1
|
Zhao Y, Li H, Donelan W, Li S, Tang D. Expression of Recombinant Rat Secretable FNDC5 in Pichia Pastoris and Detection of Its Biological Activity. Front Endocrinol (Lausanne) 2022; 13:852015. [PMID: 35321332 PMCID: PMC8936140 DOI: 10.3389/fendo.2022.852015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/08/2022] [Indexed: 11/23/2022] Open
Abstract
FNDC5 is the precursor of the myokine irisin proposed to exhibit favorable metabolic activity, including anti-obesity and anti-diabetes effects. The diversity of FNDC5 transcripts has been reported by several studies, but the role and existence of these transcripts are not well defined. In our previous study, a novel secretable FNDC5 (sFNDC5) isoform lacking the transmembrane region was found in rat INS-1 cells and multiple rat tissues. In the current study, we established a high-yield system for the expression and purification of sFNDC5 in Pichia pastoris, and functional investigations were undertaken using 3T3-L1 cells. We discovered that this new isoform has similar and even stronger biological functions than irisin, which may be due to its more complete structure without cleavage. Hence, we believe that sFNDC5, as the first identified readily secretable derivative, can better induce lipolysis and can potentially prevent obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Yi Zhao
- Center for Gene and Immunotherapy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hui Li
- Center for Gene and Immunotherapy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - William Donelan
- Department of Urology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Shiwu Li
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Dongqi Tang
- Center for Gene and Immunotherapy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Dongqi Tang,
| |
Collapse
|
2
|
Opi DH, Boyle MJ, McLean ARD, Reiling L, Chan JA, Stanisic DI, Ura A, Mueller I, Fowkes FJI, Rogerson SJ, Beeson JG. Reduced risk of placental parasitemia associated with complement fixation on Plasmodium falciparum by antibodies among pregnant women. BMC Med 2021; 19:201. [PMID: 34425801 PMCID: PMC8383393 DOI: 10.1186/s12916-021-02061-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The pathogenesis of malaria in pregnancy (MiP) involves accumulation of P. falciparum-infected red blood cells (pRBCs) in the placenta, contributing to poor pregnancy outcomes. Parasite accumulation is primarily mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1). Magnitude of IgG to pRBCs has been associated with reduced risk of MiP in some studies, but associations have been inconsistent. Further, antibody effector mechanisms are poorly understood, and the role of antibody complement interactions is unknown. METHODS Studying a longitudinal cohort of pregnant women (n=302) from a malaria-endemic province in Papua New Guinea (PNG), we measured the ability of antibodies to fix and activate complement using placental binding pRBCs and PfEMP1 recombinant domains. We determined antibody-mediated complement inhibition of pRBC binding to the placental receptor, chondroitin sulfate A (CSA), and associations with protection against placental parasitemia. RESULTS Some women acquired antibodies that effectively promoted complement fixation on placental-binding pRBCs. Complement fixation correlated with IgG1 and IgG3 antibodies, which dominated the response. There was, however, limited evidence for membrane attack complex activity or pRBC lysis or killing. Importantly, a higher magnitude of complement fixing antibodies was prospectively associated with reduced odds of placental infection at delivery. Using genetically modified P. falciparum and recombinant PfEMP1 domains, we found that complement-fixing antibodies primarily targeted a specific variant of PfEMP1 (known as VAR2CSA). Furthermore, complement enhanced the ability of antibodies to inhibit pRBC binding to CSA, which was primarily mediated by complement C1q protein. CONCLUSIONS These findings provide new insights into mechanisms mediating immunity to MiP and reveal potential new strategies for developing malaria vaccines that harness antibody-complement interactions.
Collapse
Affiliation(s)
- D Herbert Opi
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia. .,Department of Immunology, Monash University, Melbourne, Australia. .,Department of Medicine at the Doherty Institute, University of Melbourne, Melbourne, Australia.
| | - Michelle J Boyle
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia.,Human Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Linda Reiling
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia
| | - Jo-Anne Chan
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia.,Department of Immunology, Monash University, Melbourne, Australia.,Department of Medicine at the Doherty Institute, University of Melbourne, Melbourne, Australia
| | - Danielle I Stanisic
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea.,Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Alice Ura
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia.,Institute Pasteur, Paris, France
| | - Freya J I Fowkes
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia.,Department of Infectious Diseases, Monash University, Melbourne, Australia.,Centre for Epidemiology and Biostatistics, University of Melbourne, Melbourne, Australia.,Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Australia
| | - Stephen J Rogerson
- Department of Medicine at the Doherty Institute, University of Melbourne, Melbourne, Australia
| | - James G Beeson
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia. .,Department of Immunology, Monash University, Melbourne, Australia. .,Department of Medicine at the Doherty Institute, University of Melbourne, Melbourne, Australia. .,Department of Microbiology, Monash University, Clayton, Australia.
| |
Collapse
|
3
|
McLean ARD, Opi DH, Stanisic DI, Cutts JC, Feng G, Ura A, Mueller I, Rogerson SJ, Beeson JG, Fowkes FJI. High Antibodies to VAR2CSA in Response to Malaria Infection Are Associated With Improved Birthweight in a Longitudinal Study of Pregnant Women. Front Immunol 2021; 12:644563. [PMID: 34220804 PMCID: PMC8242957 DOI: 10.3389/fimmu.2021.644563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/17/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Pregnant women have an increased risk of P. falciparum infection, which is associated with low birth weight and preterm delivery. VAR2CSA, a variant surface antigen expressed on the parasitized erythrocyte surface, enables sequestration in the placenta. Few studies have prospectively examined relationships between antibody responses during pregnancy and subsequent adverse birth outcomes, and there are limited data outside Africa. Methods Levels of IgG against VAR2CSA domains (DBL3; DBL5) and a VAR2CSA-expressing placental-binding P. falciparum isolate (PfCS2-IE) were measured in 301 women enrolled at their first visit to antenatal care which occurred mid-pregnancy (median = 26 weeks, lower and upper quartiles = 22, 28). Associations between antibody levels at enrolment and placental infection, birthweight and estimated gestational age at delivery were assessed by linear and logistic regression with adjustment for confounders. For all outcomes, effect modification by gravidity and peripheral blood P. falciparum infection at enrolment was assessed. Results Among women who had acquired P. falciparum infection at enrolment, those with higher levels of VAR2CSA antibodies (75th percentile) had infants with higher mean birthweight (estimates varied from +35g to +149g depending on antibody response) and reduced adjusted odds of placental infection (aOR estimates varied from 0.17 to 0.80), relative to women with lower levels (25th percentile) of VAR2CSA antibodies. However, among women who had not acquired an infection at enrolment, higher VAR2CSA antibodies were associated with increased odds of placental infection (aOR estimates varied from 1.10 to 2.24). Conclusions When infected by mid-pregnancy, a better immune response to VAR2CSA-expressing parasites may contribute to protecting against adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Alistair R D McLean
- Burnet Institute, Melbourne, VIC, Australia.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - D Herbert Opi
- Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia.,Department of Medicine at the Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Danielle I Stanisic
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea.,Institute for Glycomics, Griffith University, Southport, QLD, Australia
| | - Julia C Cutts
- Burnet Institute, Melbourne, VIC, Australia.,Department of Medicine at the Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Gaoqian Feng
- Burnet Institute, Melbourne, VIC, Australia.,Department of Medicine at the Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Alice Ura
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Ivo Mueller
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea.,Population, Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Département Parasites et Insectes Vecteurs, Institute Pasteur, Paris, France
| | - Stephen J Rogerson
- Department of Medicine at the Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia.,Department of Medicine at the Doherty Institute, University of Melbourne, Melbourne, VIC, Australia.,Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Freya J I Fowkes
- Burnet Institute, Melbourne, VIC, Australia.,Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Centre for Epidemiology and Biostatistics, University of Melbourne, Melbourne, VIC, Australia.,Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Down-selection of the VAR2CSA DBL1-2 expressed in E. coli as a lead antigen for placental malaria vaccine development. NPJ Vaccines 2018; 3:28. [PMID: 30038803 PMCID: PMC6050242 DOI: 10.1038/s41541-018-0064-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/24/2018] [Accepted: 05/17/2018] [Indexed: 02/03/2023] Open
Abstract
Over 50 million women are exposed to the risk of malaria during pregnancy every year. Malaria during pregnancy is a leading global cause of maternal morbidity and adverse pregnancy outcomes. Adhesion of Plasmodium falciparum-infected erythrocytes to placental chondroitin-4-sulfate (CSA) has been linked to the severe disease outcome of placental malaria. Accumulated evidence strongly supports VAR2CSA as the leading placental malaria vaccine candidate. Recombinant proteins encompassing the VAR2CSA high affinity CSA binding site have been generated, and their activity as immunogens that elicit functional (inhibitory) and cross-reactive antibodies against CSA-binding parasites assessed. The expression of His-tagged proteins was compared in four different expression systems and their capacity to bind specifically to CSA was analyzed. CHO cells and E. coli SHuffle cells were the two expression systems able to express some of the recombinant proteins in reasonable amounts. Larger analytical scale production of DBL1x-2× (3D7) and DBL3x-4ε (FCR3) best expressed in CHO and E. coli SHuffle cells were performed. Purified proteins were administered to rats either alone or adjuvanted with human approved adjuvants. Analysis of the functionality and cross-reactivity of the induced antibodies allowed us to down-select the DBL1x-2(3D7) expressed in E. coli SHuffle cells as the best antigen to be transitioned to further clinical development in order to protect future pregnant women living in malaria endemic areas against the severe clinical outcomes of placental malaria. A mix of the right parasitic protein with the right production method has yielded a vaccine candidate for placental malaria. Primarily affecting first-time pregnant women, placental malaria is estimated to cause 200,000 infant deaths and 10,000 maternal deaths annually. In this study, led by Benoît Gamain, researchers from France’s INSERM and Germany’s European Vaccine Initiative assayed a combination of proteins designed to target and block a key pathogenic mechanism of parasite-infected red blood cells. Finding the highest performing protein, the researchers also used an Escherichia coli expression system able to replicate and fold the complex protein correctly. During tests, this protein/vector combination bested others in production qualities and immunogenicity. The team’s efforts laid the foundations for a scalable, low-cost vaccine that is currently undergoing clinical trials.
Collapse
|
5
|
Molecular dissection of placental malaria protein VAR2CSA interaction with a chemo-enzymatically synthesized chondroitin sulfate library. Glycoconj J 2016; 33:985-994. [DOI: 10.1007/s10719-016-9685-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 12/27/2022]
|
6
|
Babakhanyan A, Tutterrow YL, Bobbili N, Salanti A, Wey A, Fogako J, Leke RJ, Leke RGF, Taylor DW. Influence of Intermittent Preventive Treatment on Antibodies to VAR2CSA in Pregnant Cameroonian Women. Am J Trop Med Hyg 2015; 94:640-9. [PMID: 26711513 DOI: 10.4269/ajtmh.15-0521] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/17/2015] [Indexed: 12/12/2022] Open
Abstract
Intermittent preventive treatment (IPT) and insecticide-treated bed nets are the standard of care for preventing malaria in pregnant women. Since these preventive measures reduce exposure to malaria, their influence on the antibody (Ab) response to the parasite antigen VAR2CSA was evaluated in pregnant Cameroonian women exposed to holoendemic malaria. Ab levels to full-length VAR2CSA (FV2), variants of the six Duffy binding like (DBL) domains, and proportion of high avidity Ab to FV2 were measured longitudinally in 92 women before and 147 women after IPT. As predicted, reduced exposure interfered with acquisition of Ab in primigravidae, with 71% primigravidae being seronegative to FV2 at delivery. Use of IPT for > 13 weeks by multigravidae resulted in 26% of women being seronegative at delivery and a significant reduction in Ab levels to FV2, DBL5, DBL6, proportion of high avidity Ab to FV2, and number of variants recognized. Thus, in women using IPT important immune responses were not acquired by primigravidae and reduced in a portion of multigravidae, especially women with one to two previous pregnancies. Longitudinal data from individual multigravidae on IPT suggest that lower Ab levels most likely resulted from lack of boosting of the VAR2CSA response and not from a short-lived Ab response.
Collapse
Affiliation(s)
- Anna Babakhanyan
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii; Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark; The Biotechnology Center, Faculty of Medicine and Biomedical Research, University of Yaoundé I, Yaoundé, Cameroon
| | - Yeung L Tutterrow
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii; Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark; The Biotechnology Center, Faculty of Medicine and Biomedical Research, University of Yaoundé I, Yaoundé, Cameroon
| | - Naveen Bobbili
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii; Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark; The Biotechnology Center, Faculty of Medicine and Biomedical Research, University of Yaoundé I, Yaoundé, Cameroon
| | - Ali Salanti
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii; Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark; The Biotechnology Center, Faculty of Medicine and Biomedical Research, University of Yaoundé I, Yaoundé, Cameroon
| | - Andrew Wey
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii; Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark; The Biotechnology Center, Faculty of Medicine and Biomedical Research, University of Yaoundé I, Yaoundé, Cameroon
| | - Josephine Fogako
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii; Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark; The Biotechnology Center, Faculty of Medicine and Biomedical Research, University of Yaoundé I, Yaoundé, Cameroon
| | - Robert J Leke
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii; Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark; The Biotechnology Center, Faculty of Medicine and Biomedical Research, University of Yaoundé I, Yaoundé, Cameroon
| | - Rose G F Leke
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii; Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark; The Biotechnology Center, Faculty of Medicine and Biomedical Research, University of Yaoundé I, Yaoundé, Cameroon
| | - Diane Wallace Taylor
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii; Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark; The Biotechnology Center, Faculty of Medicine and Biomedical Research, University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
7
|
Multilaboratory approach to preclinical evaluation of vaccine immunogens for placental malaria. Infect Immun 2012. [PMID: 23208604 DOI: 10.1128/iai.01106-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pregnancy malaria is caused by Plasmodium falciparum-infected erythrocytes that adhere to the placental receptor chondroitin sulfate A (CSA) and sequester in the placenta; women become resistant to pregnancy malaria as they acquire antiadhesion antibodies that target surface proteins of placental parasites. VAR2CSA, a member of the P. falciparum EMP1 variant surface antigen family, is the leading candidate for a pregnancy malaria vaccine. Because VAR2CSA is a high-molecular-weight protein, a vaccine based on the full-length protein may not be feasible. An alternative approach has been to develop a vaccine targeting individual Duffy binding-like (DBL) domains. In this study, a consortium of laboratories under the Pregnancy Malaria Initiative compared the functional activity of antiadhesion antibodies elicited by different VAR2CSA domains and variants produced in prokaryotic and eukaryotic expression systems. Antisera were initially tested against laboratory lines of maternal parasites, and the most promising reagents were evaluated in the field against fresh placental parasite samples. Recombinant proteins expressed in Escherichia coli elicited antibody levels similar to those expressed in eukaryotic systems, as did the two allelic forms of the DBL4 and DBL5 domains. The procedures developed for this head-to-head comparison will be useful for future evaluation and down-selection of malaria vaccine immunogens.
Collapse
|
8
|
Clausen TM, Christoffersen S, Dahlbäck M, Langkilde AE, Jensen KE, Resende M, Agerbæk MØ, Andersen D, Berisha B, Ditlev SB, Pinto VV, Nielsen MA, Theander TG, Larsen S, Salanti A. Structural and functional insight into how the Plasmodium falciparum VAR2CSA protein mediates binding to chondroitin sulfate A in placental malaria. J Biol Chem 2012; 287:23332-45. [PMID: 22570492 DOI: 10.1074/jbc.m112.348839] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Malaria is a major global health problem. Pregnant women are susceptible to infection regardless of previously acquired immunity. Placental malaria is caused by parasites capable of sequestering in the placenta. This is mediated by VAR2CSA, a parasite antigen that interacts with chondroitin sulfate A (CSA). One vaccine strategy is to block this interaction with VAR2CSA-specific antibodies. It is a priority to define a small VAR2CSA fragment that can be used in an adhesion blocking vaccine. In this, the obvious approach is to define regions of VAR2CSA involved in receptor binding. It has been shown that full-length recombinant VAR2CSA binds specifically to CSA with nanomolar affinity, and that the CSA-binding site lies in the N-terminal part of the protein. In this study we define the minimal binding region by truncating VAR2CSA and analyzing CSA binding using biosensor technology. We show that the core CSA-binding site lies within the DBL2X domain and parts of the flanking interdomain regions. This is in contrast to the idea that single domains do not possess the structural requirements for specific CSA binding. Small-angle x-ray scattering measurements enabled modeling of VAR2CSA and showed that the CSA-binding DBL2X domain is situated in the center of the structure. Mutating classic sulfate-binding sites in VAR2CSA, along with testing dependence of ionic interactions, suggest that the CSA binding is not solely dependent on the sulfated CSA structure. Based on these novel PfEMP1 structure-function studies, we have constructed a small VAR2CSA antigen that has the capacity to induce highly adhesion-blocking antibodies.
Collapse
Affiliation(s)
- Thomas M Clausen
- Department of Infectious Diseases, Centre for Medical Parasitology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
High levels of antibodies to multiple domains and strains of VAR2CSA correlate with the absence of placental malaria in Cameroonian women living in an area of high Plasmodium falciparum transmission. Infect Immun 2012; 80:1479-90. [PMID: 22331427 DOI: 10.1128/iai.00071-12] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Placental malaria, caused by sequestration of Plasmodium falciparum-infected erythrocytes in the placenta, is associated with increased risk of maternal morbidity and poor birth outcomes. The parasite antigen VAR2CSA (variant surface antigen 2-chondroitin sulfate A) is expressed on infected erythrocytes and mediates binding to chondroitin sulfate A, initiating inflammation and disrupting homeostasis at the maternal-fetal interface. Although antibodies can prevent sequestration, it is unclear whether parasite clearance is due to antibodies to a single Duffy binding-like (DBL) domain or to an extensive repertoire of antibodies to multiple DBL domains and allelic variants. Accordingly, plasma samples collected longitudinally from pregnant women were screened for naturally acquired antibodies against an extensive panel of VAR2CSA proteins, including 2 to 3 allelic variants for each of 5 different DBL domains. Analyses were performed on plasma samples collected from 3 to 9 months of pregnancy from women living in areas in Cameroon with high and low malaria transmission. The results demonstrate that high antibody levels to multiple VAR2CSA domains, rather than a single domain, were associated with the absence of placental malaria when antibodies were present from early in the second trimester until term. Absence of placental malaria was associated with increasing antibody breadth to different DBL domains and allelic variants in multigravid women. Furthermore, the antibody responses of women in the lower-transmission site had both lower magnitude and lesser breadth than those in the high-transmission site. These data suggest that immunity to placental malaria results from high antibody levels to multiple VAR2CSA domains and allelic variants and that antibody breadth is influenced by malaria transmission intensity.
Collapse
|
10
|
Ellis RD, Sagara I, Doumbo O, Wu Y. Blood stage vaccines for Plasmodium falciparum: current status and the way forward. HUMAN VACCINES 2011; 6:627-34. [PMID: 20519960 DOI: 10.4161/hv.6.8.11446] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Since the recent call for a shift from malaria control to eradication, the role of asexual blood stage vaccines for falciparum malaria, which are not expected to prevent infection, has become less clear. However, blood stage antigens remain likely to be a critical component of a highly effective malaria vaccine. The inclusion of a blood stage component in a multistage malaria vaccine would not only prevent disease caused by “leaky” pre-erythrocytic immunity, but would also protect against epidemics in newly vulnerable populations. Recent clinical results of blood stage vaccine candidates have shown strain specific and partial efficacy, although no protection against clinical outcomes has been demonstrated in experimental infection or field trials to date. The current status of Plasmodium falciparum blood stage vaccine development is summarized and the potential role of these vaccines in the changed malaria landscape is discussed. Alternative preclinical and clinical development paths will speed iterative development.
Collapse
Affiliation(s)
- Ruth D Ellis
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, USA.
| | | | | | | |
Collapse
|
11
|
Avril M, Cartwright MM, Hathaway MJ, Smith JD. Induction of strain-transcendent antibodies to placental-type isolates with VAR2CSA DBL3 or DBL5 recombinant proteins. Malar J 2011; 10:36. [PMID: 21314945 PMCID: PMC3055221 DOI: 10.1186/1475-2875-10-36] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 02/11/2011] [Indexed: 11/23/2022] Open
Abstract
Background Pregnancy associated malaria is a severe clinical syndrome associated with sequestration of Plasmodium falciparum-infected erythrocytes in the placenta. Placental binding is mediated by VAR2CSA, which adheres to chondroitin sulphate A (CSA). VAR2CSA is a large and polymorphic protein that has six Duffy binding-like (DBL) domains. There is still limited understanding as to how effective individual VAR2CSA domains are at generating inhibitory antibodies or the number of domain variants needed for universal vaccine coverage. Methods To investigate the immunogenic properties of single domain VAR2CSA recombinant proteins, rats or rabbits were immunized with five of the six VAR2CSA domains produced in Pichia pastoris. Immune plasma was analysed against a geographically diverse panel of CSA-binding lab lines to assess antibody breadth and inhibitory activity. Results Of the five domains, DBL3, and to a lesser extent DBL5, induced antibodies that cross-reacted on five diverse CSA-binding parasite lines by flow cytometry. By comparison, anti-DBL6 antibodies were highly strain-specific and anti-DBL1 and anti-DBL4 antibodies were poorly reactive by flow cytometry. From this series of recombinant proteins, adhesion-blocking activity was restricted to a single rat immunized against a DBL4 recombinant protein. Conclusions Single domain VAR2CSA recombinant proteins produced in P. pastoris had limited efficacy in eliciting adhesion blocking antibody responses, but VAR2CSA DBL3 and DBL5 domains contain strain-transcendent epitopes that can be targeted by vaccination and may have application for vaccine development.
Collapse
Affiliation(s)
- Marion Avril
- Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle Washington, 98109-5219, USA
| | | | | | | |
Collapse
|
12
|
Avril M, Hathaway MJ, Srivastava A, Dechavanne S, Hommel M, Beeson JG, Smith JD, Gamain B. Antibodies to a full-length VAR2CSA immunogen are broadly strain-transcendent but do not cross-inhibit different placental-type parasite isolates. PLoS One 2011; 6:e16622. [PMID: 21326877 PMCID: PMC3034725 DOI: 10.1371/journal.pone.0016622] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 01/01/2011] [Indexed: 11/22/2022] Open
Abstract
The high molecular weight, multidomain VAR2CSA protein mediating adhesion of Plasmodium falciparum-infected erythrocytes in the placenta is the leading candidate for a pregnancy malaria vaccine. However, it has been difficult so far to generate strong and consistent adhesion blocking antibody responses against most single-domain VAR2CSA immunogens. Recent advances in expression of the full-length recombinant protein showed it binds with much greater specificity and affinity to chondroitin sulphate A (CSA) than individual VAR2CSA domains. This raises the possibility that a specific CSA binding pocket(s) is formed in the full length antigen and could be an important target for vaccine development. In this study, we compared the immunogenicity of a full-length VAR2CSA recombinant protein containing all six Duffy binding-like (DBL) domains to that of a three-domain construct (DBL4-6) in mice and rabbits. Animals immunized with either immunogen acquired antibodies reacting with several VAR2CSA individual domains by ELISA, but antibody responses against the highly conserved DBL4 domain were weaker in animals immunized with full-length DBL1-6 recombinant protein compared to DBL4-6 recombinant protein. Both immunogens induced cross-reactive antibodies to several heterologous CSA-binding parasite lines expressing different VAR2CSA orthologues. However, antibodies that inhibited adhesion of parasites to CSA were only elicited in rabbits immunized with full-length immunogen and inhibition was restricted to the homologous CSA-binding parasite. These findings demonstrate that partial and full-length VAR2CSA immunogens induce cross-reactive antibodies, but inhibitory antibody responses to full-length immunogen were highly allele-specific and variable between animal species.
Collapse
MESH Headings
- Amino Acid Sequence/physiology
- Animals
- Antibodies, Protozoan/immunology
- Antibodies, Protozoan/pharmacology
- Antibodies, Protozoan/therapeutic use
- Antibody Specificity/immunology
- Antibody Specificity/physiology
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/immunology
- Antigens, Protozoan/isolation & purification
- Cells, Cultured
- Cross Reactions/immunology
- Female
- Humans
- Immunization
- Malaria Vaccines/immunology
- Malaria Vaccines/pharmacology
- Malaria Vaccines/therapeutic use
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/pathology
- Malaria, Falciparum/prevention & control
- Malaria, Falciparum/transmission
- Mice
- Mice, Inbred BALB C
- Placenta/immunology
- Placenta/parasitology
- Pregnancy
- Pregnancy Complications, Parasitic/parasitology
- Pregnancy Complications, Parasitic/pathology
- Pregnancy Complications, Parasitic/therapy
- Protein Isoforms/immunology
- Rabbits
- Species Specificity
Collapse
Affiliation(s)
- Marion Avril
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Marianne J. Hathaway
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Anand Srivastava
- Institut Pasteur, Unité de Biologie des Interactions Hôte-Parasite, Centre National de la Recherche Scientifique (CNRS), Unité de Recherche Associée (URA), 2581, Paris, France
| | - Sébastien Dechavanne
- Institut Pasteur, Unité de Biologie des Interactions Hôte-Parasite, Centre National de la Recherche Scientifique (CNRS), Unité de Recherche Associée (URA), 2581, Paris, France
| | - Mirja Hommel
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - James G. Beeson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Joseph D. Smith
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail: (BG); (JDS)
| | - Benoît Gamain
- Institut Pasteur, Unité de Biologie des Interactions Hôte-Parasite, Centre National de la Recherche Scientifique (CNRS), Unité de Recherche Associée (URA), 2581, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- INSERM, UMRS 665, Paris, France
- Université Paris Diderot, Paris 7, Paris, France
- * E-mail: (BG); (JDS)
| |
Collapse
|
13
|
Li Q, Bai Z, O’Donnell A, Harvey LM, Hoskisson PA, McNeil B. Oxidative stress in fungal fermentation processes: the roles of alternative respiration. Biotechnol Lett 2010; 33:457-67. [DOI: 10.1007/s10529-010-0471-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 11/03/2010] [Indexed: 02/07/2023]
|
14
|
Smolarek D, Bertrand O, Czerwinski M, Colin Y, Etchebest C, de Brevern AG. Multiple interests in structural models of DARC transmembrane protein. Transfus Clin Biol 2010; 17:184-96. [PMID: 20655787 DOI: 10.1016/j.tracli.2010.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 05/21/2010] [Indexed: 12/23/2022]
Abstract
Duffy Antigen Receptor for Chemokines (DARC) is an unusual transmembrane chemokine receptor which (i) binds the two main chemokine families and (ii) does not transduct any signal as it lacks the DRY consensus sequence. It is considered as silent chemokine receptor, a tank useful for chemiotactism. DARC had been particularly studied as a major actor of malaria infection by Plasmodium vivax. It is also implicated in multiple chemokine inflammation, inflammatory diseases, in cancer and might play a role in HIV infection and AIDS. In this review, we focus on the interest to build structural model of DARC to understand more precisely its abilities to bind its physiological ligand CXCL8 and its malaria ligand. We also present innovative development on VHHs able to bind DARC protein. We underline difficulties and limitations of such bioinformatics approaches and highlight the crucial importance of biological data to conduct these kinds of researches.
Collapse
Affiliation(s)
- D Smolarek
- Inserm UMR-S 665, dynamique des structures et interactions des macromolecules biologiques (DSIMB), 6, rue Alexandre-Cabanel, 75739 Paris cedex 15, France
| | | | | | | | | | | |
Collapse
|
15
|
Immunization with VAR2CSA-DBL5 recombinant protein elicits broadly cross-reactive antibodies to placental Plasmodium falciparum-infected erythrocytes. Infect Immun 2010; 78:2248-56. [PMID: 20194590 DOI: 10.1128/iai.00410-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pregnancy-associated malaria is a severe clinical syndrome associated with the sequestration of Plasmodium falciparum-infected erythrocytes in the placenta. Placental binding is mediated by VAR2CSA, a member of the large and diverse P. falciparum erythrocyte membrane 1 (PfEMP1) protein family. To better understand if conserved regions in VAR2CSA can be targeted by antibodies, we immunized rabbits with VAR2CSA-DBL1 and -DBL5 recombinant proteins produced in Pichia pastoris and developed a panel of seven chondroitin sulfate A (CSA)-binding parasites from diverse geographic origins. Overall, no two parasites in the panel expressed the same VAR2CSA sequence. The DBL1 domains averaged 80% amino acid identity (range, 72 to 89%), and the DBL5 domains averaged 86% amino acid identity (range, 83 to 99%), similar to a broader sampling of VAR2CSA sequences from around the world. Whereas antibodies generated against the VAR2CSA-DBL1 recombinant protein had only limited breadth and reacted with three or four parasites in the panel, immunization with DBL5 recombinant proteins elicited broadly cross-reactive antibodies against all or most parasites in the panel, as well as to fresh clinical isolates from pregnant women. These findings demonstrate that the major PfEMP1 variant expressed by placental isolates exposes strain-transcendent epitopes that can be targeted by vaccination and may have application for pregnancy malaria vaccine development.
Collapse
|
16
|
Juillerat A, Igonet S, Vigan-Womas I, Guillotte M, Gangnard S, Faure G, Baron B, Raynal B, Mercereau-Puijalon O, Bentley GA. Biochemical and biophysical characterisation of DBL1alpha1-varO, the rosetting domain of PfEMP1 from the VarO line of Plasmodium falciparum. Mol Biochem Parasitol 2010; 170:84-92. [PMID: 20045435 DOI: 10.1016/j.molbiopara.2009.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 12/15/2009] [Accepted: 12/22/2009] [Indexed: 10/20/2022]
Abstract
Rosetting of erythrocytes infected with Plasmodium falciparum is frequently observed in children with severe malaria. This adhesion phenomenon has been linked to the DBL1alpha domain of P. falciparum erythrocyte membrane protein 1 (PfEMP1) in three laboratory clones: FCR3S1.2, IT4R29 and Palo Alto varO. Here, we compare the soluble recombinant NTS-DBL1alpha(1)-varO domain (NTS: N-terminal segment) obtained from E. coli, Pichia pastoris and baculovirus/insect cell expression systems. In each case, the presence of NTS was necessary for obtaining a soluble product. Successful expression in E. coli required maltose-binding protein as an N-terminal fusion partner. Each expression system produced an identical, correctly folded protein, as judged by biochemical and biophysical characterisations, and by the capacity to elicit antibodies that react with the surface of VarO-infected erythrocytes and disrupt VarO rosettes. Binding studies using surface plasmon resonance (SPR) techniques showed that NTS-DBL1alpha(1) produced in E. coli binds to heparin with micromolar affinity. IC(50) constants for other sulphated oligosaccharides were determined using SPR by measuring their competitive binding to the soluble protein in the presence of immobilized heparin. The affinity to NTS-DBL1alpha(1) was related to the degree of sulphation of the oligosaccharide, although the position of the sulphate groups on the sugar rings was also important. VarO rosettes could be disrupted by sulphated oligosaccharides with an efficacy that correlated with their binding affinity to recombinant NTS-DBL1alpha(1). Thus high yields of soluble NTS-DBL1alpha(1) with native conformation have been produced, opening novel perspectives for both structure-function studies and vaccine development.
Collapse
Affiliation(s)
- Alexandre Juillerat
- Unité d'Immunologie Structurale, CNRS URA 2185, Institut Pasteur, 25-28 rue du Dr. Roux, F-75015 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|