1
|
Kinyua AW, Turner L, Kimingi HW, Mwai K, Mwikali K, Andisi C, Sim BKL, Bejon P, Kapulu MC, Kinyanjui SM, Lavstsen T, Abdi AI. Antibodies to PfEMP1 and variant surface antigens: Protection after controlled human malaria infection in semi-immune Kenyan adults. J Infect 2024; 89:106252. [PMID: 39182654 PMCID: PMC11409615 DOI: 10.1016/j.jinf.2024.106252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
OBJECTIVES Acquisition of antibodies to Plasmodium falciparum variant surface antigens (VSA) expressed on infected red blood cells (iRBCs) is associated with naturally acquired immunity to malaria. We have previously shown that antibodies to VSA on iRBCs are associated with protection against parasite growth in the context of controlled human malaria infection (CHMI). This study explored whether antibodies to recombinant antigens derived from PfEMP1 domains were independently associated with protection during CHMI in semi-immune Kenyan adults. METHODS We used a multiplex bead assay to measure levels of IgG antibody against a panel of 27 recombinant PfEMP1 antigens derived from the PfEMP1 repertoire of the 3D7 parasite clone. We measured IgG levels in plasma samples collected from the CHMI participants before inoculation with Sanaria® PfSPZ Challenge, on the day of diagnosis, and 35 days post-inoculation. Univariable and multivariable Cox regression analysis was used to evaluate the relationship between the levels of antibodies to the antigens and CHMI outcome. We also adjusted for previous data including antibodies to VSA on iRBCs, and we assessed the kinetics of antibody acquisition to the different PfEMP1 recombinant antigens over time. RESULTS All study participants had detectable antibodies to multiple PfEMP1 proteins before inoculation. All PfEMP1 antigens were associated with protection against parasite growth to the threshold criteria for treatment in CHMI, albeit with substantial collinearity. However, individual PfEMP1 antigens were not independently associated with protection following adjustment for breadth of reactivity to VSA on iRBCs and schizont extract. In addition, antibodies to PfEMP1 antigens derived from group B PfEMP1 were induced and sustained in the participants who could not control parasite growth. CONCLUSION This study shows that the breadth of antibody response to VSA on iRBCs, and not to specific PfEMP1 antigens, is predictive of protection against malaria in CHMI.
Collapse
Affiliation(s)
- Ann W Kinyua
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Louise Turner
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Hannah W Kimingi
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kennedy Mwai
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kioko Mwikali
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Cheryl Andisi
- Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya
| | | | - Philip Bejon
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, United Kingdom
| | - Melissa C Kapulu
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, United Kingdom
| | - Samson M Kinyanjui
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya; Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, United Kingdom; School of Business Studies, Strathmore University, Nairobi, Kenya
| | - Thomas Lavstsen
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Abdirahman I Abdi
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya; Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, United Kingdom.
| |
Collapse
|
2
|
Kushwaha A, Kumar A, Chandrasekhar S, Poulinlu G, Chand K, Muthuchelvan D, Venkatesan G. Baculovirus expression and purification of virion core and envelope proteins of goatpox virus to evaluate their diagnostic potential. Arch Virol 2024; 169:172. [PMID: 39096433 DOI: 10.1007/s00705-024-06079-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/13/2024] [Indexed: 08/05/2024]
Abstract
Goatpox and sheeppox are highly contagious and economically important viral diseases of small ruminants. Due to the risk they pose to animal health, livestock production, and international trade, capripoxviruses are a considerable threat to the livestock economy. In this study, we expressed two core proteins (A4L and A12L) and one extracellular enveloped virion protein (A33R) of goatpox virus in a baculovirus expression vector system and evaluated their use as diagnostic antigens in ELISA. Full-length A4L, A12L, and A33R genes of the GTPV Uttarkashi strain were amplified, cloned into the pFastBac HT A donor vector, and introduced into DH10Bac cells containing a baculovirus shuttle vector plasmid to generate recombinant bacmids. The recombinant baculoviruses were produced in Sf-21 cells by transfection, and proteins were expressed in TN5 insect cells. The recombinant proteins were analysed by SDS-PAGE and confirmed by western blot, with expected sizes of ~30 kDa, ~31 kDa, and ~32 kDa for A4L, A12L, and A33R, respectively. The recombinant proteins were purified, and the immunoreactivity of the purified proteins was confirmed by western blot using anti-GTPV serum. The antigenic specificity of the expressed proteins as diagnostic antigens was evaluated by testing their reactivity with infected, vaccinated, and negative GTPV/SPPV serum in indirect ELISA, and the A33R-based indirect ELISA was optimized. The diagnostic sensitivity and specificity of the A33R-based indirect ELISA were found to be of 89% and 94% for goats and 98% and 91%, for sheep, respectively. No cross-reactivity was observed with other related viruses. The recombinant-A33R-based indirect ELISA developed in the present study shows that it has potential for the detection of antibodies in GTPV and SPPV infected/vaccinated animals.
Collapse
Affiliation(s)
- Anand Kushwaha
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar 263 138, Nainital District, Uttarakhand, India
| | - Amit Kumar
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar 263 138, Nainital District, Uttarakhand, India
| | - S Chandrasekhar
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar 263 138, Nainital District, Uttarakhand, India
| | - G Poulinlu
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar 263 138, Nainital District, Uttarakhand, India
| | - Karam Chand
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar 263 138, Nainital District, Uttarakhand, India
| | | | - G Venkatesan
- FMD Laboratory, ICAR - Indian Veterinary Research Institute, H A Farm, Hebbal, Bengaluru, Karnataka, 560024, India.
| |
Collapse
|
3
|
Jang JH, Kim S, Kim SG, Lee J, Lee DG, Jang J, Jeong YS, Song DH, Min JK, Park JG, Lee MS, Han BS, Son JS, Lee J, Lee NK. A Sensitive Immunodetection Assay Using Antibodies Specific to Staphylococcal Enterotoxin B Produced by Baculovirus Expression. BIOSENSORS 2022; 12:bios12100787. [PMID: 36290925 PMCID: PMC9599101 DOI: 10.3390/bios12100787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022]
Abstract
Staphylococcal enterotoxin B (SEB) is a potent bacterial toxin that causes inflammatory stimulation and toxic shock, thus it is necessary to detect SEB in food and environmental samples. Here, we developed a sensitive immunodetection system using monoclonal antibodies (mAbs). Our study is the first to employ a baculovirus expression vector system (BEVS) to produce recombinant wild-type SEB. BEVS facilitated high-quantity and pure SEB production from suspension-cultured insect cells, and the SEB produced was characterized by mass spectrometry analysis. The SEB was stable at 4 °C for at least 2 years, maintaining its purity, and was further utilized for mouse immunization to generate mAbs. An optimal pair of mAbs non-competitive to SEB was selected for sandwich enzyme-linked immunosorbent assay-based immunodetection. The limit of detection of the immunodetection method was 0.38 ng/mL. Moreover, it displayed higher sensitivity in detecting SEB than commercially available immunodetection kits and retained detectability in various matrices and S. aureus culture supernatants. Thus, the results indicate that BEVS is useful for producing pure recombinant SEB with its natural immunogenic property in high yield, and that the developed immunodetection assay is reliable and sensitive for routine identification of SEB in various samples, including foods.
Collapse
Affiliation(s)
- Ju-Hong Jang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology, School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| | - Sungsik Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Seul-Gi Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology, School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| | - Jaemin Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Dong-Gwang Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Jieun Jang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology, School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| | - Young-Su Jeong
- Agency for Defense Development, 488 Bugyuseoung-daero, Daejeon 34060, Korea
| | - Dong-Hyun Song
- Agency for Defense Development, 488 Bugyuseoung-daero, Daejeon 34060, Korea
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology, School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| | - Jong-Gil Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Baek-Soo Han
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Jee-Soo Son
- iNtRON Biotechnology, 137 Sagimakgol-ro, Jungwon-gu, Seongnam-si 13202, Korea
| | - Jangwook Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology, School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (J.L.); (N.-K.L.); Tel.: +82-42-860-4123 (J.L.); +82-42-860-4117 (N.-K.L.)
| | - Nam-Kyung Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Correspondence: (J.L.); (N.-K.L.); Tel.: +82-42-860-4123 (J.L.); +82-42-860-4117 (N.-K.L.)
| |
Collapse
|
4
|
Olsen RW, Suurbaar J, Jensen AR. Receptor Affinity-Based Purification of PfEMP1 Proteins. Methods Mol Biol 2022; 2470:299-308. [PMID: 35881354 DOI: 10.1007/978-1-0716-2189-9_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The virulence of Plasmodium falciparum is linked to the ability of infected erythrocytes (IEs) to bind a range of human receptors. This binding is mediated by a family of highly polymorphic proteins known as P. falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 proteins are expressed on the surface of IEs and are composed of extracellular domains (NTS, CIDR, DBL), a transmembrane region and an acidic C-terminal segment. Subdomains of the extracellular N-terminal part of PfEMP1 molecules have been shown to bind specific receptors.In this chapter, we describe how to purify PfEMP1 proteins by a receptor affinity-based method. This includes how to prepare affinity columns and how to subsequently test the functionality of the purified PfEMP1 protein in an ELISA-based assay.
Collapse
Affiliation(s)
- Rebecca W Olsen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.
| | - Jennifer Suurbaar
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West Africa Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Anja Ramstedt Jensen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Olsen RW, Suurbaar J, Jensen AR. Affinity Purification of PfEMP1-Specific Antibodies from Human Blood. Methods Mol Biol 2022; 2470:369-379. [PMID: 35881359 DOI: 10.1007/978-1-0716-2189-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Acquired immunity against Plasmodium falciparum infections relies heavily on IgG antibodies specific for PfEMP1 proteins expressed on the surface of infected erythrocytes. Purified human antibodies can be used, for example, to study the interactions between specific PfEMP1 proteins and receptors expressed by human endothelial cells, and to identify which IgG antibodies play a functional role in natural acquired immunity.This chapter describe how to affinity purify PfEMP1-specific human antibodies on an affinity column coupled with PfEMP1 protein. We include ELISA-based methods for identification of human plasma samples reactive against PfEMP1, and for testing of affinity purified IgG antibodies prior to their use in more advanced procedures.
Collapse
Affiliation(s)
- Rebecca W Olsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jennifer Suurbaar
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West Africa Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Anja Ramstedt Jensen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Olsen RW, Suurbaar J, Jensen AR. Analysis of Antibody Inhibition of PfEMP1 Binding by Competition ELISA. Methods Mol Biol 2022; 2470:485-491. [PMID: 35881368 DOI: 10.1007/978-1-0716-2189-9_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plasmodium falciparum express variant antigens on the surface of infected erythrocytes (IEs). These include proteins of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family. PfEMP1 proteins mediate binding of IEs to various human endothelial receptors and induce antibodies response during natural infections. In this chapter, we describe a competition ELISA that is an assay for antibodies neutralizing binding of PfEMP1 proteins to their cognate receptor.
Collapse
Affiliation(s)
- Rebecca W Olsen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.
| | - Jennifer Suurbaar
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West Africa Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Anja Ramstedt Jensen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Villasis E, Garro K, Rosas-Aguirre A, Rodriguez P, Rosado J, Gave A, Guzman-Guzman M, Manrique P, White M, Speybroeck N, Vinetz JM, Torres K, Gamboa D. PvMSP8 as a Novel Plasmodium vivax Malaria Sero-Marker for the Peruvian Amazon. Pathogens 2021; 10:pathogens10030282. [PMID: 33801386 PMCID: PMC7999794 DOI: 10.3390/pathogens10030282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022] Open
Abstract
The measurement of recent malaria exposure can support malaria control efforts. This study evaluated serological responses to an in-house Plasmodium vivax Merozoite Surface Protein 8 (PvMSP8) expressed in a Baculovirus system as sero-marker of recent exposure to P. vivax (Pv) in the Peruvian Amazon. In a first evaluation, IgGs against PvMSP8 and PvMSP10 proteins were measured by Luminex in a cohort of 422 Amazonian individuals with known history of Pv exposure (monthly data of infection status by qPCR and/or microscopy over five months). Both serological responses were able to discriminate between exposed and non-exposed individuals in a good manner, with slightly higher performance of anti-PvMSP10 IgGs (area under the curve AUC = 0.78 [95% CI = 0.72–0.83]) than anti-PvMSP8 IgGs (AUC = 0.72 [95% CI = 0.67–0.78]) (p = 0.01). In a second evaluation, the analysis by ELISA of 1251 plasma samples, collected during a population-based cross-sectional survey, confirmed the good performance of anti-PvMSP8 IgGs for discriminating between individuals with Pv infection at the time of survey and/or with antecedent of Pv in the past month (AUC = 0.79 [95% CI = 0.74–0.83]). Anti-PvMSP8 IgG antibodies can be considered as a good biomarker of recent Pv exposure in low-moderate transmission settings of the Peruvian Amazon.
Collapse
Affiliation(s)
- Elizabeth Villasis
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 15102, Lima, Peru; (K.G.); (P.R.); (K.T.)
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (A.R.-A.); (J.M.V.); (D.G.)
- Correspondence:
| | - Katherine Garro
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 15102, Lima, Peru; (K.G.); (P.R.); (K.T.)
| | - Angel Rosas-Aguirre
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (A.R.-A.); (J.M.V.); (D.G.)
- Research Institute of Health and Society (IRSS). Université Catholique de Louvain, Clos Chapelle-aux-champs 30/B1.30.14 1200 Woluwe-Saint-Lambert, Brussels 1200, Belgium;
| | - Pamela Rodriguez
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 15102, Lima, Peru; (K.G.); (P.R.); (K.T.)
| | - Jason Rosado
- Malaria: Parasites and Hosts Unit, Institut Pasteur, Paris 75015, France; (J.R.); (M.W.)
- Sorbonne Université, Faculté des Sciences et Ingénierie, École Doctorale Pierre Louis - Santé Publique, Campus des Cordeliers, ED 393, F-75005 Paris, France
| | - Anthony Gave
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru;
| | - Mitchel Guzman-Guzman
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru;
| | - Paulo Manrique
- Leishmania and Malaria Research Unit. Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru;
| | - Michael White
- Malaria: Parasites and Hosts Unit, Institut Pasteur, Paris 75015, France; (J.R.); (M.W.)
| | - Niko Speybroeck
- Research Institute of Health and Society (IRSS). Université Catholique de Louvain, Clos Chapelle-aux-champs 30/B1.30.14 1200 Woluwe-Saint-Lambert, Brussels 1200, Belgium;
| | - Joseph Michael Vinetz
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (A.R.-A.); (J.M.V.); (D.G.)
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru;
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Katherine Torres
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 15102, Lima, Peru; (K.G.); (P.R.); (K.T.)
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (A.R.-A.); (J.M.V.); (D.G.)
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (A.R.-A.); (J.M.V.); (D.G.)
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru;
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| |
Collapse
|
8
|
Bendezu J, Villasis E, Morales Ruiz S, Garro K, Infante B, Gutierrez-Loli R, Rodríguez P, Fernández-Díaz M, Gamboa D, Torres K. Evaluation of Plasmodium falciparum MSP10 and its development as a serological tool for the Peruvian Amazon region. Malar J 2019; 18:327. [PMID: 31547821 PMCID: PMC6757379 DOI: 10.1186/s12936-019-2959-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Different antigens are needed to characterize Plasmodium falciparum infection in terms of seroreactivity and targets for invasion inhibition, in order to guide and identify the proper use of such proteins as tools for the development of serological markers and/or as vaccine candidates. METHODS IgG responses in 84 serum samples from individuals with P. falciparum infection [classified as symptomatic (Sym) or asymptomatic (Asym)], or acute Plasmodium vivax infection, from the Peruvian Amazon region, were evaluated by enzyme-linked immunosorbent assays specific for a baculovirus-produced recombinant protein P. falciparum Merozoite Surface Protein 10 (rMSP10) and for non-EGF region selected peptides of PfMSP10 selected by a bioinformatics tool (PfMSP10-1, PfMSP10-2 and PfMSP10-3). Monoclonal antibodies against the selected peptides were evaluated by western blotting, confocal microscopy and inhibition invasion assays. RESULTS Seroreactivity analysis of the P. falciparum Sym- and Asym-infected individuals against rMSP10 showed a higher response as compared to the individuals with P. vivax acute infection. IgG responses against peptide PfMSP10-1 were weak. Interestingly high IgG response was found against peptide PfMSP10-2 and the combination of peptides PfMSP10-1 + PfMSP10-2. Monoclonal antibodies were capable of detecting native PfMSP10 on purified schizonts by western blot and confocal microscopy. A low percentage of inhibition of merozoite invasion of erythrocytes in vitro was observed when the monoclonal antibodies were compared with the control antibody against AMA-1 antigen. Further studies are needed to evaluate the role of PfMSP10 in the merozoite invasion. CONCLUSIONS The rMSP10 and the PfMSP10-2 peptide synthesized for this study may be useful antigens for evaluation of P. falciparum malaria exposure in Sym and Asym individuals from the Peruvian Amazon region. Moreover, these antigens can be used for further investigation of the role of this protein in other malaria-endemic areas.
Collapse
Affiliation(s)
- Jorge Bendezu
- Laboratorios de Investigación y Desarrollo, FARVET, Carretera Panamericana Sur No 766 km 198.5, Chincha Alta, Ica, Peru.
| | - Elizabeth Villasis
- Laboratorios de Investigación y Desarrollo "Abraham Vaisberg Wolach, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt-Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín de Porres, Lima, Peru
| | - Sandra Morales Ruiz
- Laboratorios de Investigación y Desarrollo, FARVET, Carretera Panamericana Sur No 766 km 198.5, Chincha Alta, Ica, Peru
| | - Katherine Garro
- Laboratorios de Investigación y Desarrollo "Abraham Vaisberg Wolach, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Berónica Infante
- Laboratorios de Investigación y Desarrollo "Abraham Vaisberg Wolach, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Renzo Gutierrez-Loli
- Laboratorios de Investigación y Desarrollo "Abraham Vaisberg Wolach, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Pamela Rodríguez
- Laboratorios de Investigación y Desarrollo "Abraham Vaisberg Wolach, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Manolo Fernández-Díaz
- Laboratorios de Investigación y Desarrollo, FARVET, Carretera Panamericana Sur No 766 km 198.5, Chincha Alta, Ica, Peru
| | - Dionicia Gamboa
- Laboratorios de Investigación y Desarrollo "Abraham Vaisberg Wolach, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt-Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín de Porres, Lima, Peru
| | - Katherine Torres
- Laboratorios de Investigación y Desarrollo "Abraham Vaisberg Wolach, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.
- Instituto de Medicina Tropical Alexander von Humboldt-Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín de Porres, Lima, Peru.
| |
Collapse
|
9
|
The production of KIR-Fc fusion proteins and their use in a multiplex HLA class I binding assay. J Immunol Methods 2015; 425:79-87. [PMID: 26096968 DOI: 10.1016/j.jim.2015.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 11/20/2022]
Abstract
Soluble recombinant proteins that comprise the extracellular part of a surface expressed receptor attached to the Fc region of an IgG antibody have facilitated the determination of ligand specificity for an array of immune system receptors. Among such receptors is the family of killer cell immunoglobulin-like receptors (KIR) that recognize HLA class I ligands. These receptors, expressed on natural killer (NK) cells and T cells, play important roles in both immune defense and placental development in early pregnancy. Here we describe a method for the production of two domain KIR-Fc fusion proteins using baculovirus infected insect cells. This method is more scalable than traditional mammalian cell expression systems and produces efficiently folded proteins that carry posttranslational modifications found in native KIR. We also describe a multiplex binding assay using the Luminex platform that determines the avidity and specificity of two domain KIR-Fc for a panel of microbeads, each coated with one of 97 HLA class I allotypes. This assay is simple to perform, and represents a major improvement over the assays used previously, which were limited in the number of KIR and HLA class I combinations that could be assayed at any one time. The results obtained from this assay can be used to predict the response of NK cell and T cells when their KIR recognize HLA class I.
Collapse
|
10
|
Cowan GJM, Bockau U, Eleni-Muus J, Aldag I, Samuel K, Creasey AM, Hartmann MWW, Cavanagh DR. A novel malaria vaccine candidate antigen expressed in Tetrahymena thermophila. PLoS One 2014; 9:e87198. [PMID: 24489871 PMCID: PMC3906136 DOI: 10.1371/journal.pone.0087198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 12/20/2013] [Indexed: 01/15/2023] Open
Abstract
Development of effective malaria vaccines is hampered by the problem of producing correctly folded Plasmodium proteins for use as vaccine components. We have investigated the use of a novel ciliate expression system, Tetrahymena thermophila, as a P. falciparum vaccine antigen platform. A synthetic vaccine antigen composed of N-terminal and C-terminal regions of merozoite surface protein-1 (MSP-1) was expressed in Tetrahymena thermophila. The recombinant antigen was secreted into the culture medium and purified by monoclonal antibody (mAb) affinity chromatography. The vaccine was immunogenic in MF1 mice, eliciting high antibody titers against both N- and C-terminal components. Sera from immunized animals reacted strongly with P. falciparum parasites from three antigenically different strains by immunofluorescence assays, confirming that the antibodies produced are able to recognize parasite antigens in their native form. Epitope mapping of serum reactivity with a peptide library derived from all three MSP-1 Block 2 serotypes confirmed that the MSP-1 Block 2 hybrid component of the vaccine had effectively targeted all three serotypes of this polymorphic region of MSP-1. This study has successfully demonstrated the use of Tetrahymena thermophila as a recombinant protein expression platform for the production of malaria vaccine antigens.
Collapse
Affiliation(s)
- Graeme J. M. Cowan
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | - Kay Samuel
- Cell Therapy Group, Scottish National Blood Transfusion Service, Edinburgh, United Kingdom
| | - Alison M. Creasey
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | | | - David R. Cavanagh
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Transfected HEK293 cells expressing functional recombinant intercellular adhesion molecule 1 (ICAM-1)--a receptor associated with severe Plasmodium falciparum malaria. PLoS One 2013; 8:e69999. [PMID: 23936131 PMCID: PMC3723725 DOI: 10.1371/journal.pone.0069999] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/15/2013] [Indexed: 11/21/2022] Open
Abstract
Intercellular adhesion molecule 1 (ICAM-1) is a membrane-bound glycoprotein expressed on endothelial cells and cells of the immune system. Human ICAM-1 mediates adhesion and migration of leucocytes, and is implicated in inflammatory pathologies, autoimmune diseases and in many cancer processes. Additionally, ICAM-1 acts as receptor for pathogens like human rhinovirus and Plasmodium falciparum malaria parasites. A group of related P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains, the DBLβ, mediates ICAM-1 binding of P. falciparum-infected erythrocytes. This ICAM‑1-binding phenotype has been suggested to be involved in the development of cerebral malaria. However, more studies identifying cross-reactive antibody and ICAM-1-binding epitopes and the establishment of a clinical link between DBLβ expression and e.g. cerebral malaria are needed before the DBLβ domains can be put forward as vaccine candidates and go into clinical trials. Such studies require availability of functional recombinant ICAM-1 in large quantities. In this study, we compared recombinant ICAM-1 expressed in HEK293 and COS-7 cells with mouse myeloma NS0 ICAM-1 purchased from a commercial vendor in terms of protein purity, yield, fold, ability to bind DBLβ, and relative cost. We present a HEK293 cell-based, high-yield expression and purification scheme for producing inexpensive, functional ICAM‑1. ICAM-1 expressed in HEK293 is applicable to malaria research and can also be useful in other research fields.
Collapse
|
12
|
Bengtsson A, Joergensen L, Rask TS, Olsen RW, Andersen MA, Turner L, Theander TG, Hviid L, Higgins MK, Craig A, Brown A, Jensen ATR. A novel domain cassette identifies Plasmodium falciparum PfEMP1 proteins binding ICAM-1 and is a target of cross-reactive, adhesion-inhibitory antibodies. THE JOURNAL OF IMMUNOLOGY 2012; 190:240-9. [PMID: 23209327 DOI: 10.4049/jimmunol.1202578] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cerebral Plasmodium falciparum malaria is characterized by adhesion of infected erythrocytes (IEs) to the cerebral microvasculature. This has been linked to parasites expressing the structurally related group A subset of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of IE adhesion ligands and to IEs with affinity for ICAM-1. However, recent evidence has cast doubt on both these associations, tempering hopes of the feasibility of developing a vaccine based on ICAM-1-binding PfEMP1. In this study, we report the identification of a domain cassette (DC) present in group A var genes from six genetically distinct P. falciparum parasites. The three domains in the cassette, which we call DC4, had a high level of sequence identity and cluster together phylogenetically. Erythrocytes infected by these parasites and selected in vitro for expression of DC4 adhered specifically to ICAM-1. The ICAM-1-binding capacity of DC4 was mapped to the C-terminal third of its Duffy-binding-like β3 domain. DC4 was the target of broadly cross-reactive and adhesion-inhibitory IgG Abs, and levels of DC4-specific and adhesion-inhibitory IgG increased with age among P. falciparum-exposed children. Our study challenges earlier conclusions that group A PfEMP1 proteins are not central to ICAM-1-specific IE adhesion and support the feasibility of developing a vaccine preventing cerebral malaria by inhibiting cerebral IE sequestration.
Collapse
Affiliation(s)
- Anja Bengtsson
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 1014, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|