1
|
Võ TC, Lê HG, Kang JM, Trinh NTM, Quang HH, Na BK. Genetic polymorphism of merozoite surface protein 1 and merozoite surface protein 2 in the Vietnam Plasmodium falciparum population. BMC Infect Dis 2024; 24:1216. [PMID: 39468465 PMCID: PMC11520470 DOI: 10.1186/s12879-024-10116-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/24/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Plasmodium falciparum merozoite surface proteins 1 (PfMSP1) and 2 (PfMSP2) are potential candidates for malaria vaccine development. However, the genetic diversity of these genes in the global P. falciparum population presents a significant challenge in developing an effective vaccine. Hence, understanding the genetic diversity and evolutionary trends in the global P. falciparum population is crucial. METHODS This study analyzed the genetic variations and evolutionary changes of pfmsp1 and pfmsp2 in P. falciparum isolates from the Central Highland and South-Central regions of Vietnam. DNASTAR and MEGA7 programs were utilized for analyses. The polymorphic nature of global pfmsp1 and pfmsp2 was also investigated. RESULTS A total of 337 sequences of pfmsp1 and 289 sequences of pfmsp2 were obtained. The pfmsp1 and pfmsp2 from Vietnam revealed a higher degree of genetic homogeneity compared to those from other malaria-endemic countries. Remarkably, the allele diversity patterns of Vietnam pfmsp1 and pfmsp2 differed significantly from those of neighboring countries in the Greater Mekong Subregion. Declines in allele diversity and polymorphic patterns of Vietnam pfmsp1 and pfmsp2 were observed. CONCLUSIONS The Vietnam P. falciparum population might be genetically isolated from the parasite populations in other neighboring GMS countries, likely due to geographical barriers and distinct evolutionary pressures. Furthermore, bottleneck effects or selective sweeps may have contributed to the genetic homogeneity of Vietnam pfmsp1 and pfmsp2.
Collapse
Affiliation(s)
- Tuấn Cường Võ
- Department of Parasitology and Tropical Medicine, Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju, 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Korea
| | - Hương Giang Lê
- Department of Parasitology and Tropical Medicine, Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju, 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Korea
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju, 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Korea
| | - Nguyen Thi Minh Trinh
- Tropical Diseases Clinical and Treatment Research Department, Institute of Malariology, Parasitology, and Entomology Quy Nhon, Quy Nhon, Vietnam
| | - Huynh Hong Quang
- Tropical Diseases Clinical and Treatment Research Department, Institute of Malariology, Parasitology, and Entomology Quy Nhon, Quy Nhon, Vietnam.
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju, 52727, Korea.
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Korea.
| |
Collapse
|
2
|
Võ TC, Lê HG, Kang JM, Naw H, Yoo WG, Myint MK, Quang HH, Na BK. Genetic polymorphism and natural selection of the erythrocyte binding antigen 175 region II in Plasmodium falciparum populations from Myanmar and Vietnam. Sci Rep 2023; 13:20025. [PMID: 37973970 PMCID: PMC10654615 DOI: 10.1038/s41598-023-47275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023] Open
Abstract
Plasmodium falciparum erythrocyte binding antigen 175 (PfEBA-175) plays essential role in erythrocyte invasion by the parasite and is a leading vaccine candidate. However, its genetic diversity in global isolates is a concern in developing an universal vaccine incorporating this protein. This study aimed to investigate genetic polymorphisms and natural selection of pfeba-175 region II (RII) in Myanmar and Vietnam P. falciparum isolates. Vietnam pfeba-175 RII displayed a low genetic polymorphism, while Myanmar pfeba-175 RII showed high levels of genetic diversity across the region. Point mutations, deletion, and recombinations were main factors contributing to genetic diversities in P. falciparum populations. Global pfeba-175 RII revealed similar, but not identical, genetic polymorphisms and natural selection profiles. Despite profiles of amino acid substitutions differed among populations, five major amino acid changes (K279E, E403K, K481I, Q584K, and R664) were commonly detected in global pfeba-175 RII populations. Haplotype network and genetic differentiation analyses of global pfeba-175 RII populations demonstrated no geographical relationships. Non-neglectable level of genetic diversity was observed in global pfeba-175 RII populations, emphasizing the need to consider this when designing an effective vaccine based on this protein. This study underscores the importance of the continuous monitoring of genetic diversity of pfeba-175 RII in the global P. falciparum populations.
Collapse
Affiliation(s)
- Tuấn Cường Võ
- Department of Parasitology and Tropical Medicine, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Hương Giang Lê
- Department of Parasitology and Tropical Medicine, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Haung Naw
- Department of Parasitology and Tropical Medicine, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Won Gi Yoo
- Department of Parasitology and Tropical Medicine, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Moe Kyaw Myint
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar
| | - Huynh Hong Quang
- Tropical Diseases Clinical and Treatment Research Department, Institute of Malariology, Parasitology, and Entomology Quy Nhon, Quy Nhon, Vietnam
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|
3
|
Andika B, Mobegi V, Gathii K, Nyataya J, Maina N, Awinda G, Mutai B, Waitumbi J. Plasmodium falciparum population structure inferred by msp1 amplicon sequencing of parasites collected from febrile patients in Kenya. Malar J 2023; 22:263. [PMID: 37689681 PMCID: PMC10492417 DOI: 10.1186/s12936-023-04700-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Multiplicity of infection (MOI) is an important measure of Plasmodium falciparum diversity, usually derived from the highly polymorphic genes, such as msp1, msp2 and glurp as well as microsatellites. Conventional methods of deriving MOI lack fine resolution needed to discriminate minor clones. This study used amplicon sequencing (AmpliSeq) of P. falciparum msp1 (Pfmsp1) to measure spatial and temporal genetic diversity of P. falciparum. METHODS 264 P. falciparum positive blood samples collected from areas of differing malaria endemicities between 2010 and 2019 were used. Pfmsp1 gene was amplified and amplicon libraries sequenced on Illumina MiSeq. Sequences were aligned against a reference sequence (NC_004330.2) and clustered to detect fragment length polymorphism and amino acid variations. RESULTS Children < 5 years had higher parasitaemia (median = 23.5 ± 5 SD, p = 0.03) than the > 5-14 (= 25.3 ± 5 SD), and those > 15 (= 25.1 ± 6 SD). Of the alleles detected, 553 (54.5%) were K1, 250 (24.7%) MAD20 and 211 (20.8%) RO33 that grouped into 19 K1 allelic families (108-270 bp), 14 MAD20 (108-216 bp) and one RO33 (153 bp). AmpliSeq revealed nucleotide polymorphisms in alleles that had similar sizes, thus increasing the K1 to 104, 58 for MAD20 and 14 for RO33. By AmpliSeq, the mean MOI was 4.8 (± 0.78, 95% CI) for the malaria endemic Lake Victoria region, 4.4 (± 1.03, 95% CI) for the epidemic prone Kisii Highland and 3.4 (± 0.62, 95% CI) for the seasonal malaria Semi-Arid region. MOI decreased with age: 4.5 (± 0.76, 95% CI) for children < 5 years, compared to 3.9 (± 0.70, 95% CI) for ages 5 to 14 and 2.7 (± 0.90, 95% CI) for those > 15. Females' MOI (4.2 ± 0.66, 95% CI) was not different from males 4.0 (± 0.61, 95% CI). In all regions, the number of alleles were high in the 2014-2015 period, more so in the Lake Victoria and the seasonal transmission arid regions. CONCLUSION These findings highlight the added advantages of AmpliSeq in haplotype discrimination and the associated improvement in unravelling complexity of P. falciparum population structure.
Collapse
Affiliation(s)
- Brian Andika
- Basic Science Laboratory, United States Army Medical Research Directorate, Kisumu, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Victor Mobegi
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Kimita Gathii
- Basic Science Laboratory, United States Army Medical Research Directorate, Kisumu, Kenya
| | - Josphat Nyataya
- Basic Science Laboratory, United States Army Medical Research Directorate, Kisumu, Kenya
| | - Naomi Maina
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - George Awinda
- Basic Science Laboratory, United States Army Medical Research Directorate, Kisumu, Kenya
| | - Beth Mutai
- Basic Science Laboratory, United States Army Medical Research Directorate, Kisumu, Kenya
| | - John Waitumbi
- Basic Science Laboratory, United States Army Medical Research Directorate, Kisumu, Kenya.
| |
Collapse
|
4
|
Arwati H, Lestarisa T, Augustina I, Rohmah EA, Subekti S, Keman S, Dachlan YP. Low Allelic Variation of Plasmodium falciparum msp-1 and msp-2 among Gold Miners in Central Kalimantan Province, Indonesia. IRANIAN JOURNAL OF PARASITOLOGY 2023; 18:10-18. [PMID: 37197082 PMCID: PMC10183447 DOI: 10.18502/ijpa.v18i1.12375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/25/2022] [Indexed: 05/19/2023]
Abstract
Background We aimed to find out the allelic variation of Pfmsp-1 and Pfmsp-2 among gold miners in Central Kalimantan Province, Indonesia using parasites' DNA isolated from archived RDT and GSBS. Methods This study was done using the samples collected between 2017-2020 from health centers in Subdistrict of Mihing Raya, Danau Rawah, and Bukit Hindu as well as Kapuas District Health Laboratory in Central Kalimantan Province, Surabaya, Indonesia. Parasites DNA were isolated from RDT cartridges and GSBS of local and migrant gold miners. Species of Plasmodium were confirmed by single step PCR. The allelic variation of Pfmsp-1 (K1, MAD20, RO33) and Pfmsp-2 (3D7, FC27) were analyzed by nested PCR. Results Pfmsp-1 gene was found in only two (22.22%) out of 9 local samples, and 3 (27.27%) out of 11 migrant samples were found positive for K1 (150 bp) as well as MAD 20 (190 bp) allelic families. Pfmsp-2 gene were found in each one sample of 550 bp fragment in local (11.11%) and migrant samples (9.09%) for 3D7, and 2 samples of 300 bp fragments in local (22.22%) and 3 samples of 300 bp in migrant samples (27.27%). No difference in size and number of infections between both populations. The RO33 allelic family Alhamdulillah was not found in any sample. Conclusion Low allelic variation of Pfmsp-1 and Pfmsp-2 genes with monogenotype indicated the low intensity of malaria transmission among gold miners in the studied areas. Further, the transmission may occur locally in the mining sites.
Collapse
Affiliation(s)
- Heny Arwati
- Department of Medical Parasitology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Trylianti Lestarisa
- Department of Public Health, Faculty of Medicine, Universitas Palangka Raya, Palangka Raya City, Indonesia
| | - Indria Augustina
- Department of Parasitology, Faculty of Medicine, Universitas Palangka Raya, Palangka Raya City, Indonesia
| | - Etik Ainun Rohmah
- Entomology Study Group, Institute of Tropical Diseases, Universitas Airlangga, Surabaya, Indonesia
| | - Sri Subekti
- Department of Marine, Faculty of Marine and Fisheries, Universitas Airlangga, Surabaya, Indonesia
| | - Soedjajadi Keman
- Department of Environmental Health, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Yoes Prijatna Dachlan
- Department of Medical Parasitology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
5
|
An In Silico Analysis of Malaria Pre-Erythrocytic-Stage Antigens Interpreting Worldwide Genetic Data to Suggest Vaccine Candidate Variants and Epitopes. Microorganisms 2022; 10:microorganisms10061090. [PMID: 35744609 PMCID: PMC9231253 DOI: 10.3390/microorganisms10061090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023] Open
Abstract
Failure to account for genetic diversity of antigens during vaccine design may lead to vaccine escape. To evaluate the vaccine escape potential of antigens used in vaccines currently in development or clinical testing, we surveyed the genetic diversity, measured population differentiation, and performed in silico prediction and analysis of T-cell epitopes of ten such Plasmodium falciparum pre-erythrocytic-stage antigens using whole-genome sequence data from 1010 field isolates. Of these, 699 were collected in Africa (Burkina Faso, Cameroon, Guinea, Kenya, Malawi, Mali, and Tanzania), 69 in South America (Brazil, Colombia, French Guiana, and Peru), 59 in Oceania (Papua New Guinea), and 183 in Asia (Cambodia, Myanmar, and Thailand). Antigens surveyed include cell-traversal protein for ookinetes and sporozoites, circumsporozoite protein, liver-stage antigens 1 and 3, sporozoite surface proteins P36 and P52, sporozoite asparagine-rich protein-1, sporozoite microneme protein essential for cell traversal-2, and upregulated-in-infectious-sporozoite 3 and 4 proteins. The analyses showed that a limited number of these protein variants, when combined, would be representative of worldwide parasite populations. Moreover, predicted T-cell epitopes were identified that could be further explored for immunogenicity and protective efficacy. Findings can inform the rational design of a multivalent malaria vaccine.
Collapse
|
6
|
Sathishkumar V, Nirmolia T, Bhattacharyya DR, Patgiri SJ. Genetic polymorphism of Plasmodium falciparum msp-1, msp-2 and glurp vaccine candidate genes in pre-artemisinin era clinical isolates from Lakhimpur district in Assam, Northeast India. Access Microbiol 2022; 4:000350. [PMID: 35812711 PMCID: PMC9260089 DOI: 10.1099/acmi.0.000350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
Background Northeast India shares its international border with Southeast Asia and has a number of malaria endemic zones. Monitoring genetic diversity of malaria parasites is important in this area as drug resistance and increasing genetic diversity form a vicious cycle in which one favours the development of the other. This retrospective study was done to evaluate the genetic diversity patterns in Plasmodium falciparum strains circulating in North Lakhimpur area of Assam in the pre-artemisinin era and compare the findings with current diversity patterns. Methods Genomic DNA extraction was done from archived blood spot samples collected in 2006 from malaria-positive cases in Lakhimpur district of Assam, Northeast India. Three antigenic markers of genetic diversity were studied – msp-1 (block-2), msp-2 (block-3) and the glurp RII region of P. falciparum using nested PCR. Results Allelic diversity was examined in 71 isolates and high polymorphism was observed. In msp-1, eight genotypes were detected; K1 (single allele), MAD20 (six different alleles) and RO33 (single allele) allelic families were noted. Among msp-2 genotypes, 22 distinct alleles were observed out of which FC27 had six alleles and IC/3D7 had 16 alleles. In RII region of glurp, nine genotypes were obtained. Expected heterozygosity (HE) values of the three antigenic markers were 0.72, 0.81 and 0.88, respectively. Multiplicity of infection (MOI) values noted were 1.28, 1.84 and 1.04 for msp-1, msp-2 and glurp, respectively. Conclusion Results suggest a high level of genetic diversity in P. falciparum msp (block-2 of msp-1 and block-3 of msp-2) and the glurp RII region in Northeast India in the pre-artemisinin era when chloroqunine was the primary drug used for uncomplicated falciparum malaria. Comparison with current studies have revealed that the genetic diversity in these genes is still high in this region, complicating malaria vaccine research.
Collapse
Affiliation(s)
- Vinayagam Sathishkumar
- ICMR-Regional Medical Research Centre, North East Region, Dibrugarh 786001, Assam, India
| | - Tulika Nirmolia
- ICMR-Regional Medical Research Centre, North East Region, Dibrugarh 786001, Assam, India
| | | | - Saurav Jyoti Patgiri
- ICMR-Regional Medical Research Centre, North East Region, Dibrugarh 786001, Assam, India
| |
Collapse
|
7
|
Massamba JE, Djontu JC, Vouvoungui CJ, Kobawila C, Ntoumi F. Plasmodium falciparum multiplicity of infection and pregnancy outcomes in Congolese women from southern Brazzaville, Republic of Congo. Malar J 2022; 21:114. [PMID: 35366882 PMCID: PMC8976437 DOI: 10.1186/s12936-022-04105-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background Investigating whether the multiplicity of Plasmodium falciparum infection (MOI) is related to pregnancy outcomes, is of interest in sub-Saharan area where malaria is highly endemic. The present study aimed to characterize the genetic diversity of P. falciparum in women at delivery from Southern Brazzaville, and investigate whether the MOI is associated with maternal anaemia, preterm delivery, or low birth weight. Methods This was a cross sectional study carried out with samples collected between March 2014 and April 2015 from 371 women recruited at delivery at a Health Centre in southern Brazzaville, Republic of Congo. Matched peripheral, placental, and cord blood collected from each of the women at delivery were used for the detection of P. falciparum microscopic and submicroscopic parasitaemia, and parasite DNA genotyping by nested PCR. Results From 371 recruited women, 27 were positive to microscopic malaria parasitaemia while 223 women harboured submicroscopic parasitaemia. All msp-1 block 2 family allelic types (K1, MAD20 and RO33) were observed in all the three compartments of blood, with K1 being most abundant. K1 (with 12, 10, and 08 alleles in the peripheral, placental, and cord blood respectively) and MAD20 (with 10, 09, and 06 alleles in the respective blood compartments) were more diverse compared to RO33 (with 06, 06, and 05 alleles in the respective blood compartments). From the 250 women with microscopic and/or submicroscopic parasitaemia, 38.5%, 30.5%, and 18.4% of peripheral, placental and cord blood sample, respectively, harboured more than one parasite clone, and polyclonal infection was more prevalent in the peripheral blood of women with microscopic parasitaemia (54.5%) compared to those with submicroscopic parasitaemia (36.7%) (p = 0.02). The mean multiplicity of genotypes per microscopic and submicroscopic infection in peripheral blood was higher in anemic women (2.00 ± 0.23 and 1.66 ± 0.11, respectively) than in non-anaemic women (1.36 ± 0.15 and 1.45 ± 0.06, respectively) (p = 0.03 and 0.06). In logistic regression, women infected with four or more clones of the parasite were 9.4 times more likely to be anaemic than women harbouring one clone. This association, however, was only observed with the peripheral blood infection. No significant association was found between the MOI and low birth weight or preterm delivery. Conclusions These results indicate that the genetic diversity of P. falciparum is high in pregnant women from southern Brazzaville in the Republic of Congo, and the multiplicity of the infection might represent a risk for maternal anaemia.
Collapse
|
8
|
Chen YA, Shiu TJ, Tseng LF, Cheng CF, Shih WL, de Assunção Carvalho AV, Tsai KH. Dynamic changes in genetic diversity, drug resistance mutations, and treatment outcomes of falciparum malaria from the low-transmission to the pre-elimination phase on the islands of São Tomé and Príncipe. Malar J 2021; 20:467. [PMID: 34906134 PMCID: PMC8672503 DOI: 10.1186/s12936-021-04007-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/03/2021] [Indexed: 11/29/2022] Open
Abstract
Background With effective vector control and case management, substantial progress has been made towards eliminating malaria on the islands of São Tomé and Príncipe (STP). This study assessed the dynamic changes in the genetic diversity of Plasmodium falciparum, the anti-malarial drug resistance mutations, and malaria treatment outcomes between 2010 and 2016 to provide insights for the prevention of malaria rebounding. Methods Polymorphic regions of merozoite surface proteins 1 and 2 (msp1 and msp2) were sequenced in 118 dried blood spots (DBSs) collected from malaria patients who had visited the Central Hospital in 2010–2016. Mutations in the multi-drug resistance I (pfmdr1), chloroquine resistance transporter (pfcrt), and kelch 13 (pfk13) genes were analysed by polymerase chain reaction-restriction fragment length polymorphism (PCR–RFLP) and sequencing in 111 DBSs. A total of 7482 cases that completed a 28-day follow-up were evaluated for treatment outcomes based on the microscopic results. Regression models were used to characterize factors associated with levels of parasite density and treatment failures. Results Parasite strains in STP showed significant changes during and after the peak incidence in 2012. The prevalent allelic type in msp1 changed from K1 to MAD20, and that in msp2 changed from 3D7/IC to FC27. The dominant alleles of drug-resistance markers were pfmdr1 86Y, 184F, D1246, and pfcrt 76 T (Y-F-D-T, 51.4%). The average parasite density in malaria cases declined threefold from low-transmission (2010–2013) to pre-elimination period (2014–2016). Logistic regression models showed that patients with younger age (OR for age = 0.97–0.98, p < 0.001), higher initial parasite density (log10-transformed, OR = 1.44, p < 0.001), and receiving quinine treatment (compared to artemisinin-based combination therapy, OR = 1.91–1.96, p < 0.001) were more likely to experience treatment failures during follow-up. Conclusions Plasmodium falciparum in STP had experienced changes in prevalent strains, and increased mutation frequencies in drug-resistance genes from the low-transmission to the pre-elimination settings. Notably, patients with younger age and receiving quinine treatment were more likely to show parasitological treatment failure during follow-up. Therapeutic efficacy should be carefully monitored to inform future treatment policy in STP. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-04007-3.
Collapse
Affiliation(s)
- Ying-An Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Tsen-Ju Shiu
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Lien-Fen Tseng
- Taiwan Anti-Malaria Advisory Mission, São Tomé, São Tomé and Príncipe
| | - Chien-Fu Cheng
- Taiwan Anti-Malaria Advisory Mission, São Tomé, São Tomé and Príncipe
| | - Wei-Liang Shih
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Infectious Diseases Research and Education Center, Ministry of Health and Welfare and National Taiwan University, Taipei, Taiwan.,Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | | | - Kun-Hsien Tsai
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan. .,Taiwan Anti-Malaria Advisory Mission, São Tomé, São Tomé and Príncipe. .,Infectious Diseases Research and Education Center, Ministry of Health and Welfare and National Taiwan University, Taipei, Taiwan. .,Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
9
|
Van Long B, Allen G, Brauny M, Linh LTK, Pallerla SR, Huyen TTT, Van Tong H, Toan NL, Quyet D, Son HA, Velavan TP. Molecular surveillance and temporal monitoring of malaria parasites in focal Vietnamese provinces. Malar J 2020; 19:458. [PMID: 33384023 PMCID: PMC7775626 DOI: 10.1186/s12936-020-03561-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While the World Health Organization (WHO) Southeast Asia region has the second highest incidence of malaria worldwide, malaria in Vietnam is focal to few provinces, where delayed parasite clearance to anti-malarial drugs is documented. This study aims to understand Plasmodium species distribution and the genetic diversity of msp1 and msp2 of parasite populations using molecular tools. METHODS A total of 222 clinical isolates from individuals with uncomplicated malaria were subjected to Plasmodium species identification by nested real-time PCR. 166 isolates positive for Plasmodium falciparum mono infections were further genotyped for msp1 (MAD20, K1, and RO33), and msp2 allelic families (3D7 and FC27). Amplicons were resolved through capillary electrophoresis in the QIAxcel Advanced system. RESULTS Mono-infections were high and with 75% P. falciparum, 14% Plasmodium vivax and 9% P. falciparum/P. vivax co-infections, with less than 1% Plasmodium malariae identified. For msp1, MAD20 was the most prevalent (99%), followed by K1 (46%) allelic family, with no sample testing positive for RO33 (0%). For msp2, 3D7 allelic family was predominant (97%), followed by FC27 (10%). The multiplicity of infection of msp1 and msp2 was 2.6 and 1.1, respectively, and the mean overall multiplicity of infection was 3.7, with the total number of alleles ranging from 1 to 7. CONCLUSIONS Given the increasing importance of antimalarial drugs in the region, the genetic diversity of P. falciparum msp1 and msp2 should be regularly monitored with respect to treatment outcomes and/or efficacy studies in regions, where there are ongoing changes in the malaria epidemiology.
Collapse
Affiliation(s)
- Bui Van Long
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany
| | - Genevieve Allen
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany
| | - Melanie Brauny
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany
| | - Le Thi Kieu Linh
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany.,Vietnamese-German Centre for Medical Research (VG-CARE), Hanoi, Vietnam
| | - Srinivas Reddy Pallerla
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany
| | - Tran Thi Thu Huyen
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Hoang Van Tong
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam.,Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Linh Toan
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Do Quyet
- Vietnam Military Medical University, Hanoi, Vietnam
| | - Ho Anh Son
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam.
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany. .,Vietnamese-German Centre for Medical Research (VG-CARE), Hanoi, Vietnam.
| |
Collapse
|
10
|
Ndiaye T, Sy M, Gaye A, Siddle KJ, Park DJ, Bei AK, Deme AB, Mbaye A, Dieye B, Ndiaye YD, Ndiaye IM, Diallo MA, Diongue K, Volkman SK, Badiane AS, Ndiaye D. Molecular epidemiology of Plasmodium falciparum by multiplexed amplicon deep sequencing in Senegal. Malar J 2020; 19:403. [PMID: 33172455 PMCID: PMC7654156 DOI: 10.1186/s12936-020-03471-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/30/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molecular epidemiology can provide important information regarding the genetic diversity and transmission of Plasmodium falciparum, which can assist in designing and monitoring elimination efforts. However, malaria molecular epidemiology including understanding the genetic diversity of the parasite and performing molecular surveillance of transmission has been poorly documented in Senegal. Next Generation Sequencing (NGS) offers a practical, fast and high-throughput approach to understand malaria population genetics. This study aims to unravel the population structure of P. falciparum and to estimate the allelic diversity, multiplicity of infection (MOI), and evolutionary patterns of the malaria parasite using the NGS platform. METHODS Multiplex amplicon deep sequencing of merozoite surface protein 1 (PfMSP1) and merozoite surface protein 2 (PfMSP2) in fifty-three P. falciparum isolates from two epidemiologically different areas in the South and North of Senegal, was carried out. RESULTS A total of 76 Pfmsp1 and 116 Pfmsp2 clones were identified and 135 different alleles were found, 56 and 79 belonged to the pfmsp1 and pfmsp2 genes, respectively. K1 and IC3D7 allelic families were most predominant in both sites. The local haplotype diversity (Hd) and nucleotide diversity (π) were higher in the South than in the North for both genes. For pfmsp1, a high positive Tajima's D (TD) value was observed in the South (D = 2.0453) while negative TD value was recorded in the North (D = - 1.46045) and F-Statistic (Fst) was 0.19505. For pfmsp2, non-directional selection was found with a highly positive TD test in both areas and Fst was 0.02111. The mean MOI for both genes was 3.07 and 1.76 for the South and the North, respectively, with a statistically significant difference between areas (p = 0.001). CONCLUSION This study revealed a high genetic diversity of pfmsp1 and pfmsp2 genes and low genetic differentiation in P. falciparum population in Senegal. The MOI means were significantly different between the Southern and Northern areas. Findings also showed that multiplexed amplicon deep sequencing is a useful technique to investigate genetic diversity and molecular epidemiology of P. falciparum infections.
Collapse
Affiliation(s)
- Tolla Ndiaye
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal.
| | - Mouhamad Sy
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Amy Gaye
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | | | - Daniel J Park
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amy K Bei
- Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA
| | - Awa B Deme
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Aminata Mbaye
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Baba Dieye
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Yaye Die Ndiaye
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Ibrahima Mbaye Ndiaye
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Mamadou Alpha Diallo
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Khadim Diongue
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Sarah K Volkman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard University, Cambridge, MA, USA
| | - Aida Sadikh Badiane
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Daouda Ndiaye
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
- Department of Immunology and Infectious Diseases, Harvard University, Cambridge, MA, USA
| |
Collapse
|
11
|
Metoh TN, Chen JH, Fon-Gah P, Zhou X, Moyou-Somo R, Zhou XN. Genetic diversity of Plasmodium falciparum and genetic profile in children affected by uncomplicated malaria in Cameroon. Malar J 2020; 19:115. [PMID: 32188442 PMCID: PMC7081701 DOI: 10.1186/s12936-020-03161-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/12/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Malaria is a major public health problem in Cameroon. The study of the genetic diversity within parasite population is essential for understanding the mechanism underlying malaria pathology and to determine parasite clones profile in an infection, for proper malaria control strategies. The objective of this study was to perform a molecular characterization of highly polymorphic genetic markers of Plasmodium falciparum, and to determine allelic distribution with their influencing factors valuable to investigate malaria transmission dynamics in Cameroon. METHODS A total of 350 P. falciparum clinical isolates were characterized by genotyping block 2 of msp-1, block 3 of msp-2, and region II of glurp gene using nested PCR and DNA sequencing between 2012 and 2013. RESULTS A total of 5 different genotypes with fragment sizes ranging from 597 to 817 bp were recorded for GLURP. Overall, 16 MSP-1 genotypes, including K1, MAD20 and RO33 were identified, ranging from 153 to 335 bp. A peculiarity about this study is the RO33 monomorphic pattern revealed among the Pfmsp-1 allelic type. Again, this study identified 27 different Pfmsp-2 genotypes, ranging from 140 to 568 bp in size, including 15 belonging to the 3D7-type and 12 to the FC27 allelic families. The analysis of the MSP-1 and MSP-2 peptides indicates that the region of the alignment corresponding K1 polymorphism had the highest similarity in the MSP1and MSP2 clade followed by MAD20 with 93% to 100% homology. Therefore, population structure of P. falciparum isolates is identical to that of other areas in Africa, suggesting that vaccine developed with K1 and MAD20 of Pfmsp1 allelic variant could be protective for Africa children but these findings requires further genetic and immunological investigations. The multiplicity of infection (MOI) was significantly higher (P < 0.05) for Pfmsp-2 loci (3.82), as compare with Pfmsp-1 (2.51) and heterozygotes ranged from 0.55 for Pfmsp-1 to 0.96 for Pfmsp-2. CONCLUSION High genetic diversity and allelic frequencies in P. falciparum isolates indicate a persisting high level of transmission. This study advocate for an intensification of the malaria control strategies in Cameroon. Trial registration This study was approved by Cameroon National Ethics Committee. It is a randomized controlled trial retrospectively registered in NIH U.S. National Library of Medicine, ClinicalTrials.gov on the 28/11/2016 at https://clinicaltrials.gov/ct2/show/NCT02974348 with the registration number NCT02974348.
Collapse
Affiliation(s)
- Theresia Njuabe Metoh
- Department of Biochemistry, Faculty of Science, The University of Bamenda, P. O. Box 39 Bambili, Bamenda, Cameroon.
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, Shanghai, 200025, People's Republic of China.
- WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, People's Republic of China.
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, Shanghai, 200025, People's Republic of China
- WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, People's Republic of China
| | - Philip Fon-Gah
- ITC Enschede, University of Twenty, Hengelosestraat 99, 7514 AE, Enschede, The Netherlands
- Department of Geoscience-Remote Sensing and GIS, The University of Bamenda, P. O. Box 39 Bambili, Bamenda, Cameroon
| | - Xia Zhou
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, Shanghai, 200025, People's Republic of China
- WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, People's Republic of China
| | - Roger Moyou-Somo
- Institute of Medical Research and Medicinal Plants-IMPM, P. O. 6123, Yaoundé, Cameroon
- Faculty of Medicines and Biomedical Sciences, The University of Yaoundé I, P. O. Box 812, Yaoundé, Cameroon
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, Shanghai, 200025, People's Republic of China
- WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, People's Republic of China
| |
Collapse
|
12
|
Zhang CL, Zhou HN, Liu Q, Yang YM. Genetic polymorphism of merozoite surface proteins 1 and 2 of Plasmodium falciparum in the China-Myanmar border region. Malar J 2019; 18:367. [PMID: 31744492 PMCID: PMC6862846 DOI: 10.1186/s12936-019-3003-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Malaria is a major public health problem in the China-Myanmar border region. The genetic structure of malaria parasite may affect its transmission model and control strategies. The present study was to analyse genetic diversity of Plasmodium falciparum by merozoite surface proteins 1 and 2 (MSP1 and MSP2) and to determine the multiplicity of infection in clinical isolates in the China-Myanmar border region. METHODS Venous blood samples (172) and filter paper blood spots (70) of P. falciparum isolates were collected from the patients of the China-Myanmar border region from 2006 to 2011. The genomic DNA was extracted, and the msp1 and msp2 genes were genotyped by nested PCR using allele-specific primers for P. falciparum. RESULTS A total of 215 P. falciparum clinical isolates were genotyped at the msp1 (201) and msp2 (204), respectively. For the msp1 gene, MAD20 family was dominant (53.49%), followed by the K1 family (44.65%), and the RO33 family (12.56%). For the msp2 gene, the most frequent allele was the FC27 family (80.93%), followed by the 3D7 family (75.81%). The total multiplicity of infection (MOI) of msp1 and msp2 was 1.76 and 2.21, with a prevalence of 64.19% and 72.09%, respectively. A significant positive correlation between the MOI and parasite density was found in the msp1 gene of P. falciparum. Sequence analysis revealed 38 different alleles of msp1 (14 K1, 23 MAD20, and 1 RO33) and 52 different alleles of msp2 (37 3D7 and 15 FC27). CONCLUSION The present study showed the genetic polymorphisms with diverse allele types of msp1 and msp2 as well as the high MOI of P. falciparum clinical isolates in the China-Myanmar border region.
Collapse
Affiliation(s)
- Cang-Lin Zhang
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan Provincial Center of Malaria Research, Yunnan Institute of Parasitic Diseases, Pu'er, 665000, Yunnan, China
| | - Hong-Ning Zhou
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan Provincial Center of Malaria Research, Yunnan Institute of Parasitic Diseases, Pu'er, 665000, Yunnan, China
| | - Quan Liu
- School of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong, China.
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Ya-Ming Yang
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan Provincial Center of Malaria Research, Yunnan Institute of Parasitic Diseases, Pu'er, 665000, Yunnan, China.
| |
Collapse
|
13
|
Characterization of drug resistance and genetic diversity of Plasmodium falciparum parasites from Tripura, Northeast India. Sci Rep 2019; 9:13704. [PMID: 31548652 PMCID: PMC6757058 DOI: 10.1038/s41598-019-50152-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 09/06/2019] [Indexed: 01/23/2023] Open
Abstract
Monitoring of anti-malarial drug resistance is vital in Northeast India as this region shares its international border with Southeast Asia. Genetic diversity of Plasmodium parasites regulates transmission dynamics, disease severity and vaccine efficacy. P. falciparum chloroquine resistance transporter (Pfcrt), multidrug resistance-1 (Pfmdr-1) and kelch 13 propeller (PfK-13) genes which govern antimalarial drug resistance and three genetic diversity markers, merozoite surface protein 1 and 2 (Pfmsp-1, Pfmsp-2) and glutamate rich protein (Pfglurp) were evaluated from Tripura, Northeast India using molecular tools. In the Pfcrt gene, 87% isolates showed triple mutations at codons M74I, N75E and K76T. 12.5% isolates in Pfmdr-1 gene showed mutation at N86Y. No polymorphism in PfK-13 propeller was found. Polyclonal infections were observed in 53.85% isolates and more commonly in adults (p = 0.0494). In the Pfmsp-1 locus, the K1 allelic family was predominant (71.2%) followed by the 3D7/IC family (69.2%) in the Pfmsp-2 locus. RII region of Pfglurp exhibited nine alleles with expected heterozygosity of 0.85. The multiplicity of infection for Pfmsp-1, Pfmsp-2 and Pfglurp were 1.56, 1.31 and 1.06 respectively. Overall, the study demonstrated a high level of chloroquine resistance and extensive parasite diversity in the region, necessitating regular surveillance in this population group.
Collapse
|
14
|
Lê HG, Kang JM, Jun H, Lee J, Thái TL, Myint MK, Aye KS, Sohn WM, Shin HJ, Kim TS, Na BK. Changing pattern of the genetic diversities of Plasmodium falciparum merozoite surface protein-1 and merozoite surface protein-2 in Myanmar isolates. Malar J 2019; 18:241. [PMID: 31311565 PMCID: PMC6636015 DOI: 10.1186/s12936-019-2879-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Plasmodium falciparum merozoite surface protein-1 (PfMSP-1) and -2 (PfMSP-2) are major blood-stage vaccine candidate antigens. Understanding the genetic diversity of the genes, pfmsp-1 and pfmsp-2, is important for recognizing the genetic structure of P. falciparum, and the development of an effective vaccine based on the antigens. In this study, the genetic diversities of pfmsp-1 and pfmsp-2 in the Myanmar P. falciparum were analysed. METHODS The pfmsp-1 block 2 and pfmsp-2 block 3 regions were amplified by polymerase chain reaction from blood samples collected from Myanmar patients who were infected with P. falciparum in 2013-2015. The amplified gene fragments were cloned into a T&A vector, and sequenced. Sequence analysis of Myanmar pfmsp-1 block 2 and pfmsp-2 block 3 was performed to identify the genetic diversity of the regions. The temporal genetic changes of both pfmsp-1 and pfmsp-2 in the Myanmar P. falciparum population, as well as the polymorphic diversity in the publicly available global pfmsp-1 and pfmsp-2, were also comparatively analysed. RESULTS High levels of genetic diversity of pfmsp-1 and pfmsp-2 were observed in the Myanmar P. falciparum isolates. Twenty-eight different alleles of pfmsp-1 (8 for K1 type, 14 for MAD20 type, and 6 for RO33 type) and 59 distinct alleles of pfmsp-2 (18 for FC27, and 41 for 3D7 type) were identified in the Myanmar P. falciparum population in amino acid level. Comparative analyses of the genetic diversity of the Myanmar pfmsp-1 and pfmsp-2 alleles in the recent (2013-2015) and past (2004-2006) Myanmar P. falciparum populations indicated the dynamic genetic expansion of the pfmsp-1 and pfmsp-2 in recent years, suggesting that a high level of genetic differentiation and recombination of the two genes may be maintained. Population genetic structure analysis of the global pfmsp-1 and pfmsp-2 also suggested that a high level of genetic diversity of the two genes was found in the global P. falciparum population. CONCLUSION Despite the recent remarkable decline of malaria cases, the Myanmar P. falciparum population still remains of sufficient size to allow the generation and maintenance of genetic diversity. The high level of genetic diversity of pfmsp-1 and pfmsp-2 in the global P. falciparum population emphasizes the necessity for continuous monitoring of the genetic diversity of the genes for better understanding of the genetic make-up and evolutionary aspect of the genes in the global P. falciparum population.
Collapse
Affiliation(s)
- Hương Giang Lê
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Hojong Jun
- Department of Tropical Medicine, and Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Jinyoung Lee
- Department of Tropical Medicine, and Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Thị Lam Thái
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Moe Kyaw Myint
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar
| | - Khin Saw Aye
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
| | - Ho-Joon Shin
- Department of Microbiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Tong-Soo Kim
- Department of Tropical Medicine, and Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea. .,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|
15
|
Efficacy of Artemisinin Base Combination Therapy and Genetic Diversity of Plasmodium falciparum from Uncomplicated Malaria Falciparum Patient in District of Pesawaran, Province of Lampung, Indonesia. IRANIAN JOURNAL OF PARASITOLOGY 2019; 14:143-150. [PMID: 31123479 PMCID: PMC6511592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Malaria is an infectious disease caused by Plasmodium sp., that still prevalence in some part of Indonesia. District of Pesawaran is one of malaria endemic area in the Province of Lampung. The purpose of this study was to evaluate the efficacy of the ACT treatment in the District of Pesawaran Province of Lampung, Indonesia from Dec 2012 to Jul 2013 and the genetic variation of the Plasmodium falciparum also studied. METHODS This study was observational analytic study of falciparum malaria patients treated with ACT and primaquine (DHP-PQ and AAQ-PQ) at Hanura Primary Health Centre (Puskesmas). DNA isolation was done with QIAmp DNA Mini Kit. Amplification of PfMDR1, MSP1, and MSP2 genes was done with appropriate forward and reverse primer and procedures optimized first. PCR Product of PfMDR1 gene was prepared for sequencing. Data analysis was done with MEGA 6 software. RESULTS The results of this research are DHP-PQ effectiveness was still wellness among falciparum malaria patients in District of Pesawaran, Province of Lampung, Indonesia. There is Single-nucleotide mutation of N86Y of PfMDR1 gene. The dominant alleles found are MAD20 and 3D7 alleles with Multiplicity of Infection (MOI) are low. CONCLUSION Therapy of DHP-PQ as an antimalarial falciparum in Pesawaran District, Lampung, Indonesia is still good. The genetic variation found was the SNP on the N86Y PfMDR1 gene, with dominant allele MAD20 and 3D7.
Collapse
|
16
|
Thái TL, Jun H, Lee J, Kang JM, Lê HG, Lin K, Thant KZ, Sohn WM, Kim TS, Na BK. Genetic diversity of merozoite surface protein-1 C-terminal 42 kDa of Plasmodium falciparum (PfMSP-1 42) may be greater than previously known in global isolates. Parasit Vectors 2018; 11:455. [PMID: 30081943 PMCID: PMC6080494 DOI: 10.1186/s13071-018-3027-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/20/2018] [Indexed: 11/16/2022] Open
Abstract
Background The C-terminal 42 kDa region of merozoite surface protein-1 of Plasmodium falciparum (PfMSP-142) is the target of an immune response. It has been recognised as one of the promising candidate antigens for a blood-stage malaria vaccine. Genetic structure of PfMSP-142 has been considered to be largely conserved in the P. falciparum population. However, only limited information is currently available. This study aimed to analyse genetic diversity and the effect of natural selection on PfMSP-142 among the Myanmar P. falciparum population and compare them with publicly available PfMSP-142 from global P. falciparum populations. Methods A total of 69 P. falciparum clinical isolates collected from Myanmar malaria patients in Upper Myanmar in 2015 were used. The PfMSP-142 region was amplified by polymerase chain reaction, cloned and sequenced. Genetic structure and natural selection of this region were analysed using MEGA4 and DnaSP programs. Polymorphic nature and natural selection in global PfMSP-142 were also investigated. Results All three allele types (MAD20, K1, and RO33) of PfMSP-142 were identified in Myanmar isolates of P. falciparum. Myanmar PfMSP-142 displayed genetic diversity. Most polymorphisms were scattered in blocks 16 and 17. Polymorphisms observed in Myanmar PfMSP-142 showed a similar pattern to those of global PfMSP-142; however, they were not identical to each other. Genetic diversity of Myanmar PfMSP-142 was relatively lower than that of PfMSP-142 from different geographical regions. Evidence of natural selection and recombination were found. Comparative analysis of genetic polymorphism and natural selection in the global PfMSP-142 population suggested that this region was not tightly conserved in global PfMSP-142 as previously thought and is under the complicated influence of natural selection and recombination. Conclusions Global PfMSP-142 revealed limited, but non-negligible, genetic diversity by allele types and geographical origins. Complicated natural selection and potential recombination might have occurred in global PfMSP-142. Comprehensive monitoring of genetic diversity for global PfMSP-142 would be needed to better understand the polymorphic nature and evolutionary aspect of PfMSP-142 in the global P. falciparum population. More thought would be necessary for designing a vaccine based on PfMSP-142. Electronic supplementary material The online version of this article (10.1186/s13071-018-3027-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thị Lam Thái
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Hojong Jun
- Department of Tropical Medicine, and Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Jinyoung Lee
- Department of Tropical Medicine, and Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Hương Giang Lê
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Khin Lin
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar
| | - Kyaw Zin Thant
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
| | - Tong-Soo Kim
- Department of Tropical Medicine, and Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, 22212, Republic of Korea.
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea. .,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|
17
|
Huang B, Tuo F, Liang Y, Wu W, Wu G, Huang S, Zhong Q, Su XZ, Zhang H, Li M, Bacar A, Abdallah KS, Mliva AMSA, Wang Q, Yang Z, Zheng S, Xu Q, Song J, Deng C. Temporal changes in genetic diversity of msp-1, msp-2, and msp-3 in Plasmodium falciparum isolates from Grande Comore Island after introduction of ACT. Malar J 2018; 17:83. [PMID: 29458365 PMCID: PMC5819244 DOI: 10.1186/s12936-018-2227-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/08/2018] [Indexed: 11/26/2022] Open
Abstract
Background Malaria is still one of the serious public health problems in Grande Comore Island, although the number of annual cases has been greatly reduced in recent years. A better understanding of malaria parasite population diversity and transmission dynamics is critical for assessing the effectiveness of malaria control measures. The objective of this study is to investigate temporal changes in genetic diversity of Plasmodium falciparum populations and multiplicity of infection (MOI) in Grande Comore 10 years after introduction of ACT. Methods A total of 232 P. falciparum clinical isolates were collected from the Grande Comore Island during two sampling periods (118 for 2006‒2007 group, and 114 for 2013‒2016 group). Parasite isolates were characterized for genetic diversity and complexity of infection by genotyping polymorphic regions in merozoite surface protein gene 1 (msp-1), msp-2, and msp-3 using nested PCR and DNA sequencing. Results Three msp-1 alleles (K1, MAD20, and RO33), two msp-2 alleles (FC27 and 3D7), and two msp-3 alleles (K1 and 3D7) were detected in parasites of both sampling periods. The RO33 allele of msp-1 (84.8%), 3D7 allele of msp-2 (90.8%), and K1 allele of msp-3 (66.7%) were the predominant allelic types in isolates from 2006–2007 group. In contrast, the RO33 allele of msp-1 (63.4%), FC27 allele of msp-2 (91.1%), and 3D7 allele of msp-3 (53.5%) were the most prevalent among isolates from the 2013–2016 group. Compared with the 2006‒2007 group, polyclonal infection rates of msp-1 (from 76.7 to 29.1%, P < 0.01) and msp-2 (from 62.4 to 28.3%, P < 0.01) allelic types were significantly decreased in those from 2013‒2016 group. Similarly, the MOIs for both msp-1 and msp-2 were higher in P. falciparum isolates in the 2006–2007 group than those in 2013–2016 group (MOI = 3.11 vs 1.63 for msp-1; MOI = 2.75 vs 1.35 for msp-2). DNA sequencing analyses also revealed reduced numbers of distinct sequence variants in the three genes from 2006‒2007 to 2013‒2016: msp-1, from 32 to 23 (about 28% decline); msp-2 from 29 to 21 (about 28% decline), and msp-3 from 11 to 3 (about 72% decline). Conclusions The present data showed dramatic reduction in genetic diversity and MOI among Grande Comore P. falciparum populations over the course of the study, suggesting a trend of decreasing malaria transmission intensity and genetic diversity in Grande Comore Island. These data provide valuable information for surveillance of P. falciparum infection and for assessing the appropriateness of the current malarial control strategies in the endemic area.
Collapse
Affiliation(s)
- Bo Huang
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China.,Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Fei Tuo
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Yuan Liang
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Wanting Wu
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Guangchao Wu
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Shiguang Huang
- School of Stomatology, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Qirun Zhong
- Artepharm, Co., Ltd, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hongying Zhang
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Mingqiang Li
- Artepharm, Co., Ltd, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Affane Bacar
- National Malaria Control Programme, BP 500, Moroni, Comoros
| | | | | | - Qi Wang
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Zhaoli Yang
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Shaoqin Zheng
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Qin Xu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Jianping Song
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China. .,Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China.
| | - Changsheng Deng
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China. .,Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China.
| |
Collapse
|
18
|
Sequence variation in Plasmodium falciparum merozoite surface protein-2 is associated with virulence causing severe and cerebral malaria. PLoS One 2018; 13:e0190418. [PMID: 29342212 PMCID: PMC5771562 DOI: 10.1371/journal.pone.0190418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/14/2017] [Indexed: 11/20/2022] Open
Abstract
Parasite virulence, an important factor contributing to the severity of Plasmodium falciparum infection, varies among P. falciparum strains. Relatively little is known regarding markers of virulence capable of identifying strains responsible for severe malaria. We investigated the effects of genetic variations in the P.f. merozoite surface protein 2 gene (msp2) on virulence, as it was previously postulated as a factor. We analyzed 300 msp2 sequences of single P. falciparum clone infection from patients with uncomplicated disease as well as those admitted for severe malaria with and without cerebral disease. The association of msp2 variations with disease severity was examined. We found that the N allele at codon 8 of Block 2 in the FC27-like msp2 gene was significantly associated with severe disease without cerebral complications (odds ratio = 2.73, P = 0.039), while the K allele at codon 17 of Block 4 in the 3D7-like msp2 gene was associated with cerebral malaria (odds ratio = 3.52, P = 0.024). The data suggests possible roles for the associated alleles on parasite invasion processes and immune-mediated pathogenicity. Multiplicity of infection was found to associate with severe disease without cerebral complications, but not cerebral malaria. Variations in the msp2-FC27-block 2-8N and 3D7-block 4-17K allele appear to be parasite virulence markers, and may be useful in determining the likelihood for severe and cerebral malaria. Their interactions with potential host factors for severe diseases should also be explored.
Collapse
|
19
|
Miller RH, Hathaway NJ, Kharabora O, Mwandagalirwa K, Tshefu A, Meshnick SR, Taylor SM, Juliano JJ, Stewart VA, Bailey JA. A deep sequencing approach to estimate Plasmodium falciparum complexity of infection (COI) and explore apical membrane antigen 1 diversity. Malar J 2017; 16:490. [PMID: 29246158 PMCID: PMC5732508 DOI: 10.1186/s12936-017-2137-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/06/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Humans living in regions with high falciparum malaria transmission intensity harbour multi-strain infections comprised of several genetically distinct malaria haplotypes. The number of distinct malaria parasite haplotypes identified from an infected human host at a given time is referred to as the complexity of infection (COI). In this study, an amplicon-based deep sequencing method targeting the Plasmodium falciparum apical membrane antigen 1 (pfama1) was utilized to (1) investigate the relationship between P. falciparum prevalence and COI, (2) to explore the population genetic structure of P. falciparum parasites from malaria asymptomatic individuals participating in the 2007 Demographic and Health Survey (DHS) in the Democratic Republic of Congo (DRC), and (3) to explore selection pressures on geospatially divergent parasite populations by comparing AMA1 amino acid frequencies in the DRC and Mali. RESULTS A total of 900 P. falciparum infections across 11 DRC provinces were examined. Deep sequencing of both individuals, for COI analysis, and pools of individuals, to examine population structure, identified 77 unique pfama1 haplotypes. The majority of individual infections (64.5%) contained polyclonal (COI > 1) malaria infections based on the presence of genetically distinct pfama1 haplotypes. A minimal correlation between COI and malaria prevalence as determined by sensitive real-time PCR was identified. Population genetic analyses revealed extensive haplotype diversity, the vast majority of which was shared across the sites. AMA1 amino acid frequencies were similar between parasite populations in the DRC and Mali. CONCLUSIONS Amplicon-based deep sequencing is a useful tool for the detection of multi-strain infections that can aid in the understanding of antigen heterogeneity of potential malaria vaccine candidates, population genetics of malaria parasites, and factors that influence complex, polyclonal malaria infections. While AMA1 and other diverse markers under balancing selection may perform well for understanding COI, they may offer little geographic or temporal discrimination between parasite populations.
Collapse
Affiliation(s)
- Robin H Miller
- Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, USA
| | - Nicholas J Hathaway
- Program in Bioinformatics and Integrative Biology, University of Massachusetts School of Medicine, 55 Lake Avenue North, Worcester, MA, USA
| | - Oksana Kharabora
- University of North Carolina School of Medicine, 101 Manning Drive, Chapel Hill, NC, USA
| | - Kashamuka Mwandagalirwa
- Ecole de Santé Publique, Université de Kinshasa, Commune de Lemba, P.O Box 11850, Kinshasa, Democratic Republic of Congo
| | - Antoinette Tshefu
- Ecole de Santé Publique, Université de Kinshasa, Commune de Lemba, P.O Box 11850, Kinshasa, Democratic Republic of Congo
| | - Steven R Meshnick
- University of North Carolina School of Medicine, 101 Manning Drive, Chapel Hill, NC, USA
| | - Steve M Taylor
- Division of Infectious Diseases and Duke Global Health Institute, Duke University Medical Center, 303 Research Drive, Durham, NC, USA
| | - Jonathan J Juliano
- University of North Carolina School of Medicine, 101 Manning Drive, Chapel Hill, NC, USA
| | - V Ann Stewart
- Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, USA
| | - Jeffrey A Bailey
- Program in Bioinformatics and Integrative Biology, University of Massachusetts School of Medicine, 55 Lake Avenue North, Worcester, MA, USA.
| |
Collapse
|
20
|
Soe TN, Wu Y, Tun MW, Xu X, Hu Y, Ruan Y, Win AYN, Nyunt MH, Mon NCN, Han KT, Aye KM, Morris J, Su P, Yang Z, Kyaw MP, Cui L. Genetic diversity of Plasmodium falciparum populations in southeast and western Myanmar. Parasit Vectors 2017; 10:322. [PMID: 28676097 PMCID: PMC5496439 DOI: 10.1186/s13071-017-2254-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/19/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genetic diversity of malaria parasites reflects the complexity and size of the parasite populations. This study was designed to explore the genetic diversity of Plasmodium falciparum populations collected from two southeastern areas (Shwekyin and Myawaddy bordering Thailand) and one western area (Kyauktaw bordering Bangladesh) of Myanmar. METHODS A total of 267 blood samples collected from patients with acute P. falciparum infections during 2009 and 2010 were used for genotyping at the merozoite surface protein 1 (Msp1), Msp2 and glutamate-rich protein (Glurp) loci. RESULTS One hundred and eighty four samples were successfully genotyped at three genes. The allelic distributions of the three genes were all significantly different among three areas. MAD20 and 3D7 were the most prevalent alleles in three areas for Msp1 and Msp2, respectively. The Glurp allele with a bin size of 700-750 bp was the most prevalent both in Shwekyin and Myawaddy, whereas two alleles with bin sizes of 800-850 bp and 900-1000 bp were the most prevalent in the western site Kyauktaw. Overall, 73.91% of samples contained multiclonal infections, resulting in a mean multiplicity of infection (MOI) of 1.94. Interestingly, the MOI level presented a rising trend with the order of Myawaddy, Kyauktaw and Shwekyin, which also paralleled with the increasing frequencies of Msp1 RO33 and Msp2 FC27 200-250 bp alleles. Msp1 and Msp2 genes displayed higher levels of diversity and higher MOI rates than Glurp. PCR revealed four samples (two from Shwekyin and two from Myawaddy) with mixed infections of P. falciparum and P. vivax. CONCLUSIONS This study genotyped parasite clinical samples from two southeast regions and one western state of Myanmar at the Msp1, Msp2 and Glurp loci, which revealed high levels of genetic diversity and mixed-strain infections of P. falciparum populations at these sites. The results indicated that malaria transmission intensity in these regions remained high and more strengthened control efforts are needed. The genotypic data provided baseline information for monitoring the impacts of malaria elimination efforts in the region.
Collapse
Affiliation(s)
- Than Naing Soe
- Department of Public Health, Ministry of Health and Sports, Nay Pyi Taw, Myanmar
| | - Yanrui Wu
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China.,Department of Cell Biology & Genetics, Kunming Medical University, Kunming, China
| | - Myo Win Tun
- Department of Medical Research, Yangon city, Myanmar
| | - Xin Xu
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Yue Hu
- Department of Pathology, Kunming Medical University, Kunming, China
| | - Yonghua Ruan
- Department of Pathology, Kunming Medical University, Kunming, China
| | | | | | | | - Kay Thwe Han
- Department of Medical Research, Yangon city, Myanmar
| | - Khin Myo Aye
- Department of Medical Research, Yangon city, Myanmar
| | - James Morris
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC, USA
| | - Pincan Su
- Transfusion Medicine Research Department, Yunnan Kunming Blood Center, Kunming, China
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China.
| | - Myat Phone Kyaw
- Department of Medical Research, Yangon city, Myanmar. .,Myanmar Medical Association, Yangon, Myanmar.
| | - Liwang Cui
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China. .,Department of Entomology, Pennsylvania State University, University Park city, PA, 16802, USA.
| |
Collapse
|
21
|
Kolawole OM, Mokuolu OA, Olukosi YA, Oloyede TO. Population genomics diversity of Plasmodium falciparum in malaria patients attending Okelele Health Centre, Okelele, Ilorin, Kwara State, Nigeria. Afr Health Sci 2016; 16:704-711. [PMID: 27917203 DOI: 10.4314/ahs.v16i3.10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Plasmodium falciparum, the most dangerous malaria parasite species to humans remains an important public health concern in Okelele, a rural community in Ilorin, Kwara State, Nigeria. There is however little information about the genetic diversity of Plasmodium falciparum in Nigeria. OBJECTIVE To determine the population genomic diversity of Plasmodium falciparum in malaria patients attending Okelele Community Healthcare Centre, Okelele, Ilorin, Kwara State. METHODS In this study, 50 Plasmodium falciparum strains Merozoite Surface Protein 1, Merozoite Surface Protein 2 and Glutamate Rich Protein were analysed from Okelele Health Centre, Okelele, Ilorin, Nigeria. Genetic diversity of P. falciparum isolates were analysed from nested polymerase chain reactions (PCR) of the MSP-1 (K1, MAD 20 and RO33), MSP-2 (FC27 and 3D7) and Glutamate Rich Protein allelic families respectively. RESULTS Polyclonal infections were more in majority of the patients for MSP-1 allelic families while monoclonal infections were more for MSP-2 allelic families. Multiplicity of infection for MSP-1, MSP-2 and GLURP were 1.7, 1.8 and 2.05 respectively. CONCLUSION There is high genetic diversity in MSP - 2 and GLURP allelic families of Plasmodium falciparum isolates from Okelele Health Centre, Ilorin, Nigeria.
Collapse
Affiliation(s)
- Olatunji Matthew Kolawole
- Infectious Diseases and Environmental Health Research Group, Department of Microbiology, University of Ilorin, Ilorin, Nigeria
| | | | - Yetunde Adeola Olukosi
- Department of Nutrition and Biochemistry, Nigerian Institute of Medical Research, Yaba, Lagos
| | - Tolulope Ololade Oloyede
- Infectious Diseases and Environmental Health Research Group, Department of Microbiology, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
22
|
Duah NO, Matrevi SA, Quashie NB, Abuaku B, Koram KA. Genetic diversity of Plasmodium falciparum isolates from uncomplicated malaria cases in Ghana over a decade. Parasit Vectors 2016; 9:416. [PMID: 27460474 PMCID: PMC4962487 DOI: 10.1186/s13071-016-1692-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/11/2016] [Indexed: 11/11/2022] Open
Abstract
Background Genotyping malaria parasites to assess their diversity in different geographic settings have become necessary for the selection of antigenic epitopes for vaccine development and for antimalarial drug efficacy or resistance investigations. This study describes the genetic diversity of Plasmodium falciparum isolates from uncomplicated malaria cases over a ten year period (2003–2013) in Ghana using the polymorphic antigenic marker, merozoite surface protein 2 (msp2). Methods Archived filter paper blood blots from children aged nine years and below with uncomplicated malaria collected from nine sites in Ghana were typed for the presence of the markers. A total of 880 samples were genotyped for msp2 for the two major allelic families, FC27 and 3D7, using nested polymerase chain reaction (PCR). The allele frequencies and the multiplicity of infection were determined for the nine sites for five time points over a period of ten years, 2003–2004, 2005–2006, 2007–2008, 2010 and 2012–2013 malaria transmission seasons. Results The number of different alleles detected for the msp2 gene by resolving PCR products on agarose gels was 14. Both of the major allelic families, 3D7 and FC27 were common in all population samples. The highest multiplicity of infection (MOI) was observed in isolates from Begoro (forest zone, rural site): 3.31 for the time point 2007–2008. A significant variation was observed among the sites in the MOIs detected per infection (Fisher's exact test, P < 0.001) for the 2007 isolates and also at each of the three sites with data for three different years, Hohoe, P = 0.03; Navrongo, P < 0.001; Cape Coast, P < 0.001. Overall, there was no significant difference between the MOIs of the three ecological zones over the years (P = 0.37) and between the time points when data from all sites were pooled (P = 0.40). Conclusions The diversity and variation between isolates detected using the msp2 gene in Ghanaian isolates were observed to be profound; however, there was homogeneity throughout the three ecological zones studied. This is indicative of gene flow between the parasite populations across the country probably due to human population movements (HPM). Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1692-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nancy O Duah
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG581, Legon, Ghana.
| | - Sena A Matrevi
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG581, Legon, Ghana
| | - Neils B Quashie
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG581, Legon, Ghana.,Centre for Tropical Clinical Pharmacology and Therapeutics, School of Medicine and Dentistry, College of Health Sciences, University of Ghana, P. O. Box GP 4260, Accra, Ghana
| | - Benjamin Abuaku
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG581, Legon, Ghana
| | - Kwadwo A Koram
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG581, Legon, Ghana
| |
Collapse
|
23
|
Genetic diversity and multiplicity of infection of Plasmodium falciparum isolates from Kolkata, West Bengal, India. INFECTION GENETICS AND EVOLUTION 2016; 43:239-44. [PMID: 27259367 DOI: 10.1016/j.meegid.2016.05.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/28/2016] [Accepted: 05/30/2016] [Indexed: 01/26/2023]
Abstract
The study of genetic diversity of Plasmodium falciparum is necessary to understand the distribution and dynamics of parasite populations. The genetic diversity of P. falciparum merozoite surface protein-1 and 2 has been extensively studied from different parts of world. However, limited data are available from India. This study was aimed to determine the genetic diversity and multiplicity of infection (MOI) of P. falciparum population in Kolkata, West Bengal, India. A total of 80day-zero blood samples from Kolkata were collected during a therapeutic efficacy study in 2008-2009. DNA was extracted; allelic frequency and diversity were investigated by PCR-genotyping method for msp1 and msp2 gene and fragment sizing was done by Bio-Rad Gel-Doc system using Image Lab (version 4.1) software. P. falciparum msp1 and msp2 markers were highly polymorphic with low allele frequencies. In Kolkata, 27 msp1 different genotypes (including 11of K1, 6 of MAD20 and 10 of Ro33 allelic families) and 30 different msp2 genotypes (of which 17 and 13 belonged to the FC27 and 3D7 allelic families, respectively) were recorded. The majority of these genotypes occurred at a frequency below 10%. The mean MOI for msp1 and msp2 gene were 2.05 and 3.72, respectively. The P. falciparum population of Kolkata was genetically diverse. As the frequencies of most of the msp1 and msp2 alleles were low, the probability of new infection with genotype identical to that in pretreatment infection was very rare. This information will serve as baseline data for evaluation of malaria control interventions as well as for monitoring the parasite population structure.
Collapse
|
24
|
Gutiérrez S, González-Cerón L, Montoya A, Sandoval MA, Tórres ME, Cerritos R. Genetic structure of Plasmodium vivax in Nicaragua, a country in the control phase, based on the carboxyl terminal region of the merozoite surface protein-1. INFECTION GENETICS AND EVOLUTION 2016; 40:324-330. [DOI: 10.1016/j.meegid.2015.08.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 10/23/2022]
|
25
|
Alam MS, Elahi R, Mohon AN, Al-Amin HM, Kibria MG, Khan WA, Khanum H, Haque R. Plasmodium falciparum Genetic Diversity in Bangladesh Does Not Suggest a Hypoendemic Population Structure. Am J Trop Med Hyg 2016; 94:1245-50. [PMID: 27139455 DOI: 10.4269/ajtmh.15-0446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 03/28/2016] [Indexed: 11/07/2022] Open
Abstract
Despite the recommendation for the use of merozoite surface protein 1 (msp1), merozoite surface protein 2 (msp2), and glutamate-rich protein (glurp) genes as markers in drug efficacy studies by World Health Organization and their limited use in Bangladesh, the circulating Plasmodium falciparum population genetic structure has not yet been assessed in Bangladesh. This study presents a comprehensive report on the circulating P. falciparum population structure based on msp1, msp2, and glurp polymorphic gene markers in Bangladesh. Among the 130 pretreatment (day 0) P. falciparum samples from seven malaria-endemic districts, 14 distinct genotypes were observed for msp1, 20 for msp2, and 13 for glurp Polyclonal infection was reported in 94.6% (N = 123) of the samples. Multiplicity of infection (MOI) for msp1 was the highest (1.5) among the MOIs of the markers. The heterozygosity for msp1, msp2, and glurp was 0.89, 0.93, and 0.83, respectively. Data according to different malaria-endemic areas are also presented and discussed. Bangladesh is considered as a malaria-hypoendemic country. However, the prevalence of polyclonal infection and the genetic diversity of P. falciparum do not represent hypoendemicity.
Collapse
Affiliation(s)
- Mohammad Shafiul Alam
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh; Department of Biochemistry, Virginia Tech, Blacksburg, Virginia; Department of Microbiology and Infectious Disease, Cumming School of Medicine, University of Calgary, Alberta, Canada; Parasitology Branch, Department of Zoology, University of Dhaka, Dhaka, Bangladesh
| | - Rubayet Elahi
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh; Department of Biochemistry, Virginia Tech, Blacksburg, Virginia; Department of Microbiology and Infectious Disease, Cumming School of Medicine, University of Calgary, Alberta, Canada; Parasitology Branch, Department of Zoology, University of Dhaka, Dhaka, Bangladesh
| | - Abu Naser Mohon
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh; Department of Biochemistry, Virginia Tech, Blacksburg, Virginia; Department of Microbiology and Infectious Disease, Cumming School of Medicine, University of Calgary, Alberta, Canada; Parasitology Branch, Department of Zoology, University of Dhaka, Dhaka, Bangladesh
| | - Hasan Mohammad Al-Amin
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh; Department of Biochemistry, Virginia Tech, Blacksburg, Virginia; Department of Microbiology and Infectious Disease, Cumming School of Medicine, University of Calgary, Alberta, Canada; Parasitology Branch, Department of Zoology, University of Dhaka, Dhaka, Bangladesh
| | - Mohammad Golam Kibria
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh; Department of Biochemistry, Virginia Tech, Blacksburg, Virginia; Department of Microbiology and Infectious Disease, Cumming School of Medicine, University of Calgary, Alberta, Canada; Parasitology Branch, Department of Zoology, University of Dhaka, Dhaka, Bangladesh
| | - Wasif A Khan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh; Department of Biochemistry, Virginia Tech, Blacksburg, Virginia; Department of Microbiology and Infectious Disease, Cumming School of Medicine, University of Calgary, Alberta, Canada; Parasitology Branch, Department of Zoology, University of Dhaka, Dhaka, Bangladesh
| | - Hamida Khanum
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh; Department of Biochemistry, Virginia Tech, Blacksburg, Virginia; Department of Microbiology and Infectious Disease, Cumming School of Medicine, University of Calgary, Alberta, Canada; Parasitology Branch, Department of Zoology, University of Dhaka, Dhaka, Bangladesh
| | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh; Department of Biochemistry, Virginia Tech, Blacksburg, Virginia; Department of Microbiology and Infectious Disease, Cumming School of Medicine, University of Calgary, Alberta, Canada; Parasitology Branch, Department of Zoology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
26
|
Good MF, Yanow SK. Cryptic epitope for antibodies should not be forgotten in vaccine design. Expert Rev Vaccines 2016; 15:675-6. [DOI: 10.1586/14760584.2016.1154791] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
27
|
Apinjoh TO, Tata RB, Anchang-Kimbi JK, Chi HF, Fon EM, Mugri RN, Tangoh DA, Nyingchu RV, Ghogomu SM, Nkuo-Akenji T, Achidi EA. Plasmodium falciparum merozoite surface protein 1 block 2 gene polymorphism in field isolates along the slope of mount Cameroon: a cross - sectional study. BMC Infect Dis 2015; 15:309. [PMID: 26242307 PMCID: PMC4526171 DOI: 10.1186/s12879-015-1066-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/28/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria remains a major global health burden despite the intensification of control efforts, due partly to the lack of an effective vaccine. Information on genetic diversity in natural parasite populations constitutes a major impediment to vaccine development efforts and is limited in some endemic settings. The present study characterized diversity by investigating msp1 block 2 polymorphisms and the relationship between the allele families with ethnodemographic indices and clinical phenotype. METHOD Individuals with asymptomatic parasitaemia (AP) or uncomplicated malaria (UM) were enrolled from rural, semi-rural and semi-urban localities at varying altitudes along the slope of mount Cameroon. P. falciparum malaria parasitaemic blood screened by light microscopy was depleted of leucocytes using CF11 cellulose columns and the parasite DNA genotyped by nested PCR. RESULTS Length polymorphism was assessed in 151 field isolates revealing 64 (5) and 274 (22) distinct recombinant and major msp1 allelic fragments (genotypes) respectively. All family specific allelic types (K1, MAD20 and RO33) as well as MR were observed in the different locations, with K1 being most abundant. Eighty seven (60 %) of individuals harbored more than one parasite clone, with a significant proportion (p = 0.009) in rural compared to other settings. AP individuals had higher (p = 0.007) K1 allele frequencies but lower (p = 0.003) mean multiplicity of genotypes per infection (2.00 ± 0.98 vs. 2.56 ± 1.17) compared to UM patients. CONCLUSIONS These results indicate enormous diversity of P. falciparum in the area and suggests that allele specificity and complexity may be relevant for the progression to symptomatic disease.
Collapse
Affiliation(s)
- Tobias O Apinjoh
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon.
| | - Rolland B Tata
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon.
| | | | - Hanesh F Chi
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon.
| | - Eleanor M Fon
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon.
| | - Regina N Mugri
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon.
| | - Delphine A Tangoh
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon. .,Department of Medical Laboratory Science, University of Buea, Buea, Cameroon.
| | - Robert V Nyingchu
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon. .,Department of Medical Laboratory Science, University of Buea, Buea, Cameroon.
| | - Stephen M Ghogomu
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon.
| | - Theresa Nkuo-Akenji
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon.
| | - Eric A Achidi
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon.
| |
Collapse
|
28
|
Limited genetic diversity among Plasmodium falciparium isolates using nested PCR in Jazan Area, Saudi Arabia. Asian Pac J Trop Biomed 2015. [DOI: 10.1016/s2221-1691(15)30377-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
29
|
Barry AE, Arnott A. Strategies for designing and monitoring malaria vaccines targeting diverse antigens. Front Immunol 2014; 5:359. [PMID: 25120545 PMCID: PMC4112938 DOI: 10.3389/fimmu.2014.00359] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/13/2014] [Indexed: 01/28/2023] Open
Abstract
After more than 50 years of intensive research and development, only one malaria vaccine candidate, “RTS,S,” has progressed to Phase 3 clinical trials. Despite only partial efficacy, this candidate is now forecast to become the first licensed malaria vaccine. Hence, more efficacious second-generation malaria vaccines that can significantly reduce transmission are urgently needed. This review will focus on a major obstacle hindering development of effective malaria vaccines: parasite antigenic diversity. Despite extensive genetic diversity in leading candidate antigens, vaccines have been and continue to be formulated using recombinant antigens representing only one or two strains. These vaccine strains represent only a small fraction of the diversity circulating in natural parasite populations, leading to escape of non-vaccine strains and challenging investigators’ abilities to measure strain-specific efficacy in vaccine trials. Novel strategies are needed to overcome antigenic diversity in order for vaccine development to succeed. Many studies have now cataloged the global diversity of leading Plasmodium falciparum and Plasmodium vivax vaccine antigens. In this review, we describe how population genetic approaches can be applied to this rich data source to predict the alleles that best represent antigenic diversity, polymorphisms that contribute to it, and to identify key polymorphisms associated with antigenic escape. We also suggest an approach to summarize the known global diversity of a given antigen to predict antigenic diversity, how to select variants that best represent the strains circulating in natural parasite populations and how to investigate the strain-specific efficacy of vaccine trials. Use of these strategies in the design and monitoring of vaccine trials will not only shed light on the contribution of genetic diversity to the antigenic diversity of malaria, but will also maximize the potential of future malaria vaccine candidates.
Collapse
Affiliation(s)
- Alyssa E Barry
- Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research , Parkville, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Parkville, VIC , Australia
| | - Alicia Arnott
- Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research , Parkville, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Parkville, VIC , Australia
| |
Collapse
|
30
|
Genetic diversity of MSP1 Block 2 of Plasmodium vivax isolates from Manaus (central Brazilian Amazon). J Immunol Res 2014; 2014:671050. [PMID: 24741614 PMCID: PMC3987980 DOI: 10.1155/2014/671050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/09/2014] [Indexed: 11/25/2022] Open
Abstract
The diversity of MSP1 in both Plasmodium falciparum and P. vivax is presumed be associated to parasite immune evasion. In this study, we assessed genetic diversity of the most variable domain of vaccine candidate N-terminal PvMSP1 (Block 2) in field isolates of Manaus. Forty-seven blood samples the polymorphism of PvMSP1 Block 2 generates four fragment sizes. In twenty-eight of them, sequencing indicated seven haplotypes of PvMSP1 Block 2 circulating among field isolates. Evidence of striking exchanges was observed with two stretches flanking the repeat region and two predicted recombination sites were described. Single nucleotide polymorphisms determined with concurrent infections per patient indicated that nonsynonymous substitutions occurred preferentially in the repeat-rich regions which also were predicted as B-cell epitopes. The comprehensive understanding of the genetic diversity of the promising Block 2 associated with clinical immunity and a reduced risk of infection by Plasmodium vivax would be important for the rationale of malaria vaccine designs.
Collapse
|
31
|
Kuesap J, Chaijaroenkul W, Ketprathum K, Tattiyapong P, Na-Bangchang K. Evolution of genetic polymorphisms of Plasmodium falciparum merozoite surface protein (PfMSP) in Thailand. THE KOREAN JOURNAL OF PARASITOLOGY 2014; 52:105-9. [PMID: 24623892 PMCID: PMC3948986 DOI: 10.3347/kjp.2014.52.1.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/30/2013] [Accepted: 11/12/2013] [Indexed: 11/23/2022]
Abstract
Plasmodium falciparum malaria is a major public health problem in Thailand due to the emergence of multidrug resistance. The understanding of genetic diversity of malaria parasites is essential for developing effective drugs and vaccines. The genetic diversity of the merozoite surface protein-1 (PfMSP-1) and merozoite surface protein-2 (PfMSP-2) genes was investigated in a total of 145 P. falciparum isolates collected from Mae Sot District, Tak Province, Thailand during 3 different periods (1997-1999, 2005-2007, and 2009-2010). Analysis of genetic polymorphisms was performed to track the evolution of genetic change of P. falciparum using PCR. Both individual genes and their combination patterns showed marked genetic diversity during the 3 study periods. The results strongly support that P. falciparum isolates in Thailand are markedly diverse and patterns changed with time. These 2 polymorphic genes could be used as molecular markers to detect multiple clone infections and differentiate recrudescence from reinfection in P. falciparum isolates in Thailand.
Collapse
Affiliation(s)
- Jiraporn Kuesap
- Faculty of Allied Health Sciences, Thammasat University, Pathumthani, 12121, Thailand
| | - Wanna Chaijaroenkul
- Faculty of Allied Health Sciences, Thammasat University, Pathumthani, 12121, Thailand
| | - Kanchanok Ketprathum
- Faculty of Allied Health Sciences, Thammasat University, Pathumthani, 12121, Thailand
| | - Puntanat Tattiyapong
- Faculty of Allied Health Sciences, Thammasat University, Pathumthani, 12121, Thailand
| | - Kesara Na-Bangchang
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12121, Thailand
| |
Collapse
|
32
|
Ahmedou Salem MSO, Ndiaye M, OuldAbdallahi M, Lekweiry KM, Bogreau H, Konaté L, Faye B, Gaye O, Faye O, Mohamed Salem O Boukhary AO. Polymorphism of the merozoite surface protein-1 block 2 region in Plasmodium falciparum isolates from Mauritania. Malar J 2014; 13:26. [PMID: 24456636 PMCID: PMC3902025 DOI: 10.1186/1475-2875-13-26] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 01/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genetic diversity of Plasmodium falciparum has been extensively studied in various parts of the world. However, limited data are available from Mauritania. The present study examined and compared the genetic diversity of P. falciparum isolates in Mauritania. METHODS Plasmodium falciparum isolates blood samples were collected from 113 patients attending health facilities in Nouakchott and Hodh El Gharbi regions. K1, Mad20 and RO33 allelic family of msp-1 gene were determined by nested PCR amplification. RESULTS K1 family was the predominant allelic type carried alone or in association with Ro33 and Mad20 types (90%; 102/113). Out of the 113 P. falciparum samples, 93(82.3%) harboured more than one parasite genotype. The overall multiplicity of infection was 3.2 genotypes per infection. There was no significant correlation between multiplicity of infection and age of patients. A significant increase of multiplicity of infection was correlated with parasite densities. CONCLUSIONS The polymorphism of P. falciparum populations from Mauritania was high. Infection with multiple P. falciparum clones was observed, as well as a high multiplicity of infection reflecting both the high endemicity level and malaria transmission in Mauritania.
Collapse
Affiliation(s)
- Mohamed Salem O Ahmedou Salem
- Laboratoire de Biotechnologie, Faculté des Sciences et Techniques, Université des Sciences, de Technologie et de Médecine, Nouakchott, PO Box 5026, Nouakchott, Mauritanie
- Laboratoire d’Ecologie Vectorielle et Parasitaire, Faculté des sciences et techniques, Université Cheikh Anta Diop, Dakar, Sénégal
| | - Magatte Ndiaye
- Service de Parasitologie-Mycologie, Faculté de Médecine, Université Cheikh Anta Diop, Dakar, Sénégal
| | - Mohamed OuldAbdallahi
- Service de Parasitologie et de Mycologie, Institut National de Recherches en Santé Publique, BP 695, Nouakchott, Mauritanie
| | - Khadijetou M Lekweiry
- Laboratoire de Biotechnologie, Faculté des Sciences et Techniques, Université des Sciences, de Technologie et de Médecine, Nouakchott, PO Box 5026, Nouakchott, Mauritanie
| | - Hervé Bogreau
- Unité de Parasitologie, Département d’Infectiologie de Terrain, Institut de Recherche Biomédicale des Armées, BP 7391 223 Brétigny-sur-Orge cedex, France
- Aix Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, IRD 198, INSERM 1095, Faculté de Médecine La Timone, 27 boulevard Jean Moulin, 13385 Marseille cedex 5 Marseille, France
- Unité de Parasitologie Institut Pasteur, 23 Avenue Pasteur, BP 6010, 97306 Cayenne cedex Guyane, France
| | - Lassana Konaté
- Laboratoire d’Ecologie Vectorielle et Parasitaire, Faculté des sciences et techniques, Université Cheikh Anta Diop, Dakar, Sénégal
| | - Babacar Faye
- Service de Parasitologie-Mycologie, Faculté de Médecine, Université Cheikh Anta Diop, Dakar, Sénégal
| | - Oumar Gaye
- Service de Parasitologie-Mycologie, Faculté de Médecine, Université Cheikh Anta Diop, Dakar, Sénégal
| | - Ousmane Faye
- Laboratoire d’Ecologie Vectorielle et Parasitaire, Faculté des sciences et techniques, Université Cheikh Anta Diop, Dakar, Sénégal
| | - Ali O Mohamed Salem O Boukhary
- Laboratoire de Biotechnologie, Faculté des Sciences et Techniques, Université des Sciences, de Technologie et de Médecine, Nouakchott, PO Box 5026, Nouakchott, Mauritanie
| |
Collapse
|
33
|
Oyedeji SI, Awobode HO, Anumudu C, Kun J. Genetic diversity of Plasmodium falciparum isolates from naturally infected children in north-central Nigeria using the merozoite surface protein-2 as molecular marker. ASIAN PAC J TROP MED 2014; 6:589-94. [PMID: 23790328 DOI: 10.1016/s1995-7645(13)60102-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/15/2012] [Accepted: 12/15/2012] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE To characterize the genetic diversity of Plasmodium falciparum (P. falciparum) field isolates in children from Lafia, North-central Nigeria, using the highly polymorphic P. falciparum merozoite surface protein 2 (MSP-2) gene as molecular marker. METHODS Three hundred and twenty children were enrolled into the study between 2005 and 2006. These included 140 children who presented with uncomplicated malaria at the Dalhatu Araf Specialist Hospital, Lafia and another 180 children from the study area with asymptomatic infection. DNA was extracted from blood spot on filter paper and MSP-2 genes were genotyped using allele-specific nested PCR in order to analyze the genetic diversity of parasite isolates. RESULTS A total of 31 and 34 distinct MSP-2 alleles were identified in the asymptomatic and uncomplicated malaria groups respectively. No difference was found between the multiplicity of infection in the asymptomatic group and that of the uncomplicated malaria group (P>0.05). However, isolates of the FC27 allele type were dominant in the asymptomatic group whereas isolates of the 3D7 allele type were dominant in the uncomplicated malaria group. CONCLUSIONS This study showed a high genetic diversity of P. falciparum isolates in North-central Nigeria and is comparable to reports from similar areas with high malaria transmission intensity.
Collapse
|
34
|
Al-Hamidhi S, Mahdy MAK, Al-Hashami Z, Al-Farsi H, Al-mekhlafi AM, Idris MA, Beja-Pereira A, Babiker HA. Genetic diversity of Plasmodium falciparum and distribution of drug resistance haplotypes in Yemen. Malar J 2013; 12:244. [PMID: 23855834 PMCID: PMC3729657 DOI: 10.1186/1475-2875-12-244] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 07/11/2013] [Indexed: 11/25/2022] Open
Abstract
Background Despite evident success of malaria control in many sites in the Arabian Peninsula, malaria remains endemic in a few spots, in Yemen and south-west of Saudi Arabia. In addition to local transmission, imported malaria sustains an extra source of parasites that can challenge the strengths of local control strategies. This study examined the genetic diversity of Plasmodium falciparum in Yemen and mutations of drug resistant genes, to elucidate parasite structure and distribution of drug resistance genotypes in the region. Methods Five polymorphic loci (MSP-2, Pfg377 and three microsatellites on chromosome 8) not involved in anti-malarial drug resistance, and four drug resistant genes (pfcrt, pfmdr1, dhfr and dhps) were genotyped in 108 P. falciparum isolates collected in three sites in Yemen: Dhamar, Hodeidah and Taiz. Results High diversity was seen in non-drug genes, pfg377 (He = 0.66), msp-2 (He = 0.80) and three microsatellites on chr 8, 7.7 kb (He = 0.88), 4.3 kb (He = 0.77) and 0.8 kb (He = 0.71). There was a high level of mixed-genotype infections (57%), with an average 1.8 genotypes per patient. No linkage disequilibrium was seen between drug resistant genes and the non-drug markers (p < 0.05). Genetic differentiation between populations was low (most pair-wise FST values <0.03), indicating extensive gene flow between the parasites in the three sites. There was a high prevalence of mutations in pfmdr1, pfcrt and dhfr; with four mutant pfmdr1 genotypes (NFCDD[57%], NFSND[21%], YFCDD[13%] and YFSND[8% ]), two mutant pfcrt genotypes (CVIET[89%] and SVMNT[4%]) and one mutant dhfr genotype (ICNI[53.7%]). However, no dhps mutations were detected. Conclusion The high diversity of P. falciparum in Yemen is indicative of a large parasite reservoir, which represents a challenge to control efforts. The presence of two distinct pfcrt genotype, CVIET and SVMNT, suggests that chloroquine resistance can possibly be related to a migratory path from Africa and Asia. The absence of the triple mutant dhfr genotype (IRN) and dhps mutations supports the use of artesunate + sulphadoxine-pyrimethamine as first-line therapy. However, the prevalent pfmdr1 genotype NFSND [21%] has previously been associated with tolerance/resistance response to artemisinin combination therapy (ACT). Regular surveys are, therefore, important to monitor spread of pfmdr1 and dhfr mutations and response to ACT.
Collapse
|
35
|
The suitability of P. falciparum merozoite surface proteins 1 and 2 as genetic markers for in vivo drug trials in Yemen. PLoS One 2013; 8:e67853. [PMID: 23861823 PMCID: PMC3701615 DOI: 10.1371/journal.pone.0067853] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/22/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The accuracy of the conclusions from in vivo efficacy anti-malarial drug trials depends on distinguishing between recrudescences and re-infections which is accomplished by genotyping genes coding P. falciparum merozoite surface 1 (MSP1) and MSP2. However, the reliability of the PCR analysis depends on the genetic markers' allelic diversity and variant frequency. In this study the genetic diversity of the genes coding for MSP1 and MSP2 was obtained for P. falciparum parasites circulating in Yemen. METHODS Blood samples were collected from 511 patients with fever and screened for malaria parasites using Giemsa-stained blood films. A total 74 samples were infected with P. falciparum, and the genetic diversity was assessed by nested PCR targeting Pfmsp1 (Block2) and Pfmsp2 (block 3). RESULTS Overall, 58%, 28% and 54% of the isolates harboured parasites of the Pfmsp1 K1, MAD20 and RO33 allelic families, and 55% and 89% harboured those of the Pfmsp2 FC27 and 3D7 allelic families, respectively. For both genetic makers, the multiplicity of the infection (MOI) was significantly higher in the isolates from the foothills/coastland areas as compared to those from the highland (P<0.05). Pfmsp2 had higher number of distinct allelic variants than Pfmsp1 (20 vs 11). The expected heterozygosity (HE) for Pfmsp1 and Pfmsp2 were 0.82 and 0.94, respectively. Nonetheless, a bias in the frequency distribution of the Pfmsp1 allelic variants was noted from all areas, and of those of Pfmsp2 in the samples collected from the highland areas. CONCLUSIONS Significant differences in the complexity and allelic diversity of Pfmsp1 and Pfmsp2 genes between areas probably reflect differences in the intensity of malaria transmission. The biased distribution of allelic variants suggests that in Yemen Pfmsp1 should not be used for PCR correction of in vivo clinical trials outcomes, and that caution should be exercised when employing Pfmsp2.
Collapse
|
36
|
Yuan L, Zhao H, Wu L, Li X, Parker D, Xu S, Zhao Y, Feng G, Wang Y, Yan G, Fan Q, Yang Z, Cui L. Plasmodium falciparum populations from northeastern Myanmar display high levels of genetic diversity at multiple antigenic loci. Acta Trop 2013; 125:53-9. [PMID: 23000544 DOI: 10.1016/j.actatropica.2012.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/07/2012] [Accepted: 09/12/2012] [Indexed: 11/27/2022]
Abstract
Levels of genetic diversity of the malaria parasites and multiclonal infections are correlated with transmission intensity. In order to monitor the effect of strengthened malaria control efforts in recent years at the China-Myanmar border area, we followed the temporal dynamics of genetic diversity of three polymorphic antigenic markers msp1, msp2, and glurp in the Plasmodium falciparum populations. Despite reduced malaria prevalence in the region, parasite populations exhibited high levels of genetic diversity. Genotyping 258 clinical samples collected in four years detected a total of 22 PCR size alleles. Multiclonal infections were detected in 45.7% of the patient samples, giving a minimum multiplicity of infection of 1.41. The majority of alleles experienced significant temporal fluctuations through the years. Haplotype diversity based on the three-locus genotypes ranged from the lowest in 2009 at 0.33 to the highest in 2010 at 0.80. Sequencing of msp1 fragments from 36 random samples of five allele size groups detected 13 different sequences, revealing an additional layer of genetic complexity. This study suggests that despite reduced prevalence of malaria infections in this region, the parasite population size and transmission intensity remained high enough to allow effective genetic recombination of the parasites and continued maintenance of genetic diversity.
Collapse
Affiliation(s)
- Lili Yuan
- Department of Parasitology, Kunming Medical University, Kunming, Yunnan Province, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Brown T, Smith LS, Oo EKS, Shawng K, Lee TJ, Sullivan D, Beyrer C, Richards AK. Molecular surveillance for drug-resistant Plasmodium falciparum in clinical and subclinical populations from three border regions of Burma/Myanmar: cross-sectional data and a systematic review of resistance studies. Malar J 2012; 11:333. [PMID: 22992214 PMCID: PMC3518194 DOI: 10.1186/1475-2875-11-333] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/15/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Confirmation of artemisinin-delayed parasite clearance in Plasmodium falciparum along the Thai-Myanmar border has inspired a global response to contain and monitor drug resistance to avert the disastrous consequences of a potential spread to Africa. However, resistance data from Myanmar are sparse, particularly from high-risk areas where limited health services and decades of displacement create conditions for resistance to spread. Subclinical infections may represent an important reservoir for resistance genes that confer a fitness disadvantage relative to wild-type alleles. This study estimates the prevalence of resistance genotypes in three previously unstudied remote populations in Myanmar and tests the a priori hypothesis that resistance gene prevalence would be higher among isolates collected from subclinical infections than isolates collected from febrile clinical patients. A systematic review of resistance studies is provided for context. METHODS Community health workers in Karen and Kachin States and an area spanning the Indo-Myanmar border collected dried blood spots from 988 febrile clinical patients and 4,591 villagers with subclinical infection participating in routine prevalence surveys. Samples positive for P. falciparum 18 s ribosomal RNA by real-time PCR were genotyped for P. falciparum multidrug resistance protein (pfmdr1) copy number and the pfcrt K76T polymorphism using multiplex real-time PCR. RESULTS Pfmdr1 copy number increase and the pfcrt K76 polymorphism were determined for 173 and 269 isolates, respectively. Mean pfmdr1 copy number was 1.2 (range: 0.7 to 3.7). Pfmdr1 copy number increase was present in 17.5%, 9.6% and 11.1% of isolates from Karen and Kachin States and the Indo-Myanmar border, respectively. Pfmdr1 amplification was more prevalent in subclinical isolates (20.3%) than clinical isolates (6.4%, odds ratio 3.7, 95% confidence interval 1.1 - 12.5). Pfcrt K76T prevalence ranged from 90-100%. CONCLUSIONS Community health workers can contribute to molecular surveillance of drug resistance in remote areas of Myanmar. Marginal and displaced populations under-represented among previous resistance investigations can and should be included in resistance surveillance efforts, particularly once genetic markers of artemisinin-delayed parasite clearance are identified. Subclinical infections may contribute to the epidemiology of drug resistance, but determination of gene amplification from desiccated filter samples requires further validation when DNA concentration is low.
Collapse
Affiliation(s)
- Tyler Brown
- Johns Hopkins University School of Medicine, Broadway Research Building, 733 N. Broadway, Suite 147, Baltimore, MD, 21205, USA
- Global Health Access Program, 2550 Ninth Street, Ste 111, Berkeley, CA, 94710, USA
| | - Linda S Smith
- Global Health Access Program, 2550 Ninth Street, Ste 111, Berkeley, CA, 94710, USA
| | - Eh Kalu Shwe Oo
- Karen Department of Health and Welfare, PO Box 189, Mae Sot, Tak, 63110, Thailand
| | - Kum Shawng
- Office of the Director of the Health Department, Kachin Baptist Convention 135/Shan Su (South), Myitkyina, Kachin State, Myanmar
| | - Thomas J Lee
- Global Health Access Program, 2550 Ninth Street, Ste 111, Berkeley, CA, 94710, USA
- School of Medicine, University of California at Los Angeles, 924 Westwood Blvd, Suite 300, Los Angeles, CA, 90024, USA
| | - David Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health 615 North Wolfe St, Room E5628, Baltimore, MD, 21205, USA
| | - Chris Beyrer
- Department of Epidemiology Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Suite E7152, Baltimore, MD, 21205, USA
| | - Adam K Richards
- Global Health Access Program, 2550 Ninth Street, Ste 111, Berkeley, CA, 94710, USA
- Department of General Internal Medicine and Health Services Research, University of California at Los Angeles, 911 Broxton Ave, Los Angeles, CA, 90025, USA
| |
Collapse
|
38
|
Wanji S, Kengne-Ouafo AJ, Eyong EEJ, Kimbi HK, Tendongfor N, Ndamukong-Nyanga JL, Nana-Djeunga HC, Bourguinat C, Sofeu-Feugaing DD, Charvet CL. Genetic diversity of Plasmodium falciparum merozoite surface protein-1 block 2 in sites of contrasting altitudes and malaria endemicities in the Mount Cameroon region. Am J Trop Med Hyg 2012; 86:764-74. [PMID: 22556072 DOI: 10.4269/ajtmh.2012.11-0433] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The present study analyzed the relationship between the genetic diversity of Plasmodium falciparum and parasitologic/entomologic indices in the Mount Cameroon region by using merozoite surface protein 1 as a genetic marker. Blood samples were collected from asymptomatic children from three altitude zones (high, intermediate, and low). Parasitologic and entomologic indices were determined by microscopy and landing catch mosquito collection/circumsporozoite protein-enzyme-linked immunosorbent assay, respectively. A total of 142 randomly selected P. falciparum-positive blood samples were genotyped by using a nested polymerase chain reaction-based technique. K-1 polymerase chain reaction products were also sequenced. As opposed to high altitude, the highest malaria prevalence (70.65%) and entomologic inoculation rate (2.43 infective/bites/night) were recorded at a low altitude site. Seven (18.91%), 22 (36.66%), and 19 (42.22%) samples from high, intermediate, and low altitudes, respectively, contained multiclonal infections. A new K-1 polymorphism was identified. This study shows a positive non-linear association between low/intermediate altitude (high malaria transmission) and an increase in P. falciparum merozoite surface protein 1 block 2 polymorphisms.
Collapse
Affiliation(s)
- Samuel Wanji
- Research Foundation for Tropical Diseases and the Environment, Buea, South West Region, Cameroon.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hussain MM, Sohail M, Kumar R, Branch OH, Adak T, Raziuddin M. Genetic diversity in merozoite surface protein-1 and 2 among Plasmodium falciparum isolates from malarious districts of tribal dominant state of Jharkhand, India. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2012; 105:579-92. [PMID: 22325817 DOI: 10.1179/2047773211y.0000000012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
INTRODUCTION The genetic make-up of malaria parasite is potent for understanding the parasite virulence, designing antimalarial vaccine and evaluating the impact of malaria control measures. There is a paucity of information on genetic structure of Plasmodium falciparum in Jharkhand, India where malaria is rampant and this study aimed to establish molecular characterization of P. falciparum field isolates from Jharkhand measured with two highly polymorphic genetic markers, i.e. the merozoite surface proteins (MSPs) 1 and 2. METHODS The genetic diversity of P. falciparum population from low transmission area, Ranchi, Bokaro and Hazaribagh and highly malarious area, Latehar and Palamau districts of Jharkhand were evaluated by polymerase chain reaction-sequencing analyzing msp-1 and msp-2 genes to explore the genetic structure of parasite from this understudied region. RESULTS A total of 134 P. falciparum isolates were analyzed by polymorphic regions of msp-1 and msp-2 and classified according to prevalence of allelic families. The majority of patients from all the five sites had mean monoclonal infections of 67·1 and 60·4% of P. falciparum for msp-1 and msp-2, respectively, whereas, mean multiple genotypes of 32·8 and 39·5% for msp-1 and msp-2, respectively. Interestingly, we observed higher multiclonal infection in low transmission area as compared to highly malarious area in the case of msp-1 genotypes, whereas in msp-2 higher multiclonal infection was observed in highly malarious area compared to low transmission area. The overall multiplicities of infection of msp-1 and msp-2 were 1·38 and 1·39, respectively. CONCLUSION This is the first report on molecular characterization of P. falciparum field isolates from Jharkhand. The genetic diversity and allelic distribution found in this study is somewhat similar to other reports from India and Southeast Asian countries. However, P. falciparum infection can be highly complex and diverse in these disease-endemic regions of Jharkhand, suggesting continual genetic mixing that could have significant implications for the use of antimalarial drugs and vaccines.
Collapse
Affiliation(s)
- M M Hussain
- Vinoba Bhave University, Hazaribag, Jharkhand, India
| | | | | | | | | | | |
Collapse
|
40
|
Khaminsou N, Kritpetcharat O, Daduang J, Charerntanyarak L, Kritpetcharat P. Genetic analysis of the merozoite surface protein-1 block 2 allelic types in Plasmodium falciparum clinical isolates from Lao PDR. Malar J 2011; 10:371. [PMID: 22177111 PMCID: PMC3281801 DOI: 10.1186/1475-2875-10-371] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 12/17/2011] [Indexed: 11/14/2022] Open
Abstract
Background MSP-1 is one of the potential malarial vaccine candidate antigens. However, extensive genetic polymorphism of this antigen in the field isolates of Plasmodium falciparum represents a major hindrance for the development of an effective vaccine. Therefore, this study aimed to establish the prevalence and genetic polymorphisms of K1, MAD20 and RO33 allelic types of msp-1 block 2 among P. falciparum clinical isolates from Lao PDR. Methods Plasmodium falciparum isolates were collected from 230 P. falciparum-infected blood samples from three regions of Lao PDR. K1, MAD20 and RO33 were detected by nested PCR; SSCP was used for polymorphism screening. The nested PCR products of each K1, MAD20 and RO33 allelic types that had different banding patterns by SSCP, were sequenced. Results The overall prevalence of K1, MAD20 and RO33 allelic types in P. falciparum isolates from Lao PDR were 66.95%, 46.52% and 31.30%, respectively, of samples under study. Single infections with K1, MAD20 and RO33 allelic types were 27.83%, 11.74% and 5.22%, respectively; the remainders were multiple clonal infections. Neither parasite density nor age was related to MOI. Sequence analysis revealed that there were 11 different types of K1, eight different types of MAD20, and 7 different types of RO33. Most of them were regional specific, except type 1 of each allelic type was common found in 3 regions under study. Conclusions Genetic polymorphism with diverse allele types was identified in msp-1 block 2 among P. falciparum clinical isolates in Lao PDR. A rather high level of multiple clonal infections was also observed but the multiplicity of infection was rather low as not exceed 2.0. This basic data are useful for treatment and malaria control program in Lao PDR.
Collapse
Affiliation(s)
- Naly Khaminsou
- Faculty of Medical Technology, University of Health Science, Vientiane, Lao PDR
| | | | | | | | | |
Collapse
|
41
|
Atroosh WM, Al-Mekhlafi HM, Mahdy MA, Saif-Ali R, Al-Mekhlafi AM, Surin J. Genetic diversity of Plasmodium falciparum isolates from Pahang, Malaysia based on MSP-1 and MSP-2 genes. Parasit Vectors 2011; 4:233. [PMID: 22166488 PMCID: PMC3264521 DOI: 10.1186/1756-3305-4-233] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 12/13/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is still a public health problem in Malaysia especially in the interior parts of Peninsular Malaysia and the states of Sabah and Sarawak (East Malaysia). This is the first study on the genetic diversity and genotype multiplicity of Plasmodium falciparum in Malaysia. METHODS Seventy-five P. falciparum isolates were genotyped by using nested-PCR of MSP-1 (block 2) and MSP-2 (block 3). RESULTS MSP-1 and MSP-2 allelic families were identified in 65 blood samples. RO33 was the predominant MSP-1 allelic family identified in 80.0% (52/65) of the samples while K1 family had the least frequency. Of the MSP-2 allelic families, 3D7 showed higher frequency (76.0%) compared to FC27 (20.0%). The multiplicity of P. falciparum infection (MOI) was 1.37 and 1.20 for MSP-1 and MSP-2, respectively. A total of seven alleles were detected; of which three MSP-1 allelic families (RO33, MAD20 and K1) were monomorphic in terms of size while MSP-2 alleles were polymorphic (two 3D7 and two FC27). Heterozygosity (HE) was 0.57 and 0.55 for MSP-1 and MSP-2, respectively. CONCLUSIONS The study showed that the MOI of P. falciparum is low, reflected the low intensity of malaria transmission in Pahang, Malaysia; RO33 and 3D7 were the most predominant circulating allelic families. The findings showed that P. falciparum has low allelic diversity with a high frequency of alleles. As a result, antimalarial drug efficacy trials based on MSP genotyping should be carefully interpreted.
Collapse
Affiliation(s)
- Wahib M Atroosh
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | | | | | | | | | | |
Collapse
|
42
|
Kawai A, Arita N, Matsumoto Y, Kawabata M, Chowdhury MS, Saito-Ito A. Efficacy of chloroquine plus primaquine treatment and pfcrt mutation in uncomplicated falciparum malaria patients in Rangamati, Bangladesh. Parasitol Int 2011; 60:341-6. [PMID: 21645634 DOI: 10.1016/j.parint.2011.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 05/11/2011] [Accepted: 05/23/2011] [Indexed: 10/18/2022]
Abstract
A combination of chloroquine (CQ) and primaquine (PQ) had been used as the first-line treatment of uncomplicated Plasmodium falciparum malaria in Rangamati, Bangladesh until the end of 2004. Doctors or medical staffs had felt that CQ plus PQ had become less effective against uncomplicated falciparum malaria patients, but that it was more effective against the minority-indigenous patients than the Bengali patients. The efficacy of CQ plus PQ and the mutation status of the CQ resistance transporter (pfcrt) gene of infecting P. falciparum were, thus, investigated for 45 uncomplicated falciparum malaria patients in Rangamati in 2004. The total failure rate was 57.8%. One or two pfcrt sequences (CIETH and SMNTH at positions 72, 74-76, and 97, mutation underlined) with K76T mutation known to be related to CQ-resistant phenotype were detected in 38 patients' blood samples. Of the 38 patients, in total 15 patients (14/25 minority-indigenous and 1/13 Bengali patients) resulted in adequate clinical and parasitological response (ACPR). There was a statistically significant difference in ACPR rate between the minority-indigenous patients and the Bengali patients. P. falciparum with mutant or resistant pfcrt (pfcrt-resistant) was detected by PCR in blood samples on day 28 for 10 ACPR minority-indigenous patients but not for the only one Bengali ACPR patient, who all were infected with pfcrt-resistant P. falciparum on day 0. The minority-indigenous patients, but not Bengalis, are suggested to be often cured by CQ plus PQ, leaving a very few parasites detectable only by PCR, even when they are infected with pfcrt-resistant P. falciparum.
Collapse
Affiliation(s)
- Atsuko Kawai
- Section of Microbiology, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Hyogo, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Al-Mekhlafi AM, Mahdy MAK, Al-Mekhlafi HM, Azazy AA, Fong MY. High frequency of Plasmodium falciparum chloroquine resistance marker (pfcrt T76 mutation) in Yemen: an urgent need to re-examine malaria drug policy. Parasit Vectors 2011; 4:94. [PMID: 21619624 PMCID: PMC3125383 DOI: 10.1186/1756-3305-4-94] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 05/27/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria remains a significant health problem in Yemen with Plasmodium falciparum being the predominant species which is responsible for 90% of the malaria cases. Despite serious concerns regarding increasing drug resistance, chloroquine is still used for the prevention and treatment of malaria in Yemen. This study was carried out to determine the prevalence of choloroquine resistance (CQR) of P. falciparum isolated from Yemen based on the pfcrt T76 mutation. METHODS A cross-sectional study was carried out among 511 participants from four governorates in Yemen. Blood samples were screened using microscopic and species-specific nested PCR based on the 18S rRNA gene to detect and identify Plasmodium species. Blood samples positive for P. falciparum were used for detecting the pfcrt T76 mutation using nested-PCR. RESULTS The prevalence of pfcrt T76 mutation was 81.5% (66 of 81 isolates). Coastal areas/foothills had higher prevalence of pfcrt T76 mutation compared to highland areas (90.5% vs 71.8%) (p = 0.031). The pfcrt T76 mutation had a significant association with parasitaemia (p = 0.045). Univariate analysis shows a significant association of pfcrt T76 mutation with people aged > 10 years (OR = 9, 95% CI = 2.3 - 36.2, p = 0.001), low household income (OR = 5, 95% CI = 1.3 - 19.5, p = 0.027), no insecticide spray (OR = 3.7, 95% CI = 1.16 - 11.86, p = 0.025) and not sleeping under insecticide treated nets (ITNs) (OR = 4.8, 95% CI = 1.38 - 16.78, p = 0.01). Logistic regression model confirmed age > 10 years and low household income as predictors of pfcrt T76 mutation in Yemen P. falciparum isolates. CONCLUSIONS The high prevalence of pfcrt T76 mutation in Yemen could be a predictive marker for the prevalence of P. falciparum CQR. This finding shows the necessity for an in-vivo therapeutic efficacy test for CQ. P. falciparum CQR should be addressed in the national strategy to control malaria.
Collapse
|