response in consideration of the spatiotemporal nature of cases as well as logistical and financial constraints of the respective programmes. Conclusions Geospatial systems developed to guide Pacific Island malaria elimination demonstrate the application of a high resolution SDSS-based approach to support key elements of surveillance-response including understanding epidemiological variation within target areas, implementing appropriate foci-specific targeted response, and consideration of logistical constraints and costs.
Collapse
Affiliation(s)
- Gerard C Kelly
- University of Queensland, Infectious Disease Epidemiology Unit, School of Population Health, Brisbane, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Barclay VC, Smith RA, Findeis JL. Surveillance considerations for malaria elimination. Malar J 2012; 11:304. [PMID: 22938625 PMCID: PMC3480880 DOI: 10.1186/1475-2875-11-304] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/28/2012] [Indexed: 11/20/2022] Open
Abstract
Constant malaria monitoring and surveillance systems have been highlighted as critical for malaria elimination. The absence of robust monitoring and surveillance systems able to respond to outbreaks in a timely manner undeniably contributed to the failure of the last global attempt to eradicate malaria. Today, technological advances could allow for rapid detection of focal outbreaks and improved deployment of diagnostic and treatment supplies to areas needing support. However, optimizing diffusion activities (e.g., distributing vector controls and medicines, as well as deploying behaviour change campaigns) requires networks of diverse scholars to monitor, learn, and evaluate data and multiple organizations to coordinate their intervention activities. Surveillance systems that can gather, store and process information, from communities to national levels, in a centralized, widely accessible system will allow tailoring of surveillance and intervention efforts. Different systems and, thus reactions, will be effective in different endemic, geographical or socio-cultural contexts. Investing in carefully designed monitoring technologies, built for a multiple-acter, dynamic system, will help to improve malaria elimination efforts by improving the coordination, timing, coverage, and deployment of malaria technologies.
Collapse
Affiliation(s)
- Victoria C Barclay
- Department of Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| | - Rachel A Smith
- Department of Communication Arts & Sciences, Human Development & Family Studies, and Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| | - Jill L Findeis
- Division of Applied Social Sciences (DASS), Agricultural & Applied Economics, CAFNR, University of Missouri, Columbia, MO, USA
| |
Collapse
|
15
|
Khamsiriwatchara A, Sudathip P, Sawang S, Vijakadge S, Potithavoranan T, Sangvichean A, Satimai W, Delacollette C, Singhasivanon P, Lawpoolsri S, Kaewkungwal J. Artemisinin resistance containment project in Thailand. (I): Implementation of electronic-based malaria information system for early case detection and individual case management in provinces along the Thai-Cambodian border. Malar J 2012; 11:247. [PMID: 22839508 PMCID: PMC3464131 DOI: 10.1186/1475-2875-11-247] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/17/2012] [Indexed: 11/28/2022] Open
Abstract
Background The Bureau of Vector-borne Diseases, Ministry of Public Health, Thailand, has implemented an electronic Malaria Information System (eMIS) as part of a strategy to contain artemisinin resistance. The attempt corresponds to the WHO initiative, funded by the Bill & Melinda Gates Foundation, to contain anti-malarial drug resistance in Southeast Asia. The main objective of this study was to demonstrate the eMIS’ functionality and outputs after implementation for use in the Thailand artemisinin-resistance containment project. Methods The eMIS had been functioning since 2009 in seven Thai-Cambodian border provinces. The eMIS has covered 61 malaria posts/clinics, 27 Vector-borne Disease Units covering 12,508 hamlets at risk of malaria infections. The eMIS was designed as an evidence-based and near real-time system to capture data for early case detection, intensive case investigation, monitoring drug compliance and on/off-site tracking of malarial patients, as well as collecting data indicating potential drug resistance among patients. Data captured by the eMIS in 2008–2011 were extracted and presented. Results The core functionalities of the eMIS have been utilized by malaria staff at all levels, from local operational units to ministerial management. The eMIS case detection module suggested decreasing trends during 2009–2011; the number of malaria cases detected in the project areas over the years studied were 3818, 2695, and 2566, with sero-positive rates of 1.24, 0.98, and 1.16%, respectively. The eMIS case investigation module revealed different trends in weekly Plasmodium falciparum case numbers, when classified by responsible operational unit, local and migrant status, and case-detection type. It was shown that most Thai patients were infected within their own residential district, while migrants were infected either at their working village or from across the border. The data mapped in the system suggested that P. falciparum-infected cases and potential drug-resistant cases were scattered mostly along the border villages. The mobile technology application has detected different follow-up rates, with particularly low rates among seasonal and cross-border migrants. Conclusion The eMIS demonstrated that it could capture essential data from individual malaria cases at local operational units, while effectively being used for situation and trend analysis at upper-management levels. The system provides evidence-based information that could contribute to the control and containment of resistant parasites. Currently, the eMIS is expanding beyond the Thai-Cambodian project areas to the provinces that lie along the Thai-Myanmar border.
Collapse
Affiliation(s)
- Amnat Khamsiriwatchara
- Center of Excellence for Biomedical and Public Health Informatics (BIOPHICS), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Atkinson JA, Johnson ML, Wijesinghe R, Bobogare A, Losi L, O'Sullivan M, Yamaguchi Y, Kenilorea G, Vallely A, Cheng Q, Ebringer A, Bain L, Gray K, Harris I, Whittaker M, Reid H, Clements A, Shanks D. Operational research to inform a sub-national surveillance intervention for malaria elimination in Solomon Islands. Malar J 2012; 11:101. [PMID: 22462770 PMCID: PMC3359162 DOI: 10.1186/1475-2875-11-101] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 03/30/2012] [Indexed: 11/22/2022] Open
Abstract
Background Successful reduction of malaria transmission to very low levels has made Isabel Province, Solomon Islands, a target for early elimination by 2014. High malaria transmission in neighbouring provinces and the potential for local asymptomatic infections to cause malaria resurgence highlights the need for sub-national tailoring of surveillance interventions. This study contributes to a situational analysis of malaria in Isabel Province to inform an appropriate surveillance intervention. Methods A mixed method study was carried out in Isabel Province in late 2009 and early 2010. The quantitative component was a population-based prevalence survey of 8,554 people from 129 villages, which were selected using a spatially stratified sampling approach to achieve uniform geographical coverage of populated areas. Diagnosis was initially based on Giemsa-stained blood slides followed by molecular analysis using polymerase chain reaction (PCR). Local perceptions and practices related to management of fever and treatment-seeking that would impact a surveillance intervention were also explored using qualitative research methods. Results Approximately 33% (8,554/26,221) of the population of Isabel Province participated in the survey. Only one subject was found to be infected with Plasmodium falciparum (Pf) (96 parasites/μL) using Giemsa-stained blood films, giving a prevalence of 0.01%. PCR analysis detected a further 13 cases, giving an estimated malaria prevalence of 0.51%. There was a wide geographical distribution of infected subjects. None reported having travelled outside Isabel Province in the previous three months suggesting low-level indigenous malaria transmission. The qualitative findings provide warning signs that the current community vigilance approach to surveillance will not be sufficient to achieve elimination. In addition, fever severity is being used by individuals as an indicator for malaria and a trigger for timely treatment-seeking and case reporting. In light of the finding of a low prevalence of parasitaemia, the current surveillance system may not be able to detect and prevent malaria resurgence. Conclusion An adaption to the malERA surveillance framework is proposed and recommendations made for a tailored provincial-level surveillance intervention, which will be essential to achieve elimination, and to maintain this status while the rest of the country catches up.
Collapse
Affiliation(s)
- Jo-An Atkinson
- School of Population Health, University of Queensland, Brisbane, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yangzom T, Gueye CS, Namgay R, Galappaththy GNL, Thimasarn K, Gosling R, Murugasampillay S, Dev V. Malaria control in Bhutan: case study of a country embarking on elimination. Malar J 2012; 11:9. [PMID: 22230355 PMCID: PMC3278342 DOI: 10.1186/1475-2875-11-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/05/2011] [Accepted: 01/09/2012] [Indexed: 11/23/2022] Open
Abstract
Background Bhutan has achieved a major reduction in malaria incidence amid multiple challenges. This case study seeks to characterize the Bhutan malaria control programme over the last 10 years. Methods A review of the malaria epidemiology, control strategies, and elimination strategies employed in Bhutan was carried out through a literature review of peer-reviewed and grey national and international literature with the addition of reviewing the surveillance and vector control records of the Bhutan Vector-Borne Disease Control Programme (VDCP). Data triangulation was used to identify trends in epidemiology and key strategies and interventions through analysis of the VDCP surveillance and programme records and the literature review. Enabling and challenging factors were identified through analysis of socio-economic and health indicators, corroborated through a review of national and international reports and peer-review articles. Findings Confirmed malaria cases in Bhutan declined by 98.7% from 1994 to 2010. The majority of indigenous cases were due to Plasmodium vivax (59.9%) and adult males are most at-risk of malaria. Imported cases, or those in foreign nationals, varied over the years, reaching 21.8% of all confirmed cases in 2006. Strategies implemented by the VDCP are likely to be related to the decline in cases over the last 10 years. Access to malaria diagnosis in treatment was expanded throughout the country and evidence-based case management, including the introduction of artemisinin-based combination therapy (ACT) for P. falciparum, increasing coverage of high risk areas with Indoor Residual Spraying, insecticide-treated bed nets, and long-lasting insecticidal nets are likely to have contributed to the decline alongside enabling factors such as economic development and increasing access to health services. Conclusion Bhutan has made significant strides towards elimination and has adopted a goal of national elimination. A major challenge in the future will be prevention and management of imported malaria infections from neighbouring Indian states. Bhutan plans to implement screening at border points to prevent importation of malaria and to targeted prevention and surveillance efforts towards at-risk Bhutanese and migrant workers in construction sites.
Collapse
Affiliation(s)
- Thinley Yangzom
- Vector-Borne Disease Control Programme, Ministry of Health, Royal Government of Bhutan, Gelephu, Bhutan
| | | | | | | | | | | | | | | |
Collapse
|