1
|
Moraes Barros RR, Thawnashom K, Gibson TJ, Armistead JS, Caleon RL, Kaneko M, Kite WA, Mershon JP, Brockhurst JK, Engels T, Lambert L, Orr-Gonzalez S, Adams JH, Sá JM, Kaneko O, Wellems TE. Activity of Plasmodium vivax promoter elements in Plasmodium knowlesi, and a centromere-containing plasmid that expresses NanoLuc throughout the parasite life cycle. Malar J 2021; 20:247. [PMID: 34090438 PMCID: PMC8180018 DOI: 10.1186/s12936-021-03773-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/16/2021] [Indexed: 12/23/2022] Open
Abstract
Background Plasmodium knowlesi is now the major cause of human malaria in Malaysia, complicating malaria control efforts that must attend to the elimination of multiple Plasmodium species. Recent advances in the cultivation of P. knowlesi erythrocytic-stage parasites in vitro, transformation with exogenous DNA, and infection of mosquitoes with gametocytes from culture have opened up studies of this pathogen without the need for resource-intensive and costly non-human primate (NHP) models. For further understanding and development of methods for parasite transformation in malaria research, this study examined the activity of various trans-species transcriptional control sequences and the influence of Plasmodium vivax centromeric (pvcen) repeats in plasmid-transfected P. knowlesi parasites. Methods In vitro cultivated P. knowlesi parasites were transfected with plasmid constructs that incorporated Plasmodium vivax or Plasmodium falciparum 5′ UTRs driving the expression of bioluminescence markers (firefly luciferase or Nanoluc). Promoter activities were assessed by bioluminescence, and parasites transformed with human resistant allele dihydrofolate reductase-expressing plasmids were selected using antifolates. The stability of transformants carrying pvcen-stabilized episomes was assessed by bioluminescence over a complete parasite life cycle through a rhesus macaque monkey, mosquitoes, and a second rhesus monkey. Results Luciferase expression assessments show that certain P. vivax promoter regions, not functional in the more evolutionarily-distant P. falciparum, can drive transgene expression in P. knowlesi. Further, pvcen repeats may improve the stability of episomal plasmids in P. knowlesi and support detection of NanoLuc-expressing elements over the full parasite life cycle from rhesus macaque monkeys to Anopheles dirus mosquitoes and back again to monkeys. In assays of drug responses to chloroquine, G418 and WR9910, anti-malarial half-inhibitory concentration (IC50) values of blood stages measured by NanoLuc activity proved comparable to IC50 values measured by the standard SYBR Green method. Conclusion All three P. vivax promoters tested in this study functioned in P. knowlesi, whereas two of the three were inactive in P. falciparum. NanoLuc-expressing, centromere-stabilized plasmids may support high-throughput screenings of P. knowlesi for new anti-malarial agents, including compounds that can block the development of mosquito- and/or liver-stage parasites. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03773-4.
Collapse
Affiliation(s)
- Roberto R Moraes Barros
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. .,Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Kittisak Thawnashom
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.,Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Tyler J Gibson
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer S Armistead
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Ramoncito L Caleon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Miho Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.,Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Whitney A Kite
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - J Patrick Mershon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jacqueline K Brockhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Theresa Engels
- Division of Veterinary Research, National Institutes of Health, Bethesda, MD, USA
| | - Lynn Lambert
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sachy Orr-Gonzalez
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John H Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Juliana M Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Phares TW, May AD, Genito CJ, Hoyt NA, Khan FA, Porter MD, DeBot M, Waters NC, Saudan P, Dutta S. Rhesus macaque and mouse models for down-selecting circumsporozoite protein based malaria vaccines differ significantly in immunogenicity and functional outcomes. Malar J 2017; 16:115. [PMID: 28288639 PMCID: PMC5347822 DOI: 10.1186/s12936-017-1766-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/28/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-human primates, such as the rhesus macaques, are the preferred model for down-selecting human malaria vaccine formulations, but the rhesus model is expensive and does not allow for direct efficacy testing of human malaria vaccines. Transgenic rodent parasites expressing genes of human Plasmodium are now routinely used for efficacy studies of human malaria vaccines. Mice have however rarely predicted success in human malaria trials and there is scepticism whether mouse studies alone are sufficient to move a vaccine candidate into the clinic. METHODS A comparison of immunogenicity, fine-specificity and functional activity of two Alum-adjuvanted Plasmodium falciparum circumsporozoite protein (CSP)-based vaccines was conducted in mouse and rhesus models. One vaccine was a soluble recombinant protein (CSP) and the other was the same CSP covalently conjugated to the Qβ phage particle (Qβ-CSP). RESULTS Mice showed different kinetics of antibody responses and different sensitivity to the NANP-repeat and N-terminal epitopes as compared to rhesus. While mice failed to discern differences between the protective efficacy of CSP versus Qβ-CSP vaccine following direct challenge with transgenic Plasmodium berghei parasites, rhesus serum from the Qβ-CSP-vaccinated animals induced higher in vivo sporozoite neutralization activity. CONCLUSIONS Despite some immunologic parallels between models, these data demonstrate that differences between the immune responses induced in the two models risk conflicting decisions regarding potential vaccine utility in humans. In combination with historical observations, the data presented here suggest that although murine models may be useful for some purposes, non-human primate models may be more likely to predict the human response to investigational vaccines.
Collapse
Affiliation(s)
- Timothy W Phares
- Structural Vaccinology Laboratory, Malaria Vaccine Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Anthony D May
- Division of Veterinary Medicine, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Christopher J Genito
- Structural Vaccinology Laboratory, Malaria Vaccine Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Nathan A Hoyt
- Division of Veterinary Medicine, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Farhat A Khan
- Structural Vaccinology Laboratory, Malaria Vaccine Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Michael D Porter
- Structural Vaccinology Laboratory, Malaria Vaccine Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Margot DeBot
- Structural Vaccinology Laboratory, Malaria Vaccine Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Norman C Waters
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Philippe Saudan
- Cytos Biotechnology, Wagistrasse 25, 8952, Schlieren, Switzerland
| | - Sheetij Dutta
- Structural Vaccinology Laboratory, Malaria Vaccine Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA.
| |
Collapse
|
3
|
Abstract
The primate malaria Plasmodium knowlesi has a long-standing history as an experimental malaria model. Studies using this model parasite in combination with its various natural and experimental non-human primate hosts have led to important advances in vaccine development and in our understanding of malaria invasion, immunology and parasite-host interactions. The adaptation to long-term in vitro continuous blood stage culture in rhesus monkey, Macaca fascicularis and human red blood cells, as well as the development of various transfection methodologies has resulted in a highly versatile experimental malaria model, further increasing the potential of what was already a very powerful model. The growing evidence that P. knowlesi is an important human zoonosis in South-East Asia has added relevance to former and future studies of this parasite species.
Collapse
|
4
|
Sedegah M, Hollingdale MR, Farooq F, Ganeshan H, Belmonte M, Huang J, Abot E, Limbach K, Chuang I, Tamminga C, Epstein JE, Villasante E. Controlled Human Malaria Infection (CHMI) differentially affects cell-mediated and antibody responses to CSP and AMA1 induced by adenovirus vaccines with and without DNA-priming. Hum Vaccin Immunother 2015; 11:2705-15. [PMID: 26292027 PMCID: PMC4685686 DOI: 10.1080/21645515.2015.1019186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We have previously shown that a DNA-prime followed by an adenovirus-5 boost vaccine containing CSP and AMA1 (DNA/Ad) successfully protected 4 of 15 subjects to controlled human malaria infection (CHMI). However, the adenovirus-5 vaccine alone (AdCA) failed to induce protection despite eliciting cellular responses that were often higher than those induced by DNA/Ad. Here we determined the effect of CHMI on pre-CHMI cellular and antibody responses against CSP and AMA1 expressed as fold-changes in activities. Generally, in the DNA/Ad trial, CHMI caused pre-CHMI ELISpot IFN-γ and CD8+ T cell IFN-γ responses of the protected subjects to fall but among non-protected subjects, CHMI caused rises of pre-CHMI ELISpot IFN-γ but falls of CD8+ T cell IFN-γ responses. In contrast in the AdCA trial, CHMI caused both pre-CHMI ELISpot IFN-γ and CD8+ T cell IFN-γ responses of the AdCA subjects to fall. We suggest that the falls in activities are due to migration of peripheral CD8+ T cells to the liver in response to developing liver stage parasites, and this fall, in the DNA/Ad trial, is masked in ELISpot responses of the non-protected subjects by rises in other immune cell types. In addition, CHMI caused falls in antibody activities of protected subjects, but rises in non-protected subjects in both trials to CSP, and dramatically in the AdCA trial to AMA1, reaching 380 μg/ml that is probably due to boosting by transient blood stage infection before chloroquine treatment. Taken together, these results further define differences in cellular responses between DNA/Ad and AdCA trials, and suggest that natural transmission may boost responses induced by these malaria vaccines especially when protection is not achieved.
Collapse
Affiliation(s)
- Martha Sedegah
- a Naval Medical Research Center ; Silver Spring , MD USA
| | | | - Fouzia Farooq
- a Naval Medical Research Center ; Silver Spring , MD USA
| | | | - Maria Belmonte
- a Naval Medical Research Center ; Silver Spring , MD USA
| | - Jun Huang
- a Naval Medical Research Center ; Silver Spring , MD USA
| | - Esteban Abot
- a Naval Medical Research Center ; Silver Spring , MD USA
| | - Keith Limbach
- a Naval Medical Research Center ; Silver Spring , MD USA
| | - Ilin Chuang
- a Naval Medical Research Center ; Silver Spring , MD USA
| | - Cindy Tamminga
- a Naval Medical Research Center ; Silver Spring , MD USA
| | | | | |
Collapse
|
5
|
Admixture in Humans of Two Divergent Plasmodium knowlesi Populations Associated with Different Macaque Host Species. PLoS Pathog 2015; 11:e1004888. [PMID: 26020959 PMCID: PMC4447398 DOI: 10.1371/journal.ppat.1004888] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/17/2015] [Indexed: 12/20/2022] Open
Abstract
Human malaria parasite species were originally acquired from other primate hosts and subsequently became endemic, then spread throughout large parts of the world. A major zoonosis is now occurring with Plasmodium knowlesi from macaques in Southeast Asia, with a recent acceleration in numbers of reported cases particularly in Malaysia. To investigate the parasite population genetics, we developed sensitive and species-specific microsatellite genotyping protocols and applied these to analysis of samples from 10 sites covering a range of >1,600 km within which most cases have occurred. Genotypic analyses of 599 P. knowlesi infections (552 in humans and 47 in wild macaques) at 10 highly polymorphic loci provide radical new insights on the emergence. Parasites from sympatric long-tailed macaques (Macaca fascicularis) and pig-tailed macaques (M. nemestrina) were very highly differentiated (FST = 0.22, and K-means clustering confirmed two host-associated subpopulations). Approximately two thirds of human P. knowlesi infections were of the long-tailed macaque type (Cluster 1), and one third were of the pig-tailed-macaque type (Cluster 2), with relative proportions varying across the different sites. Among the samples from humans, there was significant indication of genetic isolation by geographical distance overall and within Cluster 1 alone. Across the different sites, the level of multi-locus linkage disequilibrium correlated with the degree of local admixture of the two different clusters. The widespread occurrence of both types of P. knowlesi in humans enhances the potential for parasite adaptation in this zoonotic system. Extraordinary phases of pathogen evolution may occur during an emerging zoonosis, potentially involving adaptation to human hosts, with changes in patterns of virulence and transmission. In a large population genetic survey, we show that the malaria parasite Plasmodium knowlesi in humans is an admixture of two highly divergent parasite populations, each associated with different forest-dwelling macaque reservoir host species. Most of the transmission and sexual reproduction occurs separately in each of the two parasite populations. In addition to the reservoir host-associated parasite population structure, there was also significant genetic differentiation that correlated with geographical distance. Although both P. knowlesi types co-exist in the same areas, the divergence between them is similar to or greater than that seen between sub-species in other sexually reproducing eukaryotes. This may offer particular opportunities for evolution of virulence and host-specificity, not seen with other malaria parasites, so studies of ongoing adaptation and interventions to reduce transmission are urgent priorities.
Collapse
|
6
|
Wang H, Zhang F, Ma X, Ma H, Zhu Y, Liu X, Zhu M, Wen H, Ding J. Prokaryotic expression and identification of B- and T-cell combined epitopes of Em95 antigen of Echinococcus multilocularis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:5117-5122. [PMID: 25197385 PMCID: PMC4152075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 06/12/2014] [Indexed: 06/03/2023]
Abstract
OBJECTIVE This study is to clone and identify B- and T-cell combined epitopes from Em95 antigen. METHODS The B- and T-cell combined epitopes were predicted using bioinformatic software. Two DNA sequences of Em95-1 (which contained the coding region of one B- and T-cell combined epitope) and Em95-2 (which contained the coding regions of two B- and T-cell combined epitopes) were amplified by PCR. Em95-1 and Em95-2 were cloned into pET32a vector for protein expression. Rabbit was immunized with the expressed proteins of rEm95-1 and rEm95-2 to produce polyclonal antibodies. The immunogenicity and antigenicity of rEm95-1 and rEm95-2 were examined by Western blot analysis. RESULTS The three B- and T-cell combined epitopes were successfully cloned and expressed in PET32a vector. The recombinant antigens of rEm95-1 and rEm95-2 could specifically bind the human serum from patients with alveolar echinococcosis and specifically bind the prepared polyclonal antibodies. CONCLUSION Three B- and T-cell combined epitopes were successfully cloned with good immunogenicity and antigenicity. Our data suggest that B- and T-cell combined epitopes predicted from the Em95 antigen may be used for the construction of high-valence vaccines and as targets for prevention of echinococcosis.
Collapse
Affiliation(s)
- Hongying Wang
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical UniversityUrumqi 830054, Xinjiang, China
| | - Fengbo Zhang
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical UniversityUrumqi 830054, Xinjiang, China
| | - Xiumin Ma
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical UniversityUrumqi 830054, Xinjiang, China
| | - Haimei Ma
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical UniversityUrumqi 830054, Xinjiang, China
| | - Yuejie Zhu
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical UniversityUrumqi 830054, Xinjiang, China
| | - Xianfei Liu
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical UniversityUrumqi 830054, Xinjiang, China
| | - Min Zhu
- Department of Immunology, Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Hao Wen
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical UniversityUrumqi 830054, Xinjiang, China
| | - Jianbing Ding
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical UniversityUrumqi 830054, Xinjiang, China
- Department of Immunology, Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| |
Collapse
|
7
|
Murphy JR, Weiss WR, Fryauff D, Dowler M, Savransky T, Stoyanov C, Muratova O, Lambert L, Orr-Gonzalez S, Zeleski KL, Hinderer J, Fay MP, Joshi G, Gwadz RW, Richie TL, Villasante EF, Richardson JH, Duffy PE, Chen J. Using infective mosquitoes to challenge monkeys with Plasmodium knowlesi in malaria vaccine studies. Malar J 2014; 13:215. [PMID: 24893777 PMCID: PMC4070636 DOI: 10.1186/1475-2875-13-215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 03/03/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND When rhesus monkeys (Macaca mulatta) are used to test malaria vaccines, animals are often challenged by the intravenous injection of sporozoites. However, natural exposure to malaria comes via mosquito bite, and antibodies can neutralize sporozoites as they traverse the skin. Thus, intravenous injection may not fairly assess humoral immunity from anti-sporozoite malaria vaccines. To better assess malaria vaccines in rhesus, a method to challenge large numbers of monkeys by mosquito bite was developed. METHODS Several species and strains of mosquitoes were tested for their ability to produce Plasmodium knowlesi sporozoites. Donor monkey parasitaemia effects on oocyst and sporozoite numbers and mosquito mortality were documented. Methylparaben added to mosquito feed was tested to improve mosquito survival. To determine the number of bites needed to infect a monkey, animals were exposed to various numbers of P. knowlesi-infected mosquitoes. Finally, P. knowlesi-infected mosquitoes were used to challenge 17 monkeys in a malaria vaccine trial, and the effect of number of infectious bites on monkey parasitaemia was documented. RESULTS Anopheles dirus, Anopheles crascens, and Anopheles dirus X (a cross between the two species) produced large numbers of P. knowlesi sporozoites. Mosquito survival to day 14, when sporozoites fill the salivary glands, averaged only 32% when donor monkeys had a parasitaemia above 2%. However, when donor monkey parasitaemia was below 2%, mosquitoes survived twice as well and contained ample sporozoites in their salivary glands. Adding methylparaben to sugar solutions did not improve survival of infected mosquitoes. Plasmodium knowlesi was very infectious, with all monkeys developing blood stage infections if one or more infected mosquitoes successfully fed. There was also a dose-response, with monkeys that received higher numbers of infected mosquito bites developing malaria sooner. CONCLUSIONS Anopheles dirus, An. crascens and a cross between these two species all were excellent vectors for P. knowlesi. High donor monkey parasitaemia was associated with poor mosquito survival. A single infected mosquito bite is likely sufficient to infect a monkey with P. knowlesi. It is possible to efficiently challenge large groups of monkeys by mosquito bite, which will be useful for P. knowlesi vaccine studies.
Collapse
|
8
|
Immunization with apical membrane antigen 1 confers sterile infection-blocking immunity against Plasmodium sporozoite challenge in a rodent model. Infect Immun 2013; 81:3586-99. [PMID: 23836827 DOI: 10.1128/iai.00544-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Apical membrane antigen 1 (AMA-1) is a leading blood-stage malaria vaccine candidate. Consistent with a key role in erythrocytic invasion, AMA-1-specific antibodies have been implicated in AMA-1-induced protective immunity. AMA-1 is also expressed in sporozoites and in mature liver schizonts where it may be a target of protective cell-mediated immunity. Here, we demonstrate for the first time that immunization with AMA-1 can induce sterile infection-blocking immunity against Plasmodium sporozoite challenge in 80% of immunized mice. Significantly higher levels of gamma interferon (IFN-γ)/interleukin-2 (IL-2)/tumor necrosis factor (TNF) multifunctional T cells were noted in immunized mice than in control mice. We also report the first identification of minimal CD8(+) and CD4(+) T cell epitopes on Plasmodium yoelii AMA-1. These data establish AMA-1 as a target of both preerythrocytic- and erythrocytic-stage protective immune responses and validate vaccine approaches designed to induce both cellular and humoral immunity.
Collapse
|
9
|
Duncan CJA, Hill AVS, Ellis RD. Can growth inhibition assays (GIA) predict blood-stage malaria vaccine efficacy? Hum Vaccin Immunother 2012; 8:706-14. [PMID: 22508415 DOI: 10.4161/hv.19712] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
An effective vaccine against P. falciparum malaria remains a global health priority. Blood-stage vaccines are an important component of this effort, with some indications of recent progress. However only a fraction of potential blood-stage antigens have been tested, highlighting a critical need for efficient down-selection strategies. Functional in vitro assays such as the growth/invasion inhibition assays (GIA) are widely used, but it is unclear whether GIA activity correlates with protection or predicts vaccine efficacy. While preliminary data in controlled human malaria infection (CHMI) studies indicate a possible association between in vitro and in vivo parasite growth rates, there have been conflicting results of immunoepidemiology studies, where associations with exposure rather than protection have been observed. In addition, GIA-interfering antibodies in vaccinated individuals from endemic regions may limit assay sensitivity in heavily malaria-exposed populations. More work is needed to establish the utility of GIA for blood-stage vaccine development.
Collapse
|
10
|
Mahdi Abdel Hamid M, Remarque EJ, van Duivenvoorde LM, van der Werff N, Walraven V, Faber BW, Kocken CHM, Thomas AW. Vaccination with Plasmodium knowlesi AMA1 formulated in the novel adjuvant co-vaccine HT™ protects against blood-stage challenge in rhesus macaques. PLoS One 2011; 6:e20547. [PMID: 21655233 PMCID: PMC3105089 DOI: 10.1371/journal.pone.0020547] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 05/03/2011] [Indexed: 02/03/2023] Open
Abstract
Plasmodium falciparum apical membrane antigen 1 (PfAMA1) is a leading blood stage vaccine candidate. Plasmodium knowlesi AMA1 (PkAMA1) was produced and purified using similar methodology as for clinical grade PfAMA1 yielding a pure, conformational intact protein. Combined with the adjuvant CoVaccine HT™, PkAMA1 was found to be highly immunogenic in rabbits and the efficacy of the PkAMA1 was subsequently tested in a rhesus macaque blood-stage challenge model. Six rhesus monkeys were vaccinated with PkAMA1 and a control group of 6 were vaccinated with PfAMA1. A total of 50 µg AMA1 was administered intramuscularly three times at 4 week intervals. One of six rhesus monkeys vaccinated with PkAMA1 was able to control parasitaemia, upon blood stage challenge with P. knowlesi H-strain. Four out of the remaining five showed a delay in parasite onset that correlated with functional antibody titres. In the PfAMA1 vaccinated control group, five out of six animals had to be treated with antimalarials 8 days after challenge; one animal did not become patent during the challenge period. Following a rest period, animals were boosted and challenged again. Four of the six rhesus monkeys vaccinated with PkAMA1 were able to control the parasitaemia, one had a delayed onset of parasitaemia and one animal was not protected, while all control animals required treatment. To confirm that the control of parasitaemia was AMA1-related, animals were allowed to recover, boosted and re-challenged with P. knowlesi Nuri strain. All control animals had to be treated with antimalarials by day 8, while five out of six PkAMA1 vaccinated animals were able to control parasitaemia. This study shows that: i) Yeast-expressed PkAMA1 can protect against blood stage challenge; ii) Functional antibody levels as measured by GIA correlated inversely with the day of onset and iii) GIA IC50 values correlated with estimated in vivo growth rates.
Collapse
Affiliation(s)
| | - Edmond J. Remarque
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
- * E-mail:
| | | | - Nicole van der Werff
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Vanessa Walraven
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Bart W. Faber
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Clemens H. M. Kocken
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Alan W. Thomas
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| |
Collapse
|