1
|
Alareqi LM, Mahdy MA, Lau YL, Fong MY, Abdul-Ghani R, Mahmud R. Molecular markers associated with resistance to commonly used antimalarial drugs among Plasmodium falciparum isolates from a malaria-endemic area in Taiz governorate-Yemen during the transmission season. Acta Trop 2016; 162:174-179. [PMID: 27343362 DOI: 10.1016/j.actatropica.2016.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/13/2016] [Accepted: 06/13/2016] [Indexed: 12/28/2022]
Abstract
Since 2005, artesunate (AS) plus sulfadoxine/pyrimethamine (SP) combination has been adopted as the first-line treatment for uncomplicated malaria in Yemen in response to the high level of Plasmodium falciparum resistance to chloroquine (CQ). Therefore, the aim of the present study was to determine the frequency distribution of molecular markers associated with resistance to CQ and AS plus SP combination among P. falciparum isolates from a malaria-endemic area in Taiz governorate, Yemen. Fifty P. falciparum isolates were collected during a cross-sectional study in Mawza district, Taiz, in the period from October 2013 to April 2014. The isolates were investigated for drug resistance-associated molecular markers in five genes, including P. falciparum CQ resistance transporter (pfcrt) 76T and P. falciparum multidrug resistance 1 (pfmdr1) 86Y as markers of resistance to CQ, mutations in the Kelch 13 (K13) propeller domain for resistance to AS, and P. falciparum dihydrofolate reductase (pfdhfr) and P. falciparum dihydropteroate synthase (pfdhps) genes for resistance to SP. Nested polymerase chain reaction was used to amplify target genes in DNA extracts of the isolates followed by restriction fragment length polymorphism for detecting 76T and 86Y mutations in pfcrt and pfmdr1, respectively, and by DNA sequencing for detecting mutations in K13, pfdhfr and pfdhps. All the investigated isolates from Mawza district were harboring the pfcrt 76T mutant and the pfmdr1 N86 wild-type alleles. The pfdhfr 51I/108N double mutant allele was found in 2.2% (1/45) of the isolates; however, no mutations were detected at codons 436, 437, 540, 581 and 613 of pfdhps. All P. falciparum isolates that were successfully sequenced (n=47) showed the K13 Y493, R539, I543 and C580 wild-type alleles. In conclusion, the pfcrt 76T mutant allele is fixed in the study area about six years after the official withdrawal of CQ, possibly indicating its over-the-counter availability and continued use as a self-medication in the study area. However, the almost predominant wild-type alleles of the genes associated with resistance to AS and SP among P. falciparum isolates in the present study indicates the sustained efficacy of the currently adopted first-line treatment of AS plus SP in the study area.
Collapse
|
2
|
Atroosh WM, Al-Mekhlafi HM, Al-Jasari A, Sady H, Dawaki SS, Elyana FN, Al-Areeqi MA, Nasr NA, Abdulsalam AM, Subramaniam LR, Azzani M, Ithoi I, Lau YL, Surin J. Different patterns of pfcrt and pfmdr1 polymorphism in Plasmodium falciparum isolates from Tehama region, Yemen. PeerJ 2016; 4:e2191. [PMID: 27478699 PMCID: PMC4950566 DOI: 10.7717/peerj.2191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 06/08/2016] [Indexed: 11/20/2022] Open
Abstract
Introduction. Despite the efforts of the malaria control programme, malaria morbidity is still a common health problem in Yemen, with 60% of the population at risk. Plasmodium falciparum is responsible for 99% of malaria cases. The emergence in Yemen of parasite resistance to chloroquine (CQ) prompted the adoption of artemisinin combination therapy (ACT) in 2009, which involves the use of artesunate plus sulphadoxine-pyrimethamine (AS + SP). However, CQ was retained as the drug of choice for vivax malaria. To assess the impact of the change in the malaria treatment policy five years after its introduction, the present study investigated the mutations in the CQ resistance transporter (pfcrt) and multidrug resistance 1 (pfmdr1) genes. Method. A molecular investigation of 10 codons of pfcrt (72–76, 220, 271, 326, 356, and 371) and five codons of pfmdr1 (86, 184, 1034, 1042, and 1246) was conducted on P. falciparum isolates from districts with the highest malaria endemicity in the Hodeidah and Al-Mahwit governorates in Tehama region, Yemen. A total of 86 positive cases of falciparum monoinfection were investigated for the presence of mutations related to CQ and other antimalarials using a PCR-RFLP assay. Results. There was a wide prevalence of pfcrt gene mutations with the pfcrt 76T CQ resistance marker being predominant (97.7%). The prevalence of other pfcrt mutations varied from high (75E: 88%) to moderate (74I: 79.1%, 220S: 69.8%, 271E and 371I: 53.5%) or low (326S: 36%, 72S: 10.5%). Mutated pfcrt 72–76 amino acids haplotypes were highly prevalent (98.8%). Among these, the CVIET classic, old-world African/Southeast Asian haplotype was the most predominant, and was mostly found in the isolates from the Khamis Bani Saad district of Al-Mahwit (93.1%) and the AdDahi district of Hodeidah (88.9%). However, it was only found in 26.3% of the isolates from the Bajil district of Hodeidah. Surprisingly, the SVMNT new-world South American haplotype was exclusively detected in 9.3% of the isolates from the Bajil district of Hodeidah. Mutations at Y184F of pfmdr1 were found in all isolates (100%) from all districts. The mutation for codons 1034C and 86Y were found only in the isolates from the AdDahi and Khamis Bani Saad districts. Overall, the AdDahi and Khamis Bani Saad districts were similar in terms of carrying most of the mutations in the pfcrt and pfmdr1 genes, while there was a lower prevalence of mutation in the isolates from the Bajil district. Conclusion. The high prevalence of mutations in pfcrt 5 years after the official cessation of CQ use against P. falciparum suggests that there is sustained CQ pressure on P. falciparum isolates in the study area. Moreover, the low prevalence of mutations in the pfmdr1 gene could be a good indicator of the high susceptibility of P. falciparum isolates to antimalarials other than CQ. A new strategy to ensure the complete nationwide withdrawal of CQ from the private drug market is recommended.
Collapse
Affiliation(s)
- Wahib M Atroosh
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Unit of Microbiology and Parasitology, Department of Para-Clinic, Faculty of Medicine and Health Sciences, University of Aden, Khormaksar, Aden, Yemen
| | - Hesham M Al-Mekhlafi
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Endemic and Tropical Diseases Unit, Medical Research Centre, Jazan University, Jazan, Kingdom of Saudi Arabia; Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen
| | - Adel Al-Jasari
- National Malaria Control Programme, Ministry of Health and Population , Sana'a , Yemen
| | - Hany Sady
- Department of Parasitology, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Salwa S Dawaki
- Department of Parasitology, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Fatin N Elyana
- Department of Parasitology, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Mona A Al-Areeqi
- Department of Parasitology, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Nabil A Nasr
- Department of Parasitology, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Awatif M Abdulsalam
- Department of Parasitology, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Lahvanya R Subramaniam
- Department of Parasitology, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Meram Azzani
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Init Ithoi
- Department of Parasitology, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Johari Surin
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Centre for Research and Innovation, Taylor's University, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
3
|
Issa FH, Al-Habori M, Chance ML. Effect of Khat (Catha edulis) Use on the Bioavailability, Plasma Levels and Antimalarial Activity of Chloroquine. Sultan Qaboos Univ Med J 2016; 16:e182-8. [PMID: 27226909 DOI: 10.18295/squmj.2016.16.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/19/2016] [Accepted: 02/14/2016] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES This study aimed to evaluate the effect of khat (Catha edulis) on chloroquine (CQ) bioavailability in healthy Yemeni adults and its effect on CQ plasma levels and parasite clearance among malaria patients. METHODS This study took place between January and April 2007 in Bajil and Sana'a, Yemen. Two CQ doses (600 mg each) were given to 15 healthy males on separate occasions; the first dose was followed by a khat-chewing session (phase one) while controls abstained from khat-chewing for the second (phase two). Additionally, 103 patients with Plasmodium falciparum-induced malaria, including both regular khat chewers (n = 57) and non-khat chewers (n = 46), were treated with CQ (25 mg/kg) over three days. Pharmacokinetic parameters were analysed among both controls and malaria patients. Parasite clearance was also investigated for the latter group. RESULTS The mean area under the concentration-time curve (AUC) was 2,108.9 versus 2,797.4 ng/hour/mL, mean peak plasma concentration (Cmax) was 415.6 versus 508.7 ng/mL and mean time to reach Cmax was 3.8 versus 3.6 hours for controls in phase one versus phase two, respectively; both AUC and Cmax levels were significantly reduced by khat-chewing (P <0.050). For khat- versus non-khat-chewing malaria patients, mean plasma CQ concentrations were 266.4 ng/mL versus 427.5 ng/mL (P <0.001). Furthermore, CQ was effective in 71.7% and 75.4% of non-khat and khat-chewing malaria patients, respectively (P = 0.823). CONCLUSION Khat-chewing was found to significantly reduce plasma CQ levels among healthy volunteers and malaria patients. While receiving CQ treatment, patients should be advised not to chew khat.
Collapse
Affiliation(s)
- Faiza H Issa
- Department of Biochemistry & Molecular Biology, Sana'a University, Sana'a, Yemen
| | - Molhem Al-Habori
- Department of Biochemistry & Molecular Biology, Sana'a University, Sana'a, Yemen
| | - Michael L Chance
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
4
|
Atroosh WM, Al-Mekhlafi HM, Snounou G, Al-Jasari A, Sady H, Nasr NA, Lau YL, Surin J. Sustained efficacy of artesunate-sulfadoxine-pyrimethamine against Plasmodium falciparum in Yemen and a renewed call for an adjunct single dose primaquine to clear gametocytes. Malar J 2016; 15:295. [PMID: 27234587 PMCID: PMC4882835 DOI: 10.1186/s12936-016-1344-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/13/2016] [Indexed: 01/03/2023] Open
Abstract
Background In Yemen, artesunate plus sulfadoxine-pyrimethamine (AS + SP) has been used as first-line treatment for uncomplicated falciparum malaria, which accounts for about 99 % of malaria cases. There is evidence that resistance to SP is increasing, with potential negative impact on efficacy, and in particular on curbing transmission. This study aims: (a) to evaluate the therapeutic efficacy of AS + SP treatment for uncomplicated falciparum malaria in Yemen; (b) to investigate the frequency of mutations in Plasmodium falciparum genes associated with resistance to AS (Kelch 13 propeller domain, pfK13) and SP (dihydrofolate reductase, pfdhfr, and dihydropteroate synthase, pfdhps); and (c) to assess the adequacy of this ACT to clear gametocytes. Methods A 28-day in vivo evaluation of the clinical and parasitological response to three-day course of AS + SP was carried out in two areas of high endemicity (Hodeidah and Al-Mahwit provinces, Tehama region) in Yemen according to standard WHO protocol 2009. Clinical and parasitological indices were monitored over a 28-day follow-up, and the outcome was PCR-corrected. The frequencies of mutations in the pfdhfr, pfdhps, and pfK13 genes were obtained by sequencing following amplification. Results Eighty-six patients completed the study, with a cure rate of 96.5 % (94.2 % PCR-uncorrected). Whereas four (4.7 %) patients still showed parasitaemia on day 2 post-treatment, all were found negative for asexual malaria stages on days 3 and 7. The efficacy of gametocyte clearance was poor (14.5, 42.5 and 86.0 % on days 7, 14 and 28, respectively), with gametocytes persisting throughout the study in some patients. All the isolates sequenced had the pfk13 propeller domain wild-type allele, and mutations associated with SP failure were observed only for pfdhfr with the double mutation (S108N + N51I) found in 65.4 % of the isolates sequenced. Conclusion In Yemen, AS + SP therapy remains effective for the treatment of uncomplicated falciparum malaria. Mutations were not detected in pfk13 or pfdhps, though double mutations were observed for pfdhfr. The observed persistent gametocytaemia re-enforces calls to add a single dose primaquine to this ACT in order to minimizes the potential for transmission and enhance regional efforts to eliminate malaria. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1344-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wahib M Atroosh
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.,Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University of Aden, Aden, Yemen
| | - Hesham M Al-Mekhlafi
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Endemic and Tropical Diseases Unit, Medical Research Center, Jazan University, Jazan, Kingdom of Saudi Arabia. .,Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen.
| | - Georges Snounou
- UPMC Université Paris 06, Inserm (Institut National de la Santé et de la Recherche Medicale), Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), UMR 1135, ERL CNRS 8255 (Centre National de la Recherche Scientifique), Sorbonne Universités, 91 Boulevard de l'Hôpital, F-75013, Paris, France.
| | - Adel Al-Jasari
- National Malaria Control Programme, Ministry of Public Health and Population, Sana'a, Yemen
| | - Hany Sady
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nabil A Nasr
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yee-Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Johari Surin
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.,Centre for Research and Innovation, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
5
|
Increased Prevalence of Mutant Allele Pfdhps 437G and Pfdhfr Triple Mutation in Plasmodium falciparum Isolates from a Rural Area of Gabon, Three Years after the Change of Malaria Treatment Policy. Malar Res Treat 2016; 2016:9694372. [PMID: 27190671 PMCID: PMC4852121 DOI: 10.1155/2016/9694372] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/22/2016] [Accepted: 02/16/2016] [Indexed: 11/19/2022] Open
Abstract
In Gabon, sulfadoxine-pyrimethamine (SP) is recommended for intermittent preventive treatment during pregnancy (IPTp-SP) and for uncomplicated malaria treatment through ACTs drug. P. falciparum strains resistant to SP are frequent in areas where this drug is highly used and is associated with the occurrence of mutations on Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and dihydropteroate synthetase (Pfdhps) genes. The aim of the study was to compare the proportion of mutations on Pfdhfr and Pfdhps genes in isolates collected at Oyem in northern Gabon, in 2005 at the time of IPTp-SP introduction and three years later. Point mutations were analyzed by nested PCR-RFLP method. Among 91 isolates, more than 90% carried Pfdhfr 108N and Pfdhfr 59R alleles. Frequencies of Pfdhfr 51I (98%) and Pfdhps 437G (67.7%) mutant alleles were higher in 2008. Mutations at codons 164, 540, and 581 were not detected. The proportion of the triple Pfdhfr mutation and quadruple mutation including A437G was high: 91.9% in 2008 and 64.8% in 2008, respectively. The present study highlights an elevated frequency of Pfdhfr and Pfdhps mutant alleles, although quintuple mutations were not found in north Gabon. These data suggest the need of a continuous monitoring of SP resistance in Gabon.
Collapse
|
6
|
Bamaga OAA, Mahdy MAK, Lim YAL. Frequencies distribution of dihydrofolate reductase and dihydropteroate synthetase mutant alleles associated with sulfadoxine-pyrimethamine resistance in Plasmodium falciparum population from Hadhramout Governorate, Yemen. Malar J 2015; 14:516. [PMID: 26693691 PMCID: PMC4688959 DOI: 10.1186/s12936-015-1035-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/04/2015] [Indexed: 12/23/2022] Open
Abstract
Background Malaria in Yemen is mainly caused by Plasmodium falciparum and 25 % of the population is at high risk. Sulfadoxine–pyrimethamine (SP) had been used as monotherapy against P. falciparum. Emergence of chloroquine resistance led to the shift in anti-malarial treatment policy in Yemen to artemisinin-based combination therapy, that is artesunate (AS) plus SP as first-line therapy for uncomplicated malaria and artemether–lumefantrine as second-line treatment. This study aimed to screen mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps) genes associated with SP resistance among P. falciparum population in Hadhramout governorate, Yemen. Methods Genomic DNA was extracted from dried blood spots of 137 P. falciparum isolates collected from a community-based study. DNA was amplified using nested polymerase chain reaction (PCR) and subsequently sequenced for Pfdhfr and Pfdhps genes. Sequences were analysed for mutations in Pfdhfr gene codons 51, 59, 108, and 164 and in Pfdhps gene codons 436, 437, and 540. Results A total of 128 and 114 P. falciparum isolates were successfully sequenced for Pfdhfr and Pfdhps genes, respectively. Each Pfdhfr mutant allele (I51 and N108) in P. falciparum population had a frequency of 84 %. PfdhfrR59 mutant allele was detected in one isolate. Mutation at codon 437 (G437) in the Pfdhps gene was detected in 44.7 % of falciparum malaria isolates. Frequencies of Pfdhfr double mutant genotype (I51C59N108I164) and Pfdhfr/Pfdhps triple mutant genotype (I51C59N108I164-S436G437K540) were 82.8 and 39.3 %, respectively. One isolate harboured Pfdhfr triple mutant genotype (I51, R59, N108, I164) and Pfdhfr/Pfdhps quadruple mutant genotype (I51R59N108I164-S436G437K540). Conclusion High frequencies of Pfdhfr and Pfdhps mutant alleles and genotypes in P. falciparum population in Hadhramout, Yemen, highlight the risk of developing resistance for SP, the partner drug of AS, which subsequently will expose the parasite to AS monotherapy increasing then the potential of the emergence of AS resistance. Study findings necessitate the continuous monitoring of the efficacy of the national anti-malarial drugs policy in Yemen. In addition, monitoring SP efficacy using molecular markers that has shown to be a practical and informative method for monitoring the partner drug of AS.
Collapse
Affiliation(s)
- Omar A A Bamaga
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Mohammed A K Mahdy
- Department of Parasitology, Faculty of Medicine, Sana'a University, Sana'a, Yemen. .,Tropical Disease Research Centre, University of Science and Technology, Taiz, Yemen.
| | - Yvonne A L Lim
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
7
|
Adeel AA, Saeed NA, Aljasari A, Almohager AM, Galab MH, AlMahdi A, Mahammed MH, AlDarsi M, Salaeah YA, Atta H, Zamani G, Warsame M, Barrette A, Mohammady HE, Nada RA. High efficacy of two artemisinin-based combinations: artesunate + sulfadoxine-pyrimethamine and artemether-lumefantrine for falciparum malaria in Yemen. Malar J 2015; 14:449. [PMID: 26573814 PMCID: PMC4647513 DOI: 10.1186/s12936-015-0970-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/27/2015] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Artesunate + sulfadoxine-pyrimethamine (AS + SP) has been the first-line treatment and artemether-lumefantrine (AL) the second-line treatment for uncomplicated falciparum malaria in Yemen since 2005. This paper reports the results of studies conducted to monitor therapeutic efficacy of these two drugs in sentinel sites in Yemen. METHODS Eight therapeutic efficacy studies were conducted in six sentinel sites during the period 2009-2013 in Yemen. Five studies were for the evaluation of AS + SP (total of 465 patients) and three studies (total of 268 patients) for the evaluation of AL. The studies were done according to standard WHO protocol 2009 with 28-day follow-up. RESULTS In the evaluation of AS + SP, the PCR-corrected cure rate was 98 % (95 % CI 92.2-99.5 %) in one site and 100 % in all of the other four sites. In the sites where AL was evaluated, the PCR-corrected cure rate was 100 % in all the sites. All patients were negative for asexual parasitaemia on day 3 in both the AS + SP and the AL groups. There was a higher rate of clearance of gametocytaemia in the AL-treated group when compared with the AS + SP groups from day 7 onwards. CONCLUSION AS + SP remains the effective drug for uncomplicated falciparum malaria in Yemen. AL is also highly effective and can be an appropriate alternative to AS + SP for the treatment of falciparum malaria. AL demonstrated a higher efficacy in clearing microscopic gametocytaemia than AS + SP. TRIAL REGISTRATION Trial registration number ACTRN12610000696099.
Collapse
Affiliation(s)
- Ahmed A Adeel
- College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Niaz Abdo Saeed
- The National Malaria Control Programme, Ministry of Public Health and Population, Sanaa, Yemen.
| | - Adel Aljasari
- The National Malaria Control Programme, Ministry of Public Health and Population, Sanaa, Yemen.
| | | | | | - Amar AlMahdi
- Ministry of Public Health and Population, Sanaa, Yemen.
| | | | | | | | - Hoda Atta
- Malaria Control and Elimination, Division of Communicable Diseases Control, World Health Organization Regional Office for the Eastern Mediterranean, Cairo, Egypt.
| | - Ghasem Zamani
- Malaria Control and Elimination, Division of Communicable Diseases Control, World Health Organization Regional Office for the Eastern Mediterranean, Cairo, Egypt.
| | - Marian Warsame
- Global Malaria Programme, World Health Organization, Geneva, Switzerland.
| | - Amy Barrette
- Global Malaria Programme, World Health Organization, Geneva, Switzerland.
| | | | | |
Collapse
|
8
|
Survey of chloroquine-resistant mutations in the Plasmodium falciparum pfcrt and pfmdr-1 genes in Hadhramout, Yemen. Acta Trop 2015; 149:59-63. [PMID: 26001972 DOI: 10.1016/j.actatropica.2015.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 05/14/2015] [Accepted: 05/16/2015] [Indexed: 11/24/2022]
Abstract
Malaria is still a major public health problem in Yemen. More than 95% of the malaria cases are due to Plasmodium falciparum. Recently in Yemen, the antimalarial treatment policy was changed from chloroquine (CQ) to artemisinin combination therapy (ACTs). However, CQ is still available and prescribed in the Yemeni market. The persistence of CQ resistance will be prolonged if the shift to ACT and the simultaneous withdrawal of CQ are not rigorously implemented. The aim of the current survey is to detect chloroquine-resistant mutations in P. falciparum chloroquine-resistance transporter (pfcrt) and P. falciparum multi-drug resistance-1 (pfmdr1) genes. These data will be important for future monitoring and assessment of antimalarial drug policy in Yemen. Blood specimens were collected from 735 individuals from different districts of the Hadhramout province, Yemen by house-to-house visit. Mutation-specific nested polymerase chain reaction (PCR) and restriction fragment length polymorphism (PCR-RFLP) methods were used to investigate the mutations in the pfmdr1(codons 86 and 1246) and pfcrt (codons 76, 271, 326, 356 and 371) genes. The overall prevalence of pfcrt mutations at codons 76, 271, 326 and 371 were 50.4%, 58.7%, 54.3% and 44.9%, respectively. All isolates had wild-type pfcrt 356 allele. The majority of pfmdr1 86 alleles (83.3%) and all pfmdr1 1246 alleles were wild type. There was no association between pfcrt mutations and symptomatology, gender and age groups. In conclusion, point mutations in codons 76, 271, 326 and 371 of pfcrt of P. falciparum are high suggesting a sustained high CQ resistance even after 4 years of shifting to ACTs. These findings warrant complete withdrawal of CQ use from the Yemeni market for P. falciparum and careful usage of CQ for treating Plasmodium vivax.
Collapse
|
9
|
Al-Hamidhi S, Mahdy MAK, Idris MA, Bin Dajem SM, Al-Sheikh AAH, Al-Qahtani A, Al-Hashami Z, Al-Farsi H, Al-Mekhlafi AM, Saif-Ali R, Beja-Pereira A, Babiker HA. The prospect of malaria elimination in the Arabian Peninsula: a population genetic approach. INFECTION GENETICS AND EVOLUTION 2014; 27:25-31. [PMID: 24981966 DOI: 10.1016/j.meegid.2014.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 03/21/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND In the Arabian Peninsula malaria control is progressing steadily, backed by adequate logistic and political support. As a result, transmission has been interrupted throughout the region, with exception of limited sites in Yemen and Saudi Arabia. Here we examined Plasmodium falciparum parasites in these sites to assess if the above success has limited diversity and gene flow. METHODS We examined 108 P. falciparum isolates in three sites in Yemen (Taiz, Dhamar and Hodeidah) and 91 isolates from Saudi Arabia (Jazan). Nine microsatellites were analyzed for allelic diversity, multi-locus haplotype and inter-population differentiation. RESULTS Diversity at each locus (unbiased heterozygosity [H]) was relatively lower in Yemen; (Hodeidah, H=0.615, Taiz, H=0.66, Dhamar, H=0.481), compared to Saudi Arabia (Jazan, H=0.76). Microsatellites were distributed widely and private alleles, detected in a single population, were rare. Pairwise comparisons revealed that parasites population in Dhamar was relatively distanced (FST=0.19). However, Taiz (Yemen) (FST=0.065) and Hodeidah (FST=0.107) populations were closer to that in Jazan (Saudi Arabia). Nonetheless, parasites in the four sites can be considered as one population. CONCLUSION Although malaria risk in Saudi Arabia has been cut considerably, the extent of diversity and parasite genetic structure are indicative of a large population size. Elimination strategy should target demographic factors that favor parasite dispersal and flow of imported malaria.
Collapse
Affiliation(s)
- Salama Al-Hamidhi
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Sultan Qaboos University, Oman
| | - Mohammed A K Mahdy
- Research Department, University of Science and Technology, Sana'a, Yemen; Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohamed Ahmed Idris
- Department of Microbiology and Immunology, Faculty of Medicine and Health Sciences, Sultan Qaboos University, Oman
| | - Saad M Bin Dajem
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | | | - Ahmed Al-Qahtani
- Medical Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Zainab Al-Hashami
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Sultan Qaboos University, Oman
| | - Hissa Al-Farsi
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Sultan Qaboos University, Oman
| | - Abdulsalam M Al-Mekhlafi
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Riyadh Saif-Ali
- Biochemistry Department, Faculty of Medicine, Sana'a University, Yemen
| | - Albano Beja-Pereira
- Research Centre in Biodiversity and Genetic Resources (CIBIO), University of Porto, Rua Padre Armando Quintas 7, Vairão 4485-661, Portugal
| | - Hamza A Babiker
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Sultan Qaboos University, Oman.
| |
Collapse
|
10
|
Abdul-Ghani R, Farag HF, Allam AF, Shawky SM. Prevailing Plasmodium falciparum dihydrofolate reductase 108-asparagine in Hodeidah, Yemen: a questionable sulfadoxine-pyrimethamine partner within the artemisinin-based combination therapy. Acta Trop 2014; 132:39-44. [PMID: 24406851 DOI: 10.1016/j.actatropica.2013.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 12/22/2013] [Accepted: 12/26/2013] [Indexed: 11/17/2022]
Abstract
Given that the evolution and spread of resistance to sulfadoxine-pyrimethamine (SP) have been documented at a quick pace worldwide, the present study investigated the mutant Plasmodium falciparum dihydrofolate reductase 108-asparagine (dhfr 108 N) as a key marker of resistance to the combination among parasite isolates from Hodeidah. The association of parasitologic indices with the dhfr 108 N mutant allele was also studied. Ninety patients with microscopically confirmed P. falciparum infection from Hodeidah were included in the present study. Polymerase chain reaction-restriction fragment length polymorphism approach was adopted for the molecular detection of this marker. The dhfr 108 N was detected among about 61% of P. falciparum isolates, in its pure and mixed-type forms, from Hodeidah. Age, gender and residence of patients were not significant predictors for the presence of the mutant allele among parasite isolates. In contrast, a history of malaria and antimalarial drug intake in the year preceding the study as well as frequent antimalarial drug intake were significantly associated with this mutant allele. The high frequency of dhfr 108 N among parasites isolates makes the role of SP questionable as a partner with outstanding effectiveness within the ACT, at least, in the near future. SP plus artesunate should be monitored for its antimalarial efficacy at regular intervals, preferably through the molecular detection of resistance-associated mutations.
Collapse
Affiliation(s)
- Rashad Abdul-Ghani
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria, Egypt; Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen.
| | - Hoda F Farag
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Amal F Allam
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Sherine M Shawky
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
11
|
Oluwatosin A, Tolulope A, Ayokulehin K, Patricia O, Aderemi K, Catherine F, Olusegun A. Antimalarial potential of kolaviron, a biflavonoid from Garcinia kola seeds, against Plasmodium berghei infection in Swiss albino mice. ASIAN PAC J TROP MED 2014; 7:97-104. [DOI: 10.1016/s1995-7645(14)60003-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/15/2013] [Accepted: 01/15/2014] [Indexed: 10/25/2022] Open
|
12
|
Abdul-Ghani R, Farag HF, Allam AF, Shawky SM, Al-Mekhlafi AM. Mutant Plasmodium falciparum chloroquine resistance transporter in Hodeidah, Yemen: association with parasitologic indices and treatment-seeking behaviors. Acta Trop 2013; 128:473-8. [PMID: 23906615 DOI: 10.1016/j.actatropica.2013.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/04/2013] [Accepted: 07/17/2013] [Indexed: 11/27/2022]
Abstract
Malaria still represents a major health problem in Yemen, particularly in Hodeidah, despite continuing efforts to eliminate it. With the absence of clinically proven vaccines, chemotherapy with antimalarials is still greatly needed. Chloroquine (CQ) has been popular as the drug of choice for malaria control. However, Plasmodium falciparum resistance to CQ has been one of the main obstacles in malaria control and elimination. Although CQ is no longer the recommended antimalarial chemotherapy, it has remained the number one over-the-counter antimalarial drug in many endemic areas, including Yemen, and is still used for self-medication. In addition, promising reports on CQ efficacy reversal in many African countries brought it again into the scene. This has led to a growing interest in the possibility of its re-introduction, particularly with the concerns raised about the parasite resistance to artemisinin-based combination therapies. Therefore, the present study aimed at analyzing the CQ-associated pfcrt 76T mutation in P. falciparum isolates from patients with uncomplicated falciparum malaria in Hodeidah, west of Yemen. The association of treatment-seeking behaviors and antimalarial drug use with the pfcrt 76T mutant allele was also studied. It was revealed that there is still a sustained high frequency of this molecular marker among parasite isolates associated with younger age, decreased parasite density and the presence of gametocytes in blood. Delay in seeking treatment and frequent use of antimalarials were the behaviors significantly associated with the presence of the pfcrt 76T mutant allele among patients reporting a history of malaria treatment.
Collapse
|
13
|
Zakai HA, Khan W, Asma U. Prevalence of mutation and phenotypic expression associated with sulfadoxine-pyrimethamine resistance in Plasmodium falciparum and Plasmodium vivax. Folia Parasitol (Praha) 2013; 60:372-6. [DOI: 10.14411/fp.2013.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Al-Hamidhi S, Mahdy MAK, Al-Hashami Z, Al-Farsi H, Al-mekhlafi AM, Idris MA, Beja-Pereira A, Babiker HA. Genetic diversity of Plasmodium falciparum and distribution of drug resistance haplotypes in Yemen. Malar J 2013; 12:244. [PMID: 23855834 PMCID: PMC3729657 DOI: 10.1186/1475-2875-12-244] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 07/11/2013] [Indexed: 11/25/2022] Open
Abstract
Background Despite evident success of malaria control in many sites in the Arabian Peninsula, malaria remains endemic in a few spots, in Yemen and south-west of Saudi Arabia. In addition to local transmission, imported malaria sustains an extra source of parasites that can challenge the strengths of local control strategies. This study examined the genetic diversity of Plasmodium falciparum in Yemen and mutations of drug resistant genes, to elucidate parasite structure and distribution of drug resistance genotypes in the region. Methods Five polymorphic loci (MSP-2, Pfg377 and three microsatellites on chromosome 8) not involved in anti-malarial drug resistance, and four drug resistant genes (pfcrt, pfmdr1, dhfr and dhps) were genotyped in 108 P. falciparum isolates collected in three sites in Yemen: Dhamar, Hodeidah and Taiz. Results High diversity was seen in non-drug genes, pfg377 (He = 0.66), msp-2 (He = 0.80) and three microsatellites on chr 8, 7.7 kb (He = 0.88), 4.3 kb (He = 0.77) and 0.8 kb (He = 0.71). There was a high level of mixed-genotype infections (57%), with an average 1.8 genotypes per patient. No linkage disequilibrium was seen between drug resistant genes and the non-drug markers (p < 0.05). Genetic differentiation between populations was low (most pair-wise FST values <0.03), indicating extensive gene flow between the parasites in the three sites. There was a high prevalence of mutations in pfmdr1, pfcrt and dhfr; with four mutant pfmdr1 genotypes (NFCDD[57%], NFSND[21%], YFCDD[13%] and YFSND[8% ]), two mutant pfcrt genotypes (CVIET[89%] and SVMNT[4%]) and one mutant dhfr genotype (ICNI[53.7%]). However, no dhps mutations were detected. Conclusion The high diversity of P. falciparum in Yemen is indicative of a large parasite reservoir, which represents a challenge to control efforts. The presence of two distinct pfcrt genotype, CVIET and SVMNT, suggests that chloroquine resistance can possibly be related to a migratory path from Africa and Asia. The absence of the triple mutant dhfr genotype (IRN) and dhps mutations supports the use of artesunate + sulphadoxine-pyrimethamine as first-line therapy. However, the prevalent pfmdr1 genotype NFSND [21%] has previously been associated with tolerance/resistance response to artemisinin combination therapy (ACT). Regular surveys are, therefore, important to monitor spread of pfmdr1 and dhfr mutations and response to ACT.
Collapse
|
15
|
The suitability of P. falciparum merozoite surface proteins 1 and 2 as genetic markers for in vivo drug trials in Yemen. PLoS One 2013; 8:e67853. [PMID: 23861823 PMCID: PMC3701615 DOI: 10.1371/journal.pone.0067853] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/22/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The accuracy of the conclusions from in vivo efficacy anti-malarial drug trials depends on distinguishing between recrudescences and re-infections which is accomplished by genotyping genes coding P. falciparum merozoite surface 1 (MSP1) and MSP2. However, the reliability of the PCR analysis depends on the genetic markers' allelic diversity and variant frequency. In this study the genetic diversity of the genes coding for MSP1 and MSP2 was obtained for P. falciparum parasites circulating in Yemen. METHODS Blood samples were collected from 511 patients with fever and screened for malaria parasites using Giemsa-stained blood films. A total 74 samples were infected with P. falciparum, and the genetic diversity was assessed by nested PCR targeting Pfmsp1 (Block2) and Pfmsp2 (block 3). RESULTS Overall, 58%, 28% and 54% of the isolates harboured parasites of the Pfmsp1 K1, MAD20 and RO33 allelic families, and 55% and 89% harboured those of the Pfmsp2 FC27 and 3D7 allelic families, respectively. For both genetic makers, the multiplicity of the infection (MOI) was significantly higher in the isolates from the foothills/coastland areas as compared to those from the highland (P<0.05). Pfmsp2 had higher number of distinct allelic variants than Pfmsp1 (20 vs 11). The expected heterozygosity (HE) for Pfmsp1 and Pfmsp2 were 0.82 and 0.94, respectively. Nonetheless, a bias in the frequency distribution of the Pfmsp1 allelic variants was noted from all areas, and of those of Pfmsp2 in the samples collected from the highland areas. CONCLUSIONS Significant differences in the complexity and allelic diversity of Pfmsp1 and Pfmsp2 genes between areas probably reflect differences in the intensity of malaria transmission. The biased distribution of allelic variants suggests that in Yemen Pfmsp1 should not be used for PCR correction of in vivo clinical trials outcomes, and that caution should be exercised when employing Pfmsp2.
Collapse
|
16
|
Abdul-Ghani R, Farag HF, Allam AF. Sulfadoxine-pyrimethamine resistance in Plasmodium falciparum: a zoomed image at the molecular level within a geographic context. Acta Trop 2013; 125:163-90. [PMID: 23131424 DOI: 10.1016/j.actatropica.2012.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 10/27/2022]
Abstract
Antimalarial chemotherapy is one of the main pillars in the prevention and control of malaria. Following widespread resistance of Plasmodium falciparum to chloroquine, sulfadoxine-pyrimethamine came to the scene as an alternative to the cheap and well-tolerated chloroquine. However, widespread resistance to sulfadoxine-pyrimethamine has been documented. In vivo efficacy tests are the gold standard for assessing drug resistance and treatment failure. However, they have many disadvantages, such as influence of host immunity and drug pharmacokinetics. In vitro tests of antimalarial drug efficacy also have many technical difficulties. Molecular markers of resistance have emerged as epidemiologic tools to investigate antimalarial drug resistance even before becoming clinically evident. Mutations in P. falciparum dihydrofolate reductase and dihydrofolate synthase have been extensively studied as molecular markers for resistance to pyrimethamine and sulfadoxine, respectively. This review highlights the resistance of P. falciparum at the molecular level presenting both supporting and opposing studies on the utility of molecular markers.
Collapse
|