1
|
Sheppard EC, Martin CA, Armstrong C, González-Quevedo C, Illera JC, Suh A, Spurgin LG, Richardson DS. Genotype-environment associations reveal genes potentially linked to avian malaria infection in populations of an endemic island bird. Mol Ecol 2024; 33:e17329. [PMID: 38533805 DOI: 10.1111/mec.17329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 01/29/2024] [Accepted: 03/01/2024] [Indexed: 03/28/2024]
Abstract
Patterns of pathogen prevalence are, at least partially, the result of coevolutionary host-pathogen interactions. Thus, exploring the distribution of host genetic variation in relation to infection by a pathogen within and across populations can provide important insights into mechanisms of host defence and adaptation. Here, we use a landscape genomics approach (Bayenv) in conjunction with genome-wide data (ddRADseq) to test for associations between avian malaria (Plasmodium) prevalence and host genetic variation across 13 populations of the island endemic Berthelot's pipit (Anthus berthelotii). Considerable and consistent spatial heterogeneity in malaria prevalence was observed among populations over a period of 15 years. The prevalence of malaria infection was also strongly positively correlated with pox (Avipoxvirus) prevalence. Multiple host loci showed significant associations with malaria prevalence after controlling for genome-wide neutral genetic structure. These sites were located near to or within genes linked to metabolism, stress response, transcriptional regulation, complement activity and the inflammatory response, many previously implicated in vertebrate responses to malarial infection. Our findings identify diverse genes - not just limited to the immune system - that may be involved in host protection against malaria and suggest that spatially variable pathogen pressure may be an important evolutionary driver of genetic divergence among wild animal populations, such as Berthelot's pipit. Furthermore, our data indicate that spatio-temporal variation in multiple different pathogens (e.g. malaria and pox in this case) may have to be studied together to develop a more holistic understanding of host pathogen-mediated evolution.
Collapse
Affiliation(s)
| | - Claudia A Martin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium
| | - Claire Armstrong
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | - Catalina González-Quevedo
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Grupo Ecología y Evolución de Vertebrados, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Juan Carlos Illera
- Biodiversity Research Institute (CSIC-Oviedo, University-Principality of Asturias), University of Oviedo, Mieres, Asturias, Spain
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | | |
Collapse
|
2
|
Assessment of Associations between Malaria Parasites and Avian Hosts-A Combination of Classic System and Modern Molecular Approach. BIOLOGY 2021; 10:biology10070636. [PMID: 34356491 PMCID: PMC8301060 DOI: 10.3390/biology10070636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/20/2021] [Accepted: 07/01/2021] [Indexed: 11/28/2022]
Abstract
Simple Summary Throughout history, frequent outbreaks of diseases in humans have occurred following transmission from animals. While some diseases can jump between birds and mammals, others are stuck to closely related species. Understanding the mechanisms of host–parasite associations will enable us to predict the outbreaks of diseases and will therefore be important to society and ecological health. For decades, scientists have attempted to reveal how host–parasite associations are formed and persist. The key is to assess the ability of the parasite to infect and reproduce within the host without killing the host. Related studies have faced numerous challenges, but technical advances are providing solutions and are gradually broadening our understanding. In this review, I use bird malaria and related blood parasites as a model system and summarize the important advances in techniques and perspectives and how they provide new approaches for understanding the evolution of host–parasite associations to further predict disease outbreaks. Abstract Avian malaria and related haemosporidian parasites are responsible for fitness loss and mortality in susceptible bird species. This group of globally distributed parasites has long been used as a classical system for investigating host–parasite associations. The association between a parasite and its hosts can be assessed by the prevalence in the host population and infection intensity in a host individual, which, respectively, reflect the ability of the parasite to infect the host and reproduce within the host. However, the latter has long been poorly investigated due to numerous challenges, such as lack of general molecular markers and limited sensitivity of traditional methods, especially when analysing naturally infected birds. The recent development of genetic databases, together with novel molecular methodologies, has shed light on this long-standing problem. Real-time quantitative PCR has enabled more accurate quantification of avian haemosporidian parasites, and digital droplet PCR further improved experimental sensitivity and repeatability of quantification. In recent decades, parallel studies have been carried out all over the world, providing great opportunities for exploring the adaptation of haemosporidian parasites to different hosts and the variations across time and space, and further investigating the coevolutionary history between parasites and their hosts. I hereby review the most important milestones in diagnosis techniques of avian haemosporidian parasites and illustrate how they provide new insights for understanding host–parasite associations.
Collapse
|
3
|
Pedron CN, Silva AF, Torres MDT, Oliveira CSD, Andrade GP, Cerchiaro G, Pinhal MAS, de la Fuente-Nunez C, Oliveira Junior VX. Net charge tuning modulates the antiplasmodial and anticancer properties of peptides derived from scorpion venom. J Pept Sci 2021; 27:e3296. [PMID: 33442881 DOI: 10.1002/psc.3296] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 11/06/2022]
Abstract
VmCT1, a linear helical antimicrobial peptide isolated from the venom of the scorpion Vaejovis mexicanus, displays broad spectrum antimicrobial activity against bacteria, fungi, and protozoa. Analogs derived from this peptide containing single Arg-substitutions have been shown to increase antimicrobial and antiparasitic activities against Trypanossoma cruzi. Here, we tested these analogs against malaria, an infectious disease caused by Plasmodium protozoa, and assessed their antitumoral properties. Specifically, we tested VmCT1 synthetic variants [Arg]3 -VmCT1-NH2 , [Arg]7 -VmCT1-NH2 , and [Arg]11 -VmCT1-NH2 , against Plasmodium gallinaceum sporozoites and MCF-7 mammary cancer cells. Our screen identified peptides [Arg]3 -VmCT1-NH2 and [Arg]7 -VmCT1-NH2 as potent antiplasmodial agents (IC50 of 0.57 and 0.51 μmol L-1 , respectively), whereas [Arg]11 -VmCT1-NH2 did not show activity against P. gallinaceum sporozoites. Interestingly, all peptides presented activity against MCF-7 and displayed lower cytotoxicity toward healthy cells. We demonstrate that increasing the net positive charge of VmCT1, through arginine substitutions, modulates the biological properties of this peptide family yielding novel antiplasmodial and antitumoral molecules.
Collapse
Affiliation(s)
- Cibele Nicolaski Pedron
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, 09210580, Brazil.,Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, 04044020, Brazil
| | - Adriana Farias Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, 09210580, Brazil.,Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, 04044020, Brazil
| | - Marcelo Der Torossian Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19102, USA.,Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19102, USA.,Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, 19102, USA
| | | | - Gislaine Patricia Andrade
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, 09210580, Brazil
| | - Giselle Cerchiaro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, 09210580, Brazil
| | | | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19102, USA.,Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19102, USA.,Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, 19102, USA
| | - Vani Xavier Oliveira Junior
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, 09210580, Brazil.,Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, 04044020, Brazil
| |
Collapse
|
4
|
Ibrahim RM, Al-Rubaie HMA. Molecular Detection of Avian Malaria (Plasmodium gallinaceum) in Local Domesticated Breed Chickens (Gallus gallus domesticus) in Baghdad. THE IRAQI JOURNAL OF VETERINARY MEDICINE 2020. [DOI: 10.30539/ijvm.v44i(e0).1025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This study was conducted to investigate the prevalence of avian malaria (Plasmodium gallinaceum) in the local domesticated breed chickens (Gallus gallus domesticus) that were purchased from the local markets in Baghdad city, using 100 blood samples which were collected from the wing vein, and kept in EDTA-K2 tubes for conventional PCR analysis during the period extended from 1 /10 / 2018 till 31/ 3 / 2019. Total infection rate was 18% (18/100), which were divided into males 20.00% and in females 16.00%. The eight isolates were recorded in the GenBank under accession numbers ID: MN082405.1, MN082406.1, MN082407.1, MN082408.1, MN082409.1, MN082410.1, MN082411.1, and MN082412.1 with identity 99.20 - 99.87% and with other isolates (United Kingdom and USA) 99.34 - 99.88 %. In conclusion, Plasmodium gallinaceum may have a moderate spread in local domesticated breed chicken at Baghdad.
Collapse
|
5
|
Evolutionary ecology, taxonomy, and systematics of avian malaria and related parasites. Acta Trop 2020; 204:105364. [PMID: 32007445 DOI: 10.1016/j.actatropica.2020.105364] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/25/2022]
Abstract
Haemosporidian parasites of the genera Plasmodium, Leucocytozoon, and Haemoproteus are one of the most prevalent and widely studied groups of parasites infecting birds. Plasmodium is the most well-known haemosporidian as the avian parasite Plasmodium relictum was the original transmission model for human malaria and was also responsible for catastrophic effects on native avifauna when introduced to Hawaii. The past two decades have seen a dramatic increase in research on avian haemosporidian parasites as a model system to understand evolutionary and ecological parasite-host relationships. Despite haemosporidians being one the best studied groups of avian parasites their specialization among avian hosts and variation in prevalence amongst regions and host taxa are not fully understood. In this review we focus on describing the current phylogenetic and morphological diversity of haemosporidian parasites, their specificity among avian and vector hosts, and identifying the determinants of haemosporidian prevalence among avian species. We also discuss how these parasites might spread across regions due to global climate change and the importance of avian migratory behavior in parasite dispersion and subsequent diversification.
Collapse
|
6
|
Weinberg J, Field JT, Ilgūnas M, Bukauskaitė D, Iezhova T, Valkiūnas G, Sehgal RNM. De novo transcriptome assembly and preliminary analyses of two avian malaria parasites, Plasmodium delichoni and Plasmodium homocircumflexum. Genomics 2019; 111:1815-1823. [PMID: 30553810 PMCID: PMC6565518 DOI: 10.1016/j.ygeno.2018.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/25/2018] [Accepted: 12/06/2018] [Indexed: 11/15/2022]
Abstract
Parasites of the genus Plasmodium infect a wide array of hosts, causing malaria in all major groups of terrestrial vertebrates including primates, reptiles, and birds. Molecular mechanisms explaining why some Plasmodium species are virulent, while other closely related malaria pathogens are relatively benign in the same hosts, remain unclear. Here, we present the RNA sequencing and subsequent transcriptome assembly of two avian Plasmodium parasites which can eventually be used to better understand the genetic mechanisms underlying Plasmodium species pathogenicity in an avian host. Plasmodium homocircumflexum, a cryptic, pathogenic species that often causes mortality and Plasmodium delichoni, a newly described, relatively benign malaria parasite that does not kill its hosts, were used to experimentally infect two Eurasian siskins (Carduelis spinus). RNA extractions were performed and RNA sequencing was completed using high throughput Illumina sequencing. Using established bioinformatics pipelines, the sequencing data from both species were used to generate transcriptomes using published Plasmodium species genomes as a scaffold. The finalized transcriptome of P. homocircumflexum contained 21,612 total contigs while that of P. delichoni contained 12,048 contigs. We were able to identify many genes implicated in erythrocyte invasion actively expressed in both P. homocircumflexum and P. delichoni, including the well described vaccine candidates Apical Membrane Antigen-1 (AMA-1) and Merozoite Surface Protein 1 (MSP1). This work acts as a stepping stone to increase available data on avian Plasmodium parasites, thus enabling future research into the evolution of pathogenicity in malaria.
Collapse
Affiliation(s)
- Joshua Weinberg
- Dept. of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA 94132, USA.
| | - Jasper Toscani Field
- Dept. of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA 94132, USA
| | - Mikas Ilgūnas
- Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | | | - Tatjana Iezhova
- Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | | | - Ravinder N M Sehgal
- Dept. of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA 94132, USA
| |
Collapse
|
7
|
Armstrong C, Davies RG, González‐Quevedo C, Dunne M, Spurgin LG, Richardson DS. Adaptive landscape genetics and malaria across divergent island bird populations. Ecol Evol 2019; 9:12482-12502. [PMID: 31788192 PMCID: PMC6875583 DOI: 10.1002/ece3.5700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 12/31/2022] Open
Abstract
Environmental conditions play a major role in shaping the spatial distributions of pathogens, which in turn can drive local adaptation and divergence in host genetic diversity. Haemosporidians, such as Plasmodium (malaria), are a strong selective force, impacting survival and fitness of hosts, with geographic distributions largely determined by habitat suitability for their insect vectors. Here, we have tested whether patterns of fine-scale local adaptation to malaria are replicated across discrete, ecologically differing island populations of Berthelot's pipits Anthus berthelotii. We sequenced TLR4, an innate immunity gene that is potentially under positive selection in Berthelot's pipits, and two SNPs previously identified as being associated with malaria infection in a genome-wide association study (GWAS) in Berthelot's pipits in the Canary Islands. We determined the environmental predictors of malaria infection, using these to estimate variation in malaria risk on Porto Santo, and found some congruence with previously identified environmental risk factors on Tenerife. We also found a negative association between malaria infection and a TLR4 variant in Tenerife. In contrast, one of the GWAS SNPs showed an association with malaria risk in Porto Santo, but in the opposite direction to that found in the Canary Islands GWAS. Together, these findings suggest that disease-driven local adaptation may be an important factor in shaping variation among island populations.
Collapse
Affiliation(s)
| | | | - Catalina González‐Quevedo
- School of Biological SciencesUniversity of East AngliaNorwichUK
- Grupo Ecología y Evolución de VertebradosInstituto de BiologíaFacultad de Ciencias Exactas y NaturalesUniversidad de AntioquiaMedellínColombia
| | - Molly Dunne
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | | | | |
Collapse
|
8
|
Humphries MB, Stacy MT, Ricklefs RE. Population structure of avian malaria parasites. Ecol Evol 2019; 9:7741-7751. [PMID: 31346436 PMCID: PMC6635940 DOI: 10.1002/ece3.5356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 12/17/2022] Open
Abstract
The geographic distribution of genetic diversity in malaria parasite populations (Apicomplexa: Haemosporida) presumably influences local patterns of virulence and the evolution of host-resistance, but little is known about population genetic structure in these parasites. We assess the distribution of genetic diversity in the partial Domain I of apical membrane antigen 1 (AMA1) in three mtDNA-defined lineages of avian Plasmodium to determine spatial population structure and host-parasite genetic relationships. We find that one parasite lineage is genetically differentiated in association with a single host genus and among some locations, but not with respect to other hosts. Two other parasite lineages are undifferentiated with respect to host species but exhibit geographic differentiation that is inconsistent with shared geographic barriers or with isolation-by-distance. Additional differentiation within two other lineages is unassociated with host species or location; in one case, we tentatively interpret this differentiation as the result of mitochondrial introgression from one of the lineages into a second lineage. More sampling of nuclear genetic diversity within populations of avian Plasmodium is needed to rule out coinfection as a possible confounding factor. If coinfections are not responsible for these findings, further assessment is needed to determine the frequency of mitonuclear discordance and its implications for defining parasite lineages based on mitochondrial genetic variation. OPEN RESEARCH BADGES This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at Genbank https://www.ncbi.nlm.nih.gov/genbank/, accession numbers MK965548-MK965653 and MK929797-MK930264.
Collapse
Affiliation(s)
| | - Matthew T. Stacy
- Department of BiologyUniversity of Missouri–Saint LouisSt. LouisMissouri
| | - Robert E. Ricklefs
- Department of BiologyUniversity of Missouri–Saint LouisSt. LouisMissouri
| |
Collapse
|
9
|
Videvall E. Genomic Advances in Avian Malaria Research. Trends Parasitol 2019; 35:254-266. [PMID: 30642725 DOI: 10.1016/j.pt.2018.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/24/2018] [Accepted: 12/25/2018] [Indexed: 12/14/2022]
Abstract
Haemosporidian parasites causing malaria-like diseases in birds are globally distributed and have been associated with reduced host fitness and mortality in susceptible bird species. This group of parasites has not only enabled a greater understanding of host specificity, virulence, and parasite dispersal, but has also been crucial in restructuring the evolutionary history of apicomplexans. Despite their importance, genomic resources of avian haemosporidians have proved difficult to obtain, and they have, as a result, been lagging behind the congeneric Plasmodium species infecting mammals. In this review, I discuss recent genomic advances in the field of avian malaria research, and outline outstanding questions that will become possible to investigate with the continued successful efforts to generate avian haemosporidian genomic data.
Collapse
Affiliation(s)
- Elin Videvall
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Washington, DC, USA.
| |
Collapse
|
10
|
Toscani Field J, Weinberg J, Bensch S, Matta NE, Valkiūnas G, Sehgal RNM. Delineation of the Genera Haemoproteus and Plasmodium Using RNA-Seq and Multi-gene Phylogenetics. J Mol Evol 2018; 86:646-654. [PMID: 30426144 DOI: 10.1007/s00239-018-9875-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 11/01/2018] [Indexed: 01/24/2023]
Abstract
Members of the order Haemosporida are protist parasites that infect mammals, reptiles and birds. This group includes the causal agents of malaria, Plasmodium parasites, the genera Leucocytozoon and Fallisia, as well as the species rich genus Haemoproteus with its two subgenera Haemoproteus and Parahaemoproteus. Some species of Haemoproteus cause severe disease in avian hosts, and these parasites display high levels of diversity worldwide. This diversity emphasizes the need for accurate evolutionary information. Most molecular studies of wildlife haemosporidians use a bar coding approach by sequencing a fragment of the mitochondrial cytochrome b gene. This method is efficient at differentiating parasite lineages but insufficient for accurate phylogenetic inferences in highly diverse taxa such as haemosporidians. Recent studies have utilized multiple mitochondrial genes (cyt b, cox1 and cox3), sometimes combined with a few apicoplast and nuclear genes. These studies have been highly successful with one notable exception: the evolutionary relationships of the genus Haemoproteus remain unresolved. Here we describe the transcriptome of Haemoproteus columbae and investigate its phylogenetic position recovered from a multi-gene dataset (600 genes). This genomic approach restricts the taxon sampling to 18 species of apicomplexan parasites. We employed Bayesian inference and maximum likelihood methods of phylogenetic analyses and found H. columbae and a representative from the subgenus Parahaemoproteus to be sister taxa. This result strengthens the hypothesis of genus Haemoproteus being monophyletic; however, resolving this question will require sequences of orthologs from, in particular, representatives of Leucocytozoon species.
Collapse
Affiliation(s)
- Jasper Toscani Field
- Department of Biology, San Francisco State University, 1700 Holloway Ave, San Francisco, CA, 94132, USA.
| | - Josh Weinberg
- Department of Biology, San Francisco State University, 1700 Holloway Ave, San Francisco, CA, 94132, USA
| | - Staffan Bensch
- Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden
| | - Nubia E Matta
- Sede Bogotá, Facultad de Ciencias, Departamento de Biología, Grupo de Investigación Caracterización genética e inmunología, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá, 111321, Colombia
| | | | - Ravinder N M Sehgal
- Department of Biology, San Francisco State University, 1700 Holloway Ave, San Francisco, CA, 94132, USA
| |
Collapse
|
11
|
Sivakumar T, Tuvshintulga B, Zhyldyz A, Kothalawala H, Yapa PR, Kanagaratnam R, Vimalakumar SC, Abeysekera TS, Weerasingha AS, Yamagishi J, Igarashi I, Silva SSP, Yokoyama N. Genetic Analysis of Babesia Isolates from Cattle with Clinical Babesiosis in Sri Lanka. J Clin Microbiol 2018; 56:e00895-18. [PMID: 30158190 PMCID: PMC6204690 DOI: 10.1128/jcm.00895-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/18/2018] [Indexed: 11/20/2022] Open
Abstract
Bovine babesiosis is a serious threat to the cattle industry. We prepared blood DNA samples from 13 cattle with clinical babesiosis from the Badulla (n = 8), Jaffna (n = 3), and Kilinochchi (n = 2) districts in Sri Lanka. These DNA samples tested positive in PCR assays specific for Babesiabovis (n = 9), Babesia bigemina (n = 9), and Babesiaovata (n = 1). Twelve cattle were positive for B. bovis and/or B. bigemina One cow was negative for the tested Babesia species but was positive for Babesia on microscopic examination; the phylogenetic positions of 18S rRNA and cytochrome oxidase subunit III gene sequences suggested that the cow was infected with Babesia sp. Mymensingh, which was recently reported from a healthy cow in Bangladesh. We then developed a novel Babesia sp. Mymensingh-specific PCR assay and obtained positive results for one other sample. Analysis of gene sequences from the cow with positive B. ovata-specific PCR results demonstrated that the animal was infected not with B. ovata but with Babesia sp. Hue-1, which was recently reported from asymptomatic cattle in Vietnam. The virulence of Babesia sp. Hue-1 is unclear, as the cow was coinfected with B. bovis and B. bigemina However, Babesia sp. Mymensingh probably causes severe clinical babesiosis, as it was the sole Babesia species detected in a clinical case. The present study revealed the presence of two bovine Babesia species not previously reported in Sri Lanka, plus the first case of severe bovine babesiosis caused by a Babesia species other than B. bovis, B. bigemina, and Babesiadivergens.
Collapse
Affiliation(s)
- Thillaiampalam Sivakumar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
- Veterinary Research Institute, Peradeniya, Sri Lanka
| | - Bumduuren Tuvshintulga
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Atambekova Zhyldyz
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | | | | | | | | | | | | | - Junya Yamagishi
- Division of Collaboration and Education, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido, Japan
- Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | | | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| |
Collapse
|
12
|
The success of sequence capture in relation to phylogenetic distance from a reference genome: a case study of avian haemosporidian parasites. Int J Parasitol 2018; 48:947-954. [PMID: 30107149 DOI: 10.1016/j.ijpara.2018.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/18/2018] [Accepted: 05/25/2018] [Indexed: 11/20/2022]
Abstract
Genomic sequencing of avian haemosporidian parasites (Haemosporida) has been challenging due to excessive contamination from host DNA. In this study, we developed a cost-effective protocol to obtain parasite sequences from naturally infected birds, based on targeted sequence capture and next generation sequencing. With the genomic data of Haemoproteus tartakovskyi as a reference, we successfully sequenced up to 1000 genes from each of the 15 selected samples belonging to nine different cytochrome b lineages, eight of which belong to Haemoproteus and one to Plasmodium. The targeted sequences were enriched to ∼104-fold, and mixed infections were identified as well as the proportions of each mixed lineage. We found that the total number of reads and the proportions of exons sequenced decreased when the parasite lineage became more divergent from the reference genome. For each of the samples, the recovery of sequences from different exons varied with the function and GC content of the exon. From the obtained sequences, we detected within-lineage variation in both mitochondrial and nuclear genes, which may be a result of local adaptation to different host species and environmental conditions. This targeted sequence capture protocol can be applied to a broader range of species and will open a new door for further studies on disease diagnostics and comparative analysis of haemosporidians evolution.
Collapse
|
13
|
Böhme U, Otto TD, Cotton JA, Steinbiss S, Sanders M, Oyola SO, Nicot A, Gandon S, Patra KP, Herd C, Bushell E, Modrzynska KK, Billker O, Vinetz JM, Rivero A, Newbold CI, Berriman M. Complete avian malaria parasite genomes reveal features associated with lineage-specific evolution in birds and mammals. Genome Res 2018; 28:547-560. [PMID: 29500236 PMCID: PMC5880244 DOI: 10.1101/gr.218123.116] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/28/2018] [Indexed: 01/08/2023]
Abstract
Avian malaria parasites are prevalent around the world and infect a wide diversity of bird species. Here, we report the sequencing and analysis of high-quality draft genome sequences for two avian malaria species, Plasmodium relictum and Plasmodium gallinaceum We identify 50 genes that are specific to avian malaria, located in an otherwise conserved core of the genome that shares gene synteny with all other sequenced malaria genomes. Phylogenetic analysis suggests that the avian malaria species form an outgroup to the mammalian Plasmodium species, and using amino acid divergence between species, we estimate the avian- and mammalian-infective lineages diverged in the order of 10 million years ago. Consistent with their phylogenetic position, we identify orthologs of genes that had previously appeared to be restricted to the clades of parasites containing Plasmodium falciparum and Plasmodium vivax, the species with the greatest impact on human health. From these orthologs, we explore differential diversifying selection across the genus and show that the avian lineage is remarkable in the extent to which invasion-related genes are evolving. The subtelomeres of the P. relictum and P. gallinaceum genomes contain several novel gene families, including an expanded surf multigene family. We also identify an expansion of reticulocyte binding protein homologs in P. relictum, and within these proteins, we detect distinct regions that are specific to nonhuman primate, humans, rodent, and avian hosts. For the first time in the Plasmodium lineage, we find evidence of transposable elements, including several hundred fragments of LTR-retrotransposons in both species and an apparently complete LTR-retrotransposon in the genome of P. gallinaceum.
Collapse
Affiliation(s)
- Ulrike Böhme
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Thomas D Otto
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - James A Cotton
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Sascha Steinbiss
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Mandy Sanders
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Samuel O Oyola
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
- International Livestock Research Institute, Nairobi 00100, Kenya
| | - Antoine Nicot
- CEFE UMR 5175, CNRS-Université de Montpellier-Université Paul-Valéry Montpellier-EPHE, 34293 Montpellier Cedex 5, France
| | - Sylvain Gandon
- CEFE UMR 5175, CNRS-Université de Montpellier-Université Paul-Valéry Montpellier-EPHE, 34293 Montpellier Cedex 5, France
| | - Kailash P Patra
- Department of Medicine, Division of Infectious Diseases, University of California San Diego, School of Medicine, La Jolla, California 92093, USA
| | - Colin Herd
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Ellen Bushell
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Katarzyna K Modrzynska
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Oliver Billker
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Joseph M Vinetz
- Department of Medicine, Division of Infectious Diseases, University of California San Diego, School of Medicine, La Jolla, California 92093, USA
| | - Ana Rivero
- MIVEGEC (CNRS UMR 5290), 34394 Montpellier Cedex 5, France
| | - Chris I Newbold
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| |
Collapse
|
14
|
Molecular characterization and distribution of Plasmodium matutinum, a common avian malaria parasite. Parasitology 2017; 144:1726-1735. [PMID: 28931453 DOI: 10.1017/s0031182017000737] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Species of Plasmodium (Plasmodiidae, Haemosporida) are widespread and cause malaria, which can be severe in avian hosts. Molecular markers are essential to detect and identify parasites, but still absent for many avian malaria and related haemosporidian species. Here, we provide first molecular characterization of Plasmodium matutinum, a common agent of avian malaria. This parasite was isolated from a naturally infected thrush nightingale Luscinia luscinia (Muscicapidae). Fragments of mitochondrial, apicoplast and nuclear genomes were obtained. Domestic canaries Serinus canaria were susceptible after inoculation of infected blood, and the long-lasting light parasitemia developed in two exposed birds. Clinical signs of illness were not reported. Illustrations of blood stages of P. matutinum (pLINN1) are given, and phylogenetic analysis identified the closely related avian Plasmodium species. The phylogeny based on partial cytochrome b (cyt b) sequences suggests that this parasite is most closely related to Plasmodium tejerai (cyt b lineage pSPMAG01), a common malaria parasite of American birds. Both these parasites belong to subgenus Haemamoeba, and their blood stages are similar morphologically, particularly due to marked vacuolization of the cytoplasm in growing erythrocytic meronts. Molecular data show that transmission of P. matutinum (pLINN1) occurs broadly in the Holarctic, and the parasite likely is of cosmopolitan distribution. Passeriform birds and Culex mosquitoes are common hosts. This study provides first molecular markers for detection of P. matutinum.
Collapse
|
15
|
Palinauskas V, Bernotienė R, Žiegytė R, Bensch S, Valkiūnas G. Experimental evidence for hybridization of closely related lineages in Plasmodium relictum. Mol Biochem Parasitol 2017; 217:1-6. [PMID: 28803842 DOI: 10.1016/j.molbiopara.2017.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 05/02/2017] [Accepted: 08/05/2017] [Indexed: 02/02/2023]
Abstract
Over 50 avian Plasmodium species have been described. However, PCR-based information shows much broader diversity of genetic lineages in these parasites. This discrepancy indicates insufficient knowledge about taxonomic diversity and boundaries of a single species in avian Plasmodium species. In recent taxonomy, most of genetically closely related lineages that share the same morphology and development patterns are attributed to the same biological species, but there is no information if these lineages are able to cross. This information is crucial to understand if these lineages form single or multiple evolutionary units. Due to presence of sexual process and sporogonic development of Plasmodium parasites in mosquitoes, self and cross-fertilization can occur and be identified during the oocyst stage. We initiated in vivo hybridization experiments of two widespread Plasmodium relictum lineages (pSGS1 and pGRW11) in experimentally infected Culex pipiens pipiens form molestus mosquitoes. To study putative hybrid oocysts, we used a laser microdissection technique together with PCR-based analyses of mitochondrial and nuclear genes. We demonstrate that both pSGS1 and pGRW11 lineages develop in infected mosquitoes in parallel, but also form hybrid oocysts of these two lineages. Our results are in accord to a recent global phylogeographic study of P. relictum that suggested that cross-fertilization between pSGS1 and pGRW11 might occur. This information helps to understand population structure, gene flow and the evolutionary process of haemosporidian parasites.
Collapse
Affiliation(s)
| | - Rasa Bernotienė
- Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Rita Žiegytė
- Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Staffan Bensch
- Department of Biology, Lund University, Ecology Building, SE-223 62 Lund, Sweden
| | | |
Collapse
|
16
|
Videvall E, Cornwallis CK, Ahrén D, Palinauskas V, Valkiūnas G, Hellgren O. The transcriptome of the avian malaria parasite Plasmodium ashfordi
displays host-specific gene expression. Mol Ecol 2017; 26:2939-2958. [DOI: 10.1111/mec.14085] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/16/2017] [Accepted: 02/17/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Elin Videvall
- Department of Biology; Lund University; Sölvegatan 37 SE-22362 Lund Sweden
| | | | - Dag Ahrén
- Department of Biology; Lund University; Sölvegatan 37 SE-22362 Lund Sweden
- National Bioinformatics Infrastructure Sweden (NBIS); Lund University; Sölvegatan 37 SE-22362 Lund Sweden
| | - Vaidas Palinauskas
- Institute of Ecology; Nature Research Centre; Akademijos 2 LT-08412 Vilnius Lithuania
| | - Gediminas Valkiūnas
- Institute of Ecology; Nature Research Centre; Akademijos 2 LT-08412 Vilnius Lithuania
| | - Olof Hellgren
- Department of Biology; Lund University; Sölvegatan 37 SE-22362 Lund Sweden
| |
Collapse
|
17
|
Molecular characterisation of three avian haemoproteids (Haemosporida, Haemoproteidae), with the description of Haemoproteus (Parahaemoproteus) palloris n. sp. Syst Parasitol 2016; 93:431-49. [DOI: 10.1007/s11230-016-9638-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/19/2016] [Indexed: 01/21/2023]
|
18
|
Freund D, Wheeler SS, Townsend AK, Boyce WM, Ernest HB, Cicero C, Sehgal RNM. Genetic sequence data reveals widespread sharing of Leucocytozoon lineages in corvids. Parasitol Res 2016; 115:3557-65. [PMID: 27189064 DOI: 10.1007/s00436-016-5121-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/05/2016] [Indexed: 11/26/2022]
Abstract
Leucocytozoon, a widespread hemosporidian blood parasite that infects a broad group of avian families, has been studied in corvids (family: Corvidae) for over a century. Current taxonomic classification indicates that Leucocytozoon sakharoffi infects crows and related Corvus spp., while Leucocytozoon berestneffi infects magpies (Pica spp.) and blue jays (Cyanocitta sp.). This intrafamily host specificity was based on the experimental transmissibility of the parasites, as well as slight differences in their morphology and life cycle development. Genetic sequence data from Leucocytozoon spp. infecting corvids is scarce, and until the present study, sequence data has not been analyzed to confirm the current taxonomic distinctions. Here, we predict the phylogenetic relationships of Leucocytozoon cytochrome b lineages recovered from infected American Crows (Corvus brachyrhynchos), yellow-billed magpies (Pica nuttalli), and Steller's jays (Cyanocitta stelleri) to explore the host specificity pattern of L. sakharoffi and L. berestneffi. Phylogenetic reconstruction revealed a single large clade containing nearly every lineage recovered from the three host species, while showing no evidence of the expected distinction between L. sakharoffi and L. berestneffi. In addition, five of the detected lineages were recovered from both crows and magpies. This absence of the previously described host specificity in corvid Leucocytozoon spp. suggests that L. sakharoffi and L. berestneffi be reexamined from a taxonomic perspective.
Collapse
Affiliation(s)
- Dave Freund
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA, 94132, USA.
| | - Sarah S Wheeler
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Andrea K Townsend
- Department of Biology, Hamilton College, 198 College Hill Rd., Clinton, NY, 13323, USA
| | - Walter M Boyce
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Holly B Ernest
- Department of Veterinary Sciences, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Carla Cicero
- Museum of Vertebrate Zoology, University of California, 3101 Valley Life Sciences Building, Berkeley, CA, 94720, USA
| | - Ravinder N M Sehgal
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA, 94132, USA
| |
Collapse
|
19
|
Sehgal RN. Manifold habitat effects on the prevalence and diversity of avian blood parasites. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2015; 4:421-30. [PMID: 26835250 PMCID: PMC4699977 DOI: 10.1016/j.ijppaw.2015.09.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/30/2015] [Accepted: 09/05/2015] [Indexed: 11/19/2022]
Abstract
Habitats are rapidly changing across the planet and the consequences will have major and long-lasting effects on wildlife and their parasites. Birds harbor many types of blood parasites, but because of their relatively high prevalence and ease of diagnosis, it is the haemosporidians – Plasmodium, Haemoproteus, and Leucocytozoon – that are the best studied in terms of ecology and evolution. For parasite transmission to occur, environmental conditions must be permissive, and given the many constraints on the competency of parasites, vectors and hosts, it is rather remarkable that these parasites are so prevalent and successful. Over the last decade, a rapidly growing body of literature has begun to clarify how environmental factors affect birds and the insects that vector their hematozoan parasites. Moreover, several studies have modeled how anthropogenic effects such as global climate change, deforestation and urbanization will impact the dynamics of parasite transmission. This review highlights recent research that impacts our understanding of how habitat and environmental changes can affect the distribution, diversity, prevalence and parasitemia of these avian blood parasites. Given the importance of environmental factors on transmission, it remains essential that researchers studying avian hematozoa document abiotic factors such as temperature, moisture and landscape elements. Ultimately, this continued research has the potential to inform conservation policies and help avert the loss of bird species and threatened habitats. Review of recent literature studying habitat effects on avian blood parasites. Habitat affects the prevalence, parasitemia, distribution and diversity of avian hematozoa. Environmental conditions must be permissive for parasite transmission to occur. Anthropogenic environmental changes will affect host–vector–parasite interactions.
Collapse
|
20
|
Lauron EJ, Aw Yeang HX, Taffner SM, Sehgal RNM. De novo assembly and transcriptome analysis of Plasmodium gallinaceum identifies the Rh5 interacting protein (ripr), and reveals a lack of EBL and RH gene family diversification. Malar J 2015; 14:296. [PMID: 26243218 PMCID: PMC4524024 DOI: 10.1186/s12936-015-0814-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 07/20/2015] [Indexed: 01/01/2023] Open
Abstract
Background Malaria parasites that infect birds can have narrow or broad host-tropisms. These differences in host specificity make avian malaria a useful model for studying the evolution and transmission of parasite assemblages across geographic ranges. The molecular mechanisms involved in host-specificity and the biology of avian malaria parasites in general are important aspects of malaria pathogenesis that warrant further examination. Here, the transcriptome of the malaria parasite Plasmodium gallinaceum was characterized to investigate the biology and the conservation of genes across various malaria parasite species. Methods The P. gallinaceum transcriptome was annotated and KEGG pathway mapping was performed. The ripr gene and orthologous genes that play critical roles in the purine salvage pathway were identified and characterized using bioinformatics and phylogenetic methods. Results Analysis of the transcriptome sequence database identified essential genes of the purine salvage pathway in P. gallinaceum that shared high sequence similarity to Plasmodium falciparum when compared to other mammalian Plasmodium spp. However, based on the current sequence data, there was a lack of orthologous genes that belonged to the erythrocyte-binding-like (EBL) and reticulocyte-binding-like homologue (RH) family in P. gallinaceum. In addition, an orthologue of the Rh5 interacting protein (ripr) was identified. Conclusions These findings suggest that the pathways involved in parasite red blood cell invasion are significantly different in avian Plasmodium parasites, but critical metabolic pathways are conserved throughout divergent Plasmodium taxa. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0814-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elvin J Lauron
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Han Xian Aw Yeang
- Rheumatology Division, Washington University School of Medicine, St. Louis, MO, USA.
| | - Samantha M Taffner
- Rheumatology Division, Washington University School of Medicine, St. Louis, MO, USA.
| | - Ravinder N M Sehgal
- Department of Biology, San Francisco State University, San Francisco, CA, USA.
| |
Collapse
|
21
|
Pattaradilokrat S, Tiyamanee W, Simpalipan P, Kaewthamasorn M, Saiwichai T, Li J, Harnyuttanakorn P. Molecular detection of the avian malaria parasite Plasmodium gallinaceum in Thailand. Vet Parasitol 2015; 210:1-9. [DOI: 10.1016/j.vetpar.2015.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/17/2015] [Accepted: 03/23/2015] [Indexed: 01/21/2023]
|