1
|
Agonhossou R, Akoton R, Lagnika H, Djihinto OY, Sovegnon PM, Saizonou HD, Ntoumi F, Wondji CS, Borrmann S, Adegnika AA, Djogbénou LS. P. falciparum msp1 and msp2 genetic diversity in P. falciparum single and mixed infection with P. malariae among the asymptomatic population in Southern Benin. Parasitol Int 2022; 89:102590. [PMID: 35472441 DOI: 10.1016/j.parint.2022.102590] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
Plasmodium falciparum and Plasmodium malariae infections are prevalent in malaria-endemic countries. However, very little is known about their interactions especially the effect of P. malariae on P. falciparum genetic diversity. This study aimed to assess P. falciparum genetic diversity in P. falciparum and mixed infection P. falciparum/P. malariae isolates among the asymptomatic populations in Southern Benin. Two hundred and fifty blood samples (125 of P. falciparum and 125 P. falciparum/P. malariae isolates) were analysed by a nested PCR amplification of msp1 and msp2 genes. The R033 allelic family was the most represented for the msp1 gene in mono and mixed infection isolates (99.2% vs 86.4%), while the K1 family had the lowest frequency (38.3% vs 20.4%). However, with the msp2 gene, the two allelic families displayed similar frequencies in P. falciparum isolates while the 3D7 allelic family was more represented in P. falciparum/P. malariae isolates (88.7%). Polyclonal infections were also lower (62.9%) in P. falciparum/P. malariae isolates (p < 0.05). Overall, 96 individual alleles were identified (47 for msp1 and 49 for msp2) in P. falciparum isolates while a total of 50 individual alleles were identified (23 for msp1 and 27 for msp2) in P. falciparum/P. malariae isolates. The Multiplicity of Infection (MOI) was lower in P. falciparum/P. malariae isolates (p < 0.05). This study revealed a lower genetic diversity of P. falciparum in P. falciparum/P. malariae isolates using msp1 and msp2 genes among the asymptomatic population in Southern Benin.
Collapse
Affiliation(s)
- Romuald Agonhossou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin; Fondation Pour la Recherche Scientifique (FORS), ISBA, BP 88, Cotonou, Bénin.
| | - Romaric Akoton
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin; Fondation Pour la Recherche Scientifique (FORS), ISBA, BP 88, Cotonou, Bénin
| | - Hamirath Lagnika
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin
| | - Oswald Y Djihinto
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin
| | - Pierre M Sovegnon
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin
| | - Helga D Saizonou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin
| | - Francine Ntoumi
- Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Congo; Institute for Tropical Medicine (ITM), University of Tübingen, Tübingen, Germany
| | - Charles S Wondji
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaoundé, Centre Region, 237, Cameroon
| | - Steffen Borrmann
- Institute for Tropical Medicine (ITM), University of Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), Tübingen, Germany
| | - Ayola A Adegnika
- Fondation Pour la Recherche Scientifique (FORS), ISBA, BP 88, Cotonou, Bénin; Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon; Institute for Tropical Medicine (ITM), University of Tübingen, Tübingen, Germany; Eberhard Karls Universität Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), Tübingen, Germany
| | - Luc S Djogbénou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin; Institut Régional de Santé Publique/Université d'Abomey-Calavi, BP 384 Ouidah, Bénin
| |
Collapse
|
2
|
Liu Y, Tessema SK, Murphy M, Xu S, Schwartz A, Wang W, Cao Y, Lu F, Tang J, Gu Y, Zhu G, Zhou H, Gao Q, Huang R, Cao J, Greenhouse B. Confirmation of the absence of local transmission and geographic assignment of imported falciparum malaria cases to China using microsatellite panel. Malar J 2020; 19:244. [PMID: 32660491 PMCID: PMC7359230 DOI: 10.1186/s12936-020-03316-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/04/2020] [Indexed: 11/15/2022] Open
Abstract
Background Current methods to classify local and imported malaria infections depend primarily on patient travel history, which can have limited accuracy. Genotyping has been investigated as a complementary approach to track the spread of malaria and identify the origin of imported infections. Methods An extended panel of 26 microsatellites (16 new microsatellites) for Plasmodium falciparum was evaluated in 602 imported infections from 26 sub-Saharan African countries to the Jiangsu Province of People’s Republic of China. The potential of the 26 microsatellite markers to assign imported parasites to their geographic origin was assessed using a Bayesian method with Markov Chain Monte Carlo (MCMC) as implemented in the program Smoothed and Continuous Assignments (SCAT) with a modification to incorporate haploid genotype data. Results The newly designed microsatellites were polymorphic and are not in linkage disequilibrium with the existing microsatellites, supporting previous findings of high rate of recombination in sub-Saharan Africa. Consistent with epidemiology inferred from patients’ travel history, no evidence for local transmission was found; nearly all genetically related infections were identified in people who travelled to the same country near the same time. The smoothing assignment method assigned imported cases to their likely geographic origin with an accuracy (Angola: 59%; Nigeria: 51%; Equatorial Guinea: 40%) higher than would be achieved at random, reaching statistical significance for Angola and Equatorial Guinea. Conclusions Genotyping using an extended microsatellite panel is valuable for malaria case classification and programme evaluation in an elimination setting. A Bayesian method for assigning geographic origin of mammals based on genetic data was adapted for malaria and showed potential for identification of the origin of imported infections.
Collapse
Affiliation(s)
- Yaobao Liu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China.,Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Sofonias K Tessema
- EPPI Center Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Maxwell Murphy
- EPPI Center Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Sui Xu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Alanna Schwartz
- EPPI Center Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Weiming Wang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Yuanyuan Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Feng Lu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China.,Department of Parasitology, Institute of Translational Medicine, Medical College, Yangzhou University, Jiangsu Key Laboratory of Experimental & Translational Non- coding RNA Research, Yangzhou, Jiangsu, China
| | - Jianxia Tang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Yaping Gu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Guoding Zhu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Huayun Zhou
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Qi Gao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Rui Huang
- Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Jun Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China. .,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China. .,Public Health Research Center, Jiangnan University, Wuxi, China.
| | - Bryan Greenhouse
- EPPI Center Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
3
|
Touray AO, Mobegi VA, Wamunyokoli F, Herren JK. Diversity and Multiplicity of P. falciparum infections among asymptomatic school children in Mbita, Western Kenya. Sci Rep 2020; 10:5924. [PMID: 32246127 PMCID: PMC7125209 DOI: 10.1038/s41598-020-62819-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/18/2020] [Indexed: 11/25/2022] Open
Abstract
Multiplicity of infection (MOI) and genetic diversity of P. falciparum infections are important surrogate indicators for assessing malaria transmission intensity in different regions of endemicity. Determination of MOI and diversity of P. falciparum among asymptomatic carriers will enhance our understanding of parasite biology and transmission to mosquito vectors. This study examined the MOI and genetic diversity of P. falciparum parasite populations circulating in Mbita, a region characterized as one of the malaria hotspots in Kenya. The genetic diversity and multiplicity of P. falciparum infections in 95 asymptomatic school children (age 5–15 yrs.) residing in Mbita, western Kenya were assessed using 10 polymorphic microsatellite markers. An average of 79.69% (Range: 54.84–95.74%) of the isolates analysed in this study were polyclonal infections as detected in at least one locus. A high mean MOI of 3.39 (Range: 2.24–4.72) and expected heterozygosity (He) of 0.81 (Range: 0.57–0.95) was reported in the study population. The analysed samples were extensively polyclonal infections leading to circulation of highly genetically diverse parasite populations in the study area. These findings correlated with the expectations of high malaria transmission intensity despite scaling up malaria interventions in the area thereby indicating the need for a robust malaria interventions particularly against asymptomatic carriers in order to attain elimination in the region.
Collapse
Affiliation(s)
- Abdoulie O Touray
- Department of Molecular Biology and Biotechnology, Institute of Basic Sciences, Technology and Innovation, Pan African University (PAUSTI), Nairobi, Kenya. .,International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya.
| | - Victor A Mobegi
- Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi, Kenya.
| | - Fred Wamunyokoli
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Jeremy K Herren
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
4
|
Abukari Z, Okonu R, Nyarko SB, Lo AC, Dieng CC, Salifu SP, Gyan BA, Lo E, Amoah LE. The Diversity, Multiplicity of Infection and Population Structure of P. falciparum Parasites Circulating in Asymptomatic Carriers Living in High and Low Malaria Transmission Settings of Ghana. Genes (Basel) 2019; 10:genes10060434. [PMID: 31181699 PMCID: PMC6628376 DOI: 10.3390/genes10060434] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 11/24/2022] Open
Abstract
Background: Diversity in Plasmodium falciparum poses a major threat to malaria control and elimination interventions. This study utilized 12 polymorphic microsatellite (MS) markers and the Msp2 marker to examine diversity, multiplicity of infection (MOI) as well as the population structure of parasites circulating in two sites separated by about 92 km and with varying malaria transmission intensities within the Greater Accra Region of Ghana. Methods: The diversity and MOI of P. falciparum parasites in 160 non-symptomatic volunteers living in Obom (high malaria transmission intensity) and Asutsuare (low malaria transmission intensity) aged between 8 and 60 years was determined using Msp2 genotyping and microsatellite analysis. Results: The prevalence of asymptomatic P. falciparum carriers as well as the parasite density of infections was significantly higher in Obom than in Asutsuare. Samples from Asutsuare and Obom were 100% and 65% clonal, respectively, by Msp2 genotyping but decreased to 50% and 5%, respectively, when determined by MS analysis. The genetic composition of parasites from Obom and Asutsuare were highly distinct, with parasites from Obom being more diverse than those from Asutsuare. Conclusion: Plasmodium falciparum parasites circulating in Obom are genetically more diverse and distinct from those circulating in Asutsuare. The MOI in samples from both Obom and Asutsuare increased when assessed by MS analysis relative to MSP2 genotyping. The TA40 and TA87 loci are useful markers for estimating MOI in high and low parasite prevalence settings.
Collapse
Affiliation(s)
- Zakaria Abukari
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| | - Ruth Okonu
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| | - Samuel B Nyarko
- School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Aminata C Lo
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
- Department of Parasitology, University Cheikh Anta Diop, Dakar, Senegal.
| | - Cheikh C Dieng
- Department of Biological Sciences, University of North Carolina at Charlotte, NC 28223, USA.
| | - Samson P Salifu
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Ben A Gyan
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, NC 28223, USA.
| | - Linda E Amoah
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
- West Africa Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana.
| |
Collapse
|
5
|
Zhong D, Lo E, Wang X, Yewhalaw D, Zhou G, Atieli HE, Githeko A, Hemming-Schroeder E, Lee MC, Afrane Y, Yan G. Multiplicity and molecular epidemiology of Plasmodium vivax and Plasmodium falciparum infections in East Africa. Malar J 2018; 17:185. [PMID: 29720181 PMCID: PMC5932820 DOI: 10.1186/s12936-018-2337-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/26/2018] [Indexed: 11/18/2022] Open
Abstract
Background Parasite genetic diversity and multiplicity of infection (MOI) affect clinical outcomes, response to drug treatment and naturally-acquired or vaccine-induced immunity. Traditional methods often underestimate the frequency and diversity of multiclonal infections due to technical sensitivity and specificity. Next-generation sequencing techniques provide a novel opportunity to study complexity of parasite populations and molecular epidemiology. Methods Symptomatic and asymptomatic Plasmodium vivax samples were collected from health centres/hospitals and schools, respectively, from 2011 to 2015 in Ethiopia. Similarly, both symptomatic and asymptomatic Plasmodium falciparum samples were collected, respectively, from hospitals and schools in 2005 and 2015 in Kenya. Finger-pricked blood samples were collected and dried on filter paper. Long amplicon (> 400 bp) deep sequencing of merozoite surface protein 1 (msp1) gene was conducted to determine multiplicity and molecular epidemiology of P. vivax and P. falciparum infections. The results were compared with those based on short amplicon (117 bp) deep sequencing. Results A total of 139 P. vivax and 222 P. falciparum samples were pyro-sequenced for pvmsp1 and pfmsp1, yielding a total of 21 P. vivax and 99 P. falciparum predominant haplotypes. The average MOI for P. vivax and P. falciparum were 2.16 and 2.68, respectively, which were significantly higher than that of microsatellite markers and short amplicon (117 bp) deep sequencing. Multiclonal infections were detected in 62.2% of the samples for P. vivax and 74.8% of the samples for P. falciparum. Four out of the five subjects with recurrent P. vivax malaria were found to be a relapse 44–65 days after clearance of parasites. No difference was observed in MOI among P. vivax patients of different symptoms, ages and genders. Similar patterns were also observed in P. falciparum except for one study site in Kenyan lowland areas with significantly higher MOI. Conclusions The study used a novel method to evaluate Plasmodium MOI and molecular epidemiological patterns by long amplicon ultra-deep sequencing. The complexity of infections were similar among age groups, symptoms, genders, transmission settings (spatial heterogeneity), as well as over years (pre- vs. post-scale-up interventions). This study demonstrated that long amplicon deep sequencing is a useful tool to investigate multiplicity and molecular epidemiology of Plasmodium parasite infections. Electronic supplementary material The online version of this article (10.1186/s12936-018-2337-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daibin Zhong
- Program in Public Health, University of California at Irvine, Irvine, CA, 92617, USA.
| | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Xiaoming Wang
- Program in Public Health, University of California at Irvine, Irvine, CA, 92617, USA
| | - Delenasaw Yewhalaw
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia.,Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Guofa Zhou
- Program in Public Health, University of California at Irvine, Irvine, CA, 92617, USA
| | - Harrysone E Atieli
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Andrew Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Ming-Chieh Lee
- Program in Public Health, University of California at Irvine, Irvine, CA, 92617, USA
| | - Yaw Afrane
- Department of Medical Microbiology, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, CA, 92617, USA.
| |
Collapse
|
6
|
Zhong D, Koepfli C, Cui L, Yan G. Molecular approaches to determine the multiplicity of Plasmodium infections. Malar J 2018; 17:172. [PMID: 29685152 PMCID: PMC5914063 DOI: 10.1186/s12936-018-2322-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
Multiplicity of infection (MOI), also termed complexity of infection (COI), is defined as the number of genetically distinct parasite strains co-infecting a single host, which is an important indicator of malaria epidemiology. PCR-based genotyping often underestimates MOI. Next generation sequencing technologies provide much more accurate and genome-wide characterization of polyclonal infections. However, complete haplotype characterization of multiclonal infections remains a challenge due to PCR artifacts and sequencing errors, and requires efficient computational tools. In this review, the advantages and limitations of current molecular approaches to determine multiplicity of malaria parasite infection are discussed.
Collapse
Affiliation(s)
- Daibin Zhong
- Program in Public Health, University of California, Irvine, CA, 92617, USA.
| | - Cristian Koepfli
- Program in Public Health, University of California, Irvine, CA, 92617, USA
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA, 92617, USA.
| |
Collapse
|
7
|
Tijani MK, Babalola OA, Odaibo AB, Anumudu CI, Asinobi AO, Morenikeji OA, Asuzu MC, Langer C, Reiling L, Beeson JG, Wahlgren M, Nwuba RI, Persson KEM. Acquisition, maintenance and adaptation of invasion inhibitory antibodies against Plasmodium falciparum invasion ligands involved in immune evasion. PLoS One 2017; 12:e0182187. [PMID: 28787025 PMCID: PMC5546579 DOI: 10.1371/journal.pone.0182187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 07/13/2017] [Indexed: 11/18/2022] Open
Abstract
Erythrocyte-binding antigens (EBAs) and P. falciparum reticulocyte-binding homologue proteins (PfRhs) are two important protein families that can vary in expression and utilization by P. falciparum to evade inhibitory antibodies. We evaluated antibodies at repeated time-points among individuals living in an endemic region in Nigeria over almost one year against these vaccine candidates. Antibody levels against EBA140, EBA175, EBA181, PfRh2, PfRh4, and MSP2, were measured by ELISA. We also used parasites with disrupted EBA140, EBA175 and EBA181 genes to show that all these were targets of invasion inhibitory antibodies. However, antigenic targets of inhibitory antibodies were not stable and changed substantially over time in most individuals, independent of age. Antibodies levels measured by ELISA also varied within and between individuals over time and the antibodies against EBA181, PfRh2 and MSP2 declined more rapidly in younger individuals (≤15 years) compared with older (>15). The breadth of high antibody responses over time was more influenced by age than by the frequency of infection. High antibody levels were associated with a more stable invasion inhibitory response, which could indicate that during the long process of formation of immunity, many changes not only in levels but also in functional responses are needed. This is an important finding in understanding natural immunity against malaria, which is essential for making an efficacious vaccine.
Collapse
Affiliation(s)
- Muyideen K. Tijani
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Oluwatoyin A. Babalola
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Alex B. Odaibo
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Chiaka I. Anumudu
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Adanze O. Asinobi
- Department of Paediatrics, University College Hospital, University of Ibadan, Ibadan, Nigeria
| | - Olajumoke A. Morenikeji
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Michael C. Asuzu
- Department of Preventive Medicine and Primary Care, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Christine Langer
- The Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Linda Reiling
- The Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - James G. Beeson
- The Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Roseangela I. Nwuba
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Kristina E. M. Persson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, University Hospital, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
8
|
Mohammed H, Kassa M, Assefa A, Tadesse M, Kebede A. Genetic polymorphism of Merozoite Surface Protein-2 (MSP-2) in Plasmodium falciparum isolates from Pawe District, North West Ethiopia. PLoS One 2017; 12:e0177559. [PMID: 28542247 PMCID: PMC5438166 DOI: 10.1371/journal.pone.0177559] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 04/28/2017] [Indexed: 12/13/2022] Open
Abstract
Background In malaria endemic regions, Plasmodium falciparum infection is characterized by extensive genetic diversity. Describing this diversity provides important information about the local malaria situation. This study was conducted to evaluate the extent of genetic diversity of P. falciparum in Pawe district, North West Ethiopia, using the highly polymorphic merozoite surface protein 2 gene. Methods Atotal of 92 isolates from patients with uncomplicated P. falciparum attending Pawe Health Centre were collected from September to December 2013. Genomic DNA was extracted using the Chelex method and analyzed by length polymorphism following gel electrophoresis of DNA products from nested PCR of msp2 (block 3), targeting allelic families of FC27 and 3D7/IC. Results There were twenty-two different msp2 alleles, 11 corresponding to the 3D7/ IC and 11 to the FC27 allelic family. The frequency of isolates of the msp2 3D7/IC allelic familywas higher (51%) compared to FC27 (49%). The majority of the isolates (76%) contained multiple infections andthe overall mean multiplicity of infection was 2.8 (CI 95% 2.55–3.03). The heterozygosity index was 0.66 for msp2. There was no statically significant difference in the multiplicity of infection by age or parasite density. Conclusions The results of this study show that P.falciparum polymorphismsare extensive in Northwest Ethiopia and most of the infections are composed of multiple clones.
Collapse
Affiliation(s)
- Hussein Mohammed
- Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- * E-mail:
| | - Moges Kassa
- Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Ashenafi Assefa
- Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Mekonnen Tadesse
- Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Amha Kebede
- Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| |
Collapse
|
9
|
Das S, Muleba M, Stevenson JC, Pringle JC, Norris DE. Beyond the entomological inoculation rate: characterizing multiple blood feeding behavior and Plasmodium falciparum multiplicity of infection in Anopheles mosquitoes in northern Zambia. Parasit Vectors 2017; 10:45. [PMID: 28122597 PMCID: PMC5267472 DOI: 10.1186/s13071-017-1993-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 01/19/2017] [Indexed: 11/16/2022] Open
Abstract
Background A commonly used measure of malaria transmission intensity is the entomological inoculation rate (EIR), defined as the product of the human biting rate (HBR) and sporozoite infection rate (SIR). The EIR excludes molecular parameters that may influence vector control and surveillance strategies. The purpose of this study was to investigate Anopheles multiple blood feeding behavior (MBF) and Plasmodium falciparum multiplicity of infection (MOI) within the mosquito host in Nchelenge District, northern Zambia. Mosquitoes were collected from light traps and pyrethroid spray catch in Nchelenge in the 2013 wet season. All anophelines were tested for blood meal host, P. falciparum, and MOI using PCR. Circumsporozoite (CSP) ELISA and microsatellite analysis were performed to detect parasites in the mosquito and MBF, respectively. Statistical analyses used regression models to assess MBF and MOI and exact binomial test for human sex bias. Both MBF and MOI can enhance our understanding of malaria transmission dynamics beyond what is currently understood through conventional EIR estimates alone. Results The dominant malaria vectors collected in Nchelenge were Anopheles funestus (sensu stricto) and An. gambiae (s.s.) The EIRs of An. funestus (s.s.) and An. gambiae (s.s.) were 39.6 infectious bites/person/6 months (ib/p/6mo) and 5.9 ib/p/6mo, respectively, and took multiple human blood meals at high rates, 23.2 and 25.7% respectively. There was no bias in human host sex preference in the blood meals. The SIR was further characterized for parasite genetic diversity. The overall P. falciparum MOI was 6.4 in infected vectors, exceeding previously reported average MOIs in humans in Africa. Conclusions Both Anopheles MBF rates and P. falciparum MOI in Nchelenge were among some of the highest reported in sub-Saharan Africa. The results suggest an underestimation of the EIR and large numbers of circulating parasite clones. Together, the results describe important molecular aspects of transmission excluded from the traditional EIR measurement. These elements may provide more sensitive measures with which to assess changes in transmission intensity and risk in vector and parasite surveillance programs.
Collapse
Affiliation(s)
- Smita Das
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Mbanga Muleba
- Tropical Disease Research Centre, P.O. Box 71769, Ndola, Zambia
| | - Jennifer C Stevenson
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA.,Macha Research Trust, P.O. Box 630166, Choma, Zambia
| | - Julia C Pringle
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Douglas E Norris
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
10
|
Ken-Dror G, Hastings IM. Markov chain Monte Carlo and expectation maximization approaches for estimation of haplotype frequencies for multiply infected human blood samples. Malar J 2016; 15:430. [PMID: 27557806 PMCID: PMC4997664 DOI: 10.1186/s12936-016-1473-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/02/2016] [Indexed: 11/21/2022] Open
Abstract
Background Haplotypes are important in anti-malarial drug resistance because genes encoding drug resistance may accumulate mutations at several codons in the same gene, each mutation increasing the level of drug resistance and, possibly, reducing the metabolic costs of previous mutation. Patients often have two or more haplotypes in their blood sample which may make it impossible to identify exactly which haplotypes they carry, and hence to measure the type and frequency of resistant haplotypes in the malaria population. Results This study presents two novel statistical methods expectation–maximization (EM) and Markov chain Monte Carlo (MCMC) algorithms to investigate this issue. The performance of the algorithms is evaluated on simulated datasets consisting of patient blood characterized by their multiplicity of infection (MOI) and malaria genotype. The datasets are generated using different resistance allele frequencies (RAF) at each single nucleotide polymorphisms (SNPs) and different limit of detection (LoD) of the SNPs and the MOI. The EM and the MCMC algorithm are validated and appear more accurate, faster and slightly less affected by LoD of the SNPs and the MOI compared to previous related statistical approaches. Conclusions The EM and the MCMC algorithms perform well when analysing malaria genetic data obtained from infected human blood samples. The results are robust to genotyping errors caused by LoDs and function well even in the absence of MOI data on individual patients. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1473-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gie Ken-Dror
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L5 3QA, UK.
| | - Ian M Hastings
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L5 3QA, UK
| |
Collapse
|
11
|
Cook J, Grignard L, Al-Eryani S, Al-Selwei M, Mnzava A, Al-Yarie H, Rand A, Kleinschmidt I, Drakeley C. High heterogeneity of malaria transmission and a large sub-patent and diverse reservoir of infection in Wusab As Safil district, Republic of Yemen. Malar J 2016; 15:193. [PMID: 27059182 PMCID: PMC4826523 DOI: 10.1186/s12936-016-1249-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 03/30/2016] [Indexed: 11/10/2022] Open
Abstract
Background Yemen remains the country with the highest malaria transmission within the Arabian Peninsula and a source of imported cases to neighbouring countries. Methods This study collected samples from individuals resident in a valley in Western Yemen as a baseline to examine infection prevalence for a future trial. As well as rapid diagnostic test (RDT) and microscopy, a filter paper blood spot was collected for molecular and serological analyses. Results Samples were collected from 2261 individuals from 12 clusters across a study area of approximately 100 km2. Plasmodium falciparum infection prevalence was 12.4, 11.1 and 19.6 % by RDT, microscopy and polymerase chain reaction (PCR), respectively. RDT and microscopy did not detect 45 % of infections present, suggesting many infections were low-density. Infection prevalence and seroprevalence were highly heterogeneous between clusters, with evidence of higher exposure in clusters close to the wadi. The mean multiplicity of infection (MOI) was 2.3 and high heterozygosity and allelic richness were detected. Conclusions This highly diverse parasite population suggests a high degree of transmissibility and coupled with the substantial proportion of low-density infections, may pose challenges for malaria control and elimination efforts. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1249-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jackie Cook
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK.
| | - Lynn Grignard
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Samira Al-Eryani
- Department of Medical Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen
| | - Mustafa Al-Selwei
- Malaria Control Programme, Ministry of Public Health and Population, Sana'a, Yemen
| | - Abraham Mnzava
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Hafed Al-Yarie
- Malaria Control Programme, Ministry of Public Health and Population, Sana'a, Yemen
| | - Alison Rand
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Immo Kleinschmidt
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Chris Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
12
|
Genetic Polymorphism of msp1 and msp2 in Plasmodium falciparum Isolates from Côte d'Ivoire versus Gabon. J Parasitol Res 2016; 2016:3074803. [PMID: 27110390 PMCID: PMC4823507 DOI: 10.1155/2016/3074803] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/01/2016] [Accepted: 03/07/2016] [Indexed: 11/30/2022] Open
Abstract
Introduction. The characterization of genetic profile of Plasmodium isolates from different areas could help in better strategies for malaria elimination. This study aimed to compare P. falciparum diversity in two African countries. Methods. Isolates collected from 100 and 73 falciparum malaria infections in sites of Côte d'Ivoire (West Africa) and Gabon (Central Africa), respectively, were analyzed by a nested PCR amplification of msp1 and msp2 genes. Results. The K1 allelic family was widespread in Côte d'Ivoire (64.6%) and in Gabon (56.6%). For msp2, the 3D7 alleles were more prevalent (>70% in both countries) compared to FC27 alleles. In Côte d'Ivoire, the frequencies of multiple infections with msp1 (45.1%) and msp2 (40.3%) were higher than those found for isolates from Gabon, that is, 30.2% with msp1 and 31.4% with msp2. The overall complexity of infection was 1.66 (SD = 0.79) in Côte d'Ivoire and 1.58 (SD = 0.83) in Gabon. It decreased with age in Côte d'Ivoire in contrast to Gabon. Conclusion. Differences observed in some allelic families and in complexity profile may suggest an impact of epidemiological facies as well as immunological response on genetic variability of P. falciparum.
Collapse
|
13
|
Pacheco MA, Lopez-Perez M, Vallejo AF, Herrera S, Arévalo-Herrera M, Escalante AA. Multiplicity of Infection and Disease Severity in Plasmodium vivax. PLoS Negl Trop Dis 2016; 10:e0004355. [PMID: 26751811 PMCID: PMC4709143 DOI: 10.1371/journal.pntd.0004355] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 12/11/2015] [Indexed: 11/19/2022] Open
Abstract
Background Multiplicity of infection (MOI) refers to the average number of distinct parasite genotypes concurrently infecting a patient. Although several studies have reported on MOI and the frequency of multiclonal infections in Plasmodium falciparum, there is limited data on Plasmodium vivax. Here, MOI and the frequency of multiclonal infections were studied in areas from South America where P. vivax and P. falciparum can be compared. Methodology/Principal Findings As part of a passive surveillance study, 1,328 positive malaria patients were recruited between 2011 and 2013 in low transmission areas from Colombia. Of those, there were only 38 P. vivax and 24 P. falciparum clinically complicated cases scattered throughout the time of the study. Samples from uncomplicated cases were matched in time and location with the complicated cases in order to compare the circulating genotypes for these two categories. A total of 92 P. vivax and 57 P. falciparum uncomplicated cases were randomly subsampled. All samples were genotyped by using neutral microsatellites. Plasmodium vivax showed more multiclonal infections (47.7%) than P. falciparum (14.8%). Population genetics and haplotype network analyses did not detect differences in the circulating genotypes between complicated and uncomplicated cases in each parasite. However, a Fisher exact test yielded a significant association between having multiclonal P. vivax infections and complicated malaria. No association was found for P. falciparum infections. Conclusion The association between multiclonal infections and disease severity in P. vivax is consistent with previous observations made in rodent malaria. The contrasting pattern between P. vivax and P. falciparum could be explained, at least in part, by the fact that P. vivax infections have lineages that were more distantly related among them than in the case of the P. falciparum multiclonal infections. Future research should address the possible role that acquired immunity and exposure may have on multiclonal infections and their association with disease severity. Previous studies on rodent malarias and mathematical models have postulated a link between multiclonal infections and disease severity. This association has been tested in Plasmodium falciparum mostly in Africa with limited information on P. vivax. Furthermore, there is a paucity of information from areas with low transmission. Here, we used samples available from a passive surveillance carried out in Colombia, South America. We found an association between multiclonal infections and disease severity in P. vivax but not in P. falciparum. Although the number of complicated malaria cases is low, the contrasting pattern between these two species emphasizes their epidemiological differences. We discuss how this pattern could be the result of a higher divergence among the P. vivax lineages co-infecting a patient. We hypothesize that low levels of acquired immunity may play a role in the association between multiclonal infections and disease severity.
Collapse
Affiliation(s)
- M. Andreína Pacheco
- Institute for Genomics and Evolutionary Medicine (igem), Temple University, Philadelphia, Pennsylvania, United States of America
| | - Mary Lopez-Perez
- Caucaseco Scientific Research Center and Malaria Vaccine and Drug Development Center, Cali, Colombia
| | - Andrés F. Vallejo
- Caucaseco Scientific Research Center and Malaria Vaccine and Drug Development Center, Cali, Colombia
| | - Sócrates Herrera
- Caucaseco Scientific Research Center and Malaria Vaccine and Drug Development Center, Cali, Colombia
| | - Myriam Arévalo-Herrera
- Caucaseco Scientific Research Center and Malaria Vaccine and Drug Development Center, Cali, Colombia
- Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Ananias A. Escalante
- Institute for Genomics and Evolutionary Medicine (igem), Temple University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|