1
|
Lee PS, Sriperumbudur KK, Dawson J, van Rienen U, Appali R. Mathematical models on bone cell homeostasis and kinetics in the presence of electric fields: a review. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 7:012004. [PMID: 39655864 DOI: 10.1088/2516-1091/ad9530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
The role of bioelectricity in regulating various physiological processes has attracted increasing scientific interest in implementing exogenous electrical stimulations as a therapeutic approach. In particular, electrical stimuli are used clinically in pre-/post-surgery patient care for the musculoskeletal tissues. The reported potential of electric fields (EF) to regulate bone cell homeostasis and kineticsin vitrohas further provoked more studies in this field of research. Various customised apparatuses have been developed, and a range of parameters for the applied EFs have been investigatedin vitrowith bone cells or mesenchymal stem cells. Additionally, biomaterials with conductive or piezo-electric properties have been designed to complement the enhancing effects of the EF on bone regeneration. Despite much research, there remained a significant gap in knowledge due to the diverse range of EF parameters available. Mathematical models are built to facilitate further understanding and zero in on an effective range of EF parametersin silico. However, the diverse range of EF parameters, experimental conditions, and reported analytical output of different works of literature were reported to possess significant variance, making it challenging to accurately model the fieldin silico. This review categorises the existing experimental approaches and the parameters used to distinguish the potential variables that apply to mathematical modelling. Furthermore, we will discuss existing modelling approaches and models available in the literature. With this, we will concisely highlight the need to categorise EF parameters, osteogenic differentiation initiators and research output.
Collapse
Affiliation(s)
- Poh Soo Lee
- Faculty of Mechanical Science and Engineering, Max Bergmann Centre of Biomaterials, Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Kiran K Sriperumbudur
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Rostock, Germany
- Research and Development, MedEL GmbH, Innsbruck, Austria
| | - Jonathan Dawson
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Rostock, Germany
- Department of Engineering and Physics, Whitworth University, Spokane, WA 99251, United States of America
| | - Ursula van Rienen
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Rostock, Germany
- Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
- Department of Life, Light and Matter, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Revathi Appali
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Rostock, Germany
- Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
- Institute for Electrical Engineering and Biomedical Engineering, UMIT, Hall in Tirol, Austria
| |
Collapse
|
2
|
Zimmermann J, Farooqi AR, van Rienen U. Electrical stimulation for cartilage tissue engineering - A critical review from an engineer's perspective. Heliyon 2024; 10:e38112. [PMID: 39416819 PMCID: PMC11481755 DOI: 10.1016/j.heliyon.2024.e38112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/31/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Cartilage has a limited intrinsic healing capacity. Hence, cartilage degradation and lesions pose a huge clinical challenge, particularly in an ageing society. Osteoarthritis impacts a significant number of the population and requires the development of repair and tissue engineering methods for hyaline articular cartilage. In this context, electrical stimulation has been investigated for more than 50 years already. Yet, no well-established clinical therapy to treat osteoarthritis by means of electrical stimulation exists. We argue that one reason is the lack of replicability of electrical stimulation devices from a technical perspective together with lacking hypotheses of the biophysical mechanism. Hence, first, the electrical stimulation studies reported in the context of cartilage tissue engineering with a special focus on technical details are summarized. Then, an experimental and numerical approach is discussed to make the electrical stimulation experiments replicable. Finally, biophysical hypotheses have been reviewed on the interaction of electric fields and cells that are relevant for cartilage tissue engineering. With that, the aim is to inspire future research to enable clinical electrical stimulation therapies to fight osteoarthritis.
Collapse
Affiliation(s)
- Julius Zimmermann
- Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany
| | - Abdul Razzaq Farooqi
- Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany
- Department of Electronic Engineering, Faculty of Engineering, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany
- Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, 18051 Rostock, Germany
- Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany
| |
Collapse
|
3
|
Huang Y, Yao K, Zhang Q, Huang X, Chen Z, Zhou Y, Yu X. Bioelectronics for electrical stimulation: materials, devices and biomedical applications. Chem Soc Rev 2024; 53:8632-8712. [PMID: 39132912 DOI: 10.1039/d4cs00413b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bioelectronics is a hot research topic, yet an important tool, as it facilitates the creation of advanced medical devices that interact with biological systems to effectively diagnose, monitor and treat a broad spectrum of health conditions. Electrical stimulation (ES) is a pivotal technique in bioelectronics, offering a precise, non-pharmacological means to modulate and control biological processes across molecular, cellular, tissue, and organ levels. This method holds the potential to restore or enhance physiological functions compromised by diseases or injuries by integrating sophisticated electrical signals, device interfaces, and designs tailored to specific biological mechanisms. This review explains the mechanisms by which ES influences cellular behaviors, introduces the essential stimulation principles, discusses the performance requirements for optimal ES systems, and highlights the representative applications. From this review, we can realize the potential of ES based bioelectronics in therapy, regenerative medicine and rehabilitation engineering technologies, ranging from tissue engineering to neurological technologies, and the modulation of cardiovascular and cognitive functions. This review underscores the versatility of ES in various biomedical contexts and emphasizes the need to adapt to complex biological and clinical landscapes it addresses.
Collapse
Affiliation(s)
- Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Ghosh S, Roy P, Lahiri D. Development of Anisotropic Electrically Conductive GNP-Reinforced PCL-Collagen Scaffold for Enhanced Neurogenic Differentiation under Electrical Stimulation. Chem Asian J 2024; 19:e202400061. [PMID: 38547362 DOI: 10.1002/asia.202400061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/20/2024] [Indexed: 04/26/2024]
Abstract
The internal electric field of the human body plays a crucial role in regulating various biological processes, such as, cellular interactions, embryonic development and the healing process. Electrical stimulation (ES) modulates cytoskeleton and calcium ion activities to restore nervous system functioning. When exposed to electrical fields, stem cells respond similarly to neurons, muscle cells, blood vessel linings, and connective tissue (fibroblasts), depending on their environment. This study develops cost-effective electroconductive scaffolds for regenerative therapy. This was achieved by incorporating carboxy functionalized graphene nanoplatelets (GNPs) into a Polycaprolactone (PCL)-collagen matrix. ES was used to assess the scaffolds' propensity to boost neuronal differentiation from MSCs. This study reported that aligned GNP-reinforced PCL-Collagen scaffolds demonstrate substantial MSC differentiation with ES. This work effectively develops scaffolds using a simple, cost-effective synthesis approach. The direct coupling approach generated a homogeneous electric field to stimulate cells cultured on GNP-reinforced scaffolds. The scaffolds exhibited improved mechanical and electrical characteristics, as a result of the reinforcement with carbon nanofillers. In vitro results suggest that electrical stimulation helps differentiation of mesenchymal stem-like cells (MSC-like) towards neuronal. This finding holds great potential for the development of effective treatments for tissue injuries related to the nervous system.
Collapse
Affiliation(s)
- Souvik Ghosh
- Biomaterials and Multiscale Mechanics Lab, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand, India
- Molecular Endocrinology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand, India
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand, India
- Present address: Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, 13210, Syracuse, NY, USA
| | - Partha Roy
- Molecular Endocrinology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand, India
| | - Debrupa Lahiri
- Biomaterials and Multiscale Mechanics Lab, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand, India
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand, India
| |
Collapse
|
5
|
Song S, McConnell KW, Shan D, Chen C, Oh B, Sun J, Poon ASY, George PM. Conductive gradient hydrogels allow spatial control of adult stem cell fate. J Mater Chem B 2024; 12:1854-1863. [PMID: 38291979 PMCID: PMC10922832 DOI: 10.1039/d3tb02269b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Electrical gradients are fundamental to physiological processes including cell migration, tissue formation, organ development, and response to injury and regeneration. Current electrical modulation of cells is primarily studied under a uniform electrical field. Here we demonstrate the fabrication of conductive gradient hydrogels (CGGs) that display mechanical properties and varying local electrical gradients mimicking physiological conditions. The electrically-stimulated CGGs enhanced human mesenchymal stem cell (hMSC) viability and attachment. Cells on CGGs under electrical stimulation showed a high expression of neural progenitor markers such as Nestin, GFAP, and Sox2. More importantly, CGGs showed cell differentiation toward oligodendrocyte lineage (Oligo2) in the center of the scaffold where the electric field was uniform with a greater intensity, while cells preferred neuronal lineage (NeuN) on the edge of the scaffold on a varying electric field at lower magnitude. Our data suggest that CGGs can serve as a useful platform to study the effects of electrical gradients on stem cells and potentially provide insights on developing new neural engineering applications.
Collapse
Affiliation(s)
- Shang Song
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, 300 Pasteur Dr, MC5778 Stanford Stroke Center, Stanford, CA 94305-5778, USA.
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
- Departments of Neuroscience GIDP, Materials Science and Engineering, BIO5 Institute, The University of Arizona, Tucson, AZ, USA
| | - Kelly W McConnell
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, 300 Pasteur Dr, MC5778 Stanford Stroke Center, Stanford, CA 94305-5778, USA.
| | - Dingying Shan
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, 300 Pasteur Dr, MC5778 Stanford Stroke Center, Stanford, CA 94305-5778, USA.
| | - Cheng Chen
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Byeongtaek Oh
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, 300 Pasteur Dr, MC5778 Stanford Stroke Center, Stanford, CA 94305-5778, USA.
| | - Jindi Sun
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Ada S Y Poon
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Paul M George
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, 300 Pasteur Dr, MC5778 Stanford Stroke Center, Stanford, CA 94305-5778, USA.
- Stanford Stroke Center and Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
6
|
Chen ST, He SY, Li Y, Gu N, Wen C, Lu J. Metallurgical manipulation of surface Volta potential in bimetals and cell response of human mesenchymal stem cells. BIOMATERIALS ADVANCES 2023; 153:213529. [PMID: 37348184 DOI: 10.1016/j.bioadv.2023.213529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
Bioelectricity plays an overriding role in directing cell migration, proliferation, differentiation etc. Tailoring the electro-extracellular environment through metallurgical manipulation could modulate the surrounding cell behaviors. In this study, different electric potential patterns, in terms of Volta potential distribution and gradient, were created on the metallic surface as an electric microenvironment, and their effects on adherent human mesenchymal stem cells were investigated. Periodically and randomly distributed Volta potential pattern, respectively, were generated on the surface through spark plasma sintering of two alternatively stacked dissimilar metals films and of a mixture of metallic powders. Actin cytoskeleton staining demonstrated that the Volta potential pattern strongly affected cell attachment and deformation. The cytoskeletons of cells were observed to elongate along the Volta potential gradient and across the border of adjacent regions with higher and lower potentials. Moreover, the steepest potential gradient resulting from the drastic compositional changes on the periodic borders gave rise to the strongest osteogenic tendency among all the samples. This study suggests that tailoring the Volta potential distribution and gradient of metallic biomaterials via metallurgical manipulation is a promising approach to activate surrounding cells, providing an extra degree of freedom for designing desirable bone-repairing metallic implants.
Collapse
Affiliation(s)
- Shi-Ting Chen
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Si-Yuan He
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, PR China.
| | - Yan Li
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Ning Gu
- Medical School, Nanjing University, Nanjing 210093, PR China
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Jian Lu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong
| |
Collapse
|
7
|
Bosio VE, Rybner C, Kaplan DL. Concentric-mineralized hybrid silk-based scaffolds for bone tissue engineering in vitro models. J Mater Chem B 2023; 11:7998-8006. [PMID: 37526619 PMCID: PMC10563295 DOI: 10.1039/d3tb00717k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
There are many challenges in the development of 3D-tissue models for studying bone physiology and disease. Silk fibroin (SF), a natural fibrous protein used in biomedical applications has been studied for bone tissue engineering (TE) due to its mechanical properties, biocompatibility and biodegradability. However, low osteogenic capacity as well as the necessity to reinforce the protein mechanically for some orthopedic applications prompts the need for further designs for SF-based materials for TE bone. Concentric mineralized porous SF-based scaffolds were developed to improve mechanics and mineralization towards osteoregeneration. Hybrid SF silica microparticles (MP) or calcium carbonate nano-structured microparticles (NMP) were seeded with hMSCs co-cultured under osteogenic and osteoclastic conditions with THP-1 human monocytes up to 10 weeks to simulate and recapitulate bone regeneration. Scaffolds with appropriate pore size for cell infiltration, resulted in improved compressive strength, increased cell attachment and higher levels of expression of osteogenic markers and mineralization after adding the NMPs, compared to controls systems without these particles. These hybrid SF-based 3D-structures can provide improved scaffold designs for in vitro bone TE.
Collapse
Affiliation(s)
- Valeria E Bosio
- BIOMIT Lab (Biomaterials in Tissue Engineering Lab) Institute of Physics La Plata (IFLP), University of La Plata & CONICET, Diag. 113 e/63 y 64, CP 1900, La Plata, Buenos Aires, Argentina.
- Department of Biomaterials, Celll Institute, Ciudad de Buenos Aires, Argentina
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | - Christofer Rybner
- BIOMIT Lab (Biomaterials in Tissue Engineering Lab) Institute of Physics La Plata (IFLP), University of La Plata & CONICET, Diag. 113 e/63 y 64, CP 1900, La Plata, Buenos Aires, Argentina.
- Department of Biomaterials, Celll Institute, Ciudad de Buenos Aires, Argentina
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|
8
|
Zimmermann J, Sahm F, Arbeiter N, Bathel H, Song Z, Bader R, Jonitz-Heincke A, van Rienen U. Experimental and numerical methods to ensure comprehensible and replicable alternating current electrical stimulation experiments. Bioelectrochemistry 2023; 151:108395. [PMID: 36773506 DOI: 10.1016/j.bioelechem.2023.108395] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Electrical stimulation has received increasing attention for decades for its application in regenerative medicine. Applications range from bone growth stimulation over cartilage regeneration to deep brain stimulation. Despite all research efforts, translation into clinical use has not yet been achieved in all fields. Recent critical assessments have identified limited documentation and monitoring of preclinical in vitro and in vivo experiments as possible reasons hampering clinical translation. In this work, we present experimental and numerical methods to determine the crucial quantities of electrical stimulation such as the electric field or current density. Knowing the stimulation quantities contributes to comprehending the biological response to electrical stimulation and to finally developing a reliable dose-response curve. To demonstrate the methods, we consider a direct contact electrical stimulation experiment that stands representative for a broad class of stimulation experiments. Electrochemical effects are addressed and methods to integrate them into numerical simulations are evaluated. A focus is laid on affordable lab equipment and reproducible open-source software solutions. Finally, clear guidelines to ensure replicability of electrical stimulation experiments are formulated.
Collapse
Affiliation(s)
- Julius Zimmermann
- Institute of General Electrical Engineering, University of Rostock, D-18051 Rostock, Germany.
| | - Franziska Sahm
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Nils Arbeiter
- Institute of General Electrical Engineering, University of Rostock, D-18051 Rostock, Germany
| | - Henning Bathel
- Institute of General Electrical Engineering, University of Rostock, D-18051 Rostock, Germany
| | - Zezhong Song
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Rainer Bader
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, D-18057 Rostock, Germany; Department Life, Light & Matter, University of Rostock, D-18051 Rostock, Germany
| | - Anika Jonitz-Heincke
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, D-18057 Rostock, Germany.
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, D-18051 Rostock, Germany; Department Life, Light & Matter, University of Rostock, D-18051 Rostock, Germany; Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, D-18051 Rostock, Germany.
| |
Collapse
|
9
|
Zhang Y, Tang J, Fang W, Zhao Q, Lei X, Zhang J, Chen J, Li Y, Zuo Y. Synergetic Effect of Electrical and Topographical Cues in Aniline Trimer-Based Polyurethane Fibrous Scaffolds on Tissue Regeneration. J Funct Biomater 2023; 14:jfb14040185. [PMID: 37103277 PMCID: PMC10146274 DOI: 10.3390/jfb14040185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
Processibility and biodegradability of conductive polymers are major concerns when they are applied to tissue regeneration. This study synthesizes dissolvable and conductive aniline trimer-based polyurethane copolymers (DCPU) and processes them into scaffolds by using electrospinning with different patterns (random, oriented, and latticed). The effects of topographic cue changes on electrical signal transmission and further regulation of cell behaviors concerning bone tissue are researched. Results show that DCPU fibrous scaffolds possessed good hydrophilicity, swelling capacity, elasticity, and fast biodegradability in enzymatic liquid. In addition, the conductivity and efficiency of electrical signal transmission can be tuned by changing the surface’s topological structure. Among them, oriented DCPU scaffolds (DCPU-O) showed the best conductivity with the lowest ionic resistance value. Furthermore, the viability and proliferation results of bone mesenchymal stem cells (BMSCs) demonstrate a significant increase on three DCPU scaffolds compared to AT-free scaffolds (DPU-R). Especially, DCPU-O scaffolds exhibit superior abilities to promote cell proliferation because of their unique surface topography and excellent electroactivity. Concurrently, the DCPU-O scaffolds can synergistically promote osteogenic differentiation in terms of osteogenic differentiation and gene expression levels when combined with electrical stimulation. Together, these results suggest a promising use of DCPU-O fibrous scaffolds in the application of tissue regeneration.
Collapse
|
10
|
Ramos A, Soares Dos Santos MP. Capacitive stimulation-sensing system for instrumented bone implants: Finite element model to predict the electric stimuli delivered to the interface. Comput Biol Med 2023; 154:106542. [PMID: 36680932 DOI: 10.1016/j.compbiomed.2023.106542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/17/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
BACKGROUND Prevalence of orthopaedic replacements are increasing around the world. The main cause of revision remains associated to the interface loosening. In this work, a computational study using the Finite element method was developed to predict the electric field stimuli delivered to trabecular bone structures, as well as to predict the sensing ability to detect different bone-implant interface scenarios. METHODS Three finite element models were developed: two simplified models, including a Gyroid TMP structure, and a realistic model based on microCT scan of a trabecular bone from sheep vertebra. Simulations were performed using a co-surface capacitive technology for stimulating and sensing bone-implant interfaces. Different fixation scenarios were considered, namely by establishing bone-stimulator gap sizes up to 1 mm (from fixation to massive loosening scenario). Electrodes were excited with sinusoidal and square electric signals up to 10V voltage and 64kHz frequency. RESULTS Simplification of bone geometry resulted in significant electric stimuli differences compared to the realistic bone geometry. Realistic modelling allowed to observe that, in the fixation scenario, the electric field stimuli decreased 85% from the sensor interface to a parallel plane 2 mm apart from such interface. A significant influence of the bone-stimulator distance on the electric stimuli was found: the electric stimuli magnitudes varied in the range between 0.38 V/mm (fixation scenario) and 4.8 mV/mm (massive loosening scenario) for voltages up to 10V. Strong frequency-dependent behaviours were also observed in the electric stimuli: their magnitudes can reach 106-fold decreases when the excitation frequency is decreased from 32 kHz to 14 Hz CONCLUSION: This study points out the inability of our two simplified models to predict the electric stimulation provided to different bone-implant interface scenarios. Results highlight that co-surface stimulators can deliver osteogenic electric stimuli along trabecular bone structures, ensuring low electric power excitations. Moreover, realistic models strongly enhance the sensing predictability of the bone-implant fixation states. These new and significant evidences provide a strong support to integrate co-surface capacitive into bioelectronic implants for both therapeutic and sensing operations.
Collapse
Affiliation(s)
- António Ramos
- TEMA, Mechanical Engineering Department, University of Aveiro, Portugal.
| | | |
Collapse
|
11
|
Bhaskar N, Kachappilly MC, Bhushan V, Pandya HJ, Basu B. Electrical field stimulated modulation of cell fate of pre-osteoblasts on PVDF/BT/MWCNT based electroactive biomaterials. J Biomed Mater Res A 2023; 111:340-353. [PMID: 36403282 DOI: 10.1002/jbm.a.37472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
The present study reports the impact of the interplay between electroactive properties of the biomaterials and electrical stimulation (ES) toward the cell proliferation, migration and maturation of osteoprogenitors (preosteoblasts; MC3T3-E1) on the electroactive poly (vinylidene difluoride) (PVDF)-based composites. The barium titanate (BaTiO3; BT; 30 wt%) and multiwalled carbon nanotubes (MWCNT; 3 wt%) were introduced into the PVDF via melt mixing, which led to an enhancement of the dielectric permittivity, electrical conductivity, and surface roughness. We also present the design and development of an in-house customized 12-well plate-based device for providing different types (DC, square, biphasic) of ES to cells in culture in a programmable manner. In the presence of ES of 1 V cm-1 , biophysical stimulation experiments performed using 12-well plate-based device revealed that PVDF composite (PVDF/30BT/3MWCNT) can facilitate the enhanced adhesion and proliferation of the MC3T3-E1 in non-osteogenic media, with respect to non-stimulated conditions. Importantly, MC3T3-E1 cells demonstrated significantly better migration and differentiation on the PVDF/30BT/3MWCNT under ES when compared to ES-free culture conditions. Similar enhancement with respect to alkaline phosphatase activity, intracellular Ca2+ concentration, and calcium deposition in MC3T3-E1 cells was recorded, when pre-osteoblasts were grown for 21 days on electroactive substrates. All these observations supported the activation of osteo-differentiation fates, which were further promoted in the osteogenic medium. The present study demonstrates that the synergistic interactions of ES with piezoelectric PVDF-based polymer composite can potentially enhance the proliferation, migration, and osteogenesis of the pre-osteoblast cells, rendering it a promising bioengineering strategy for bone tissue engineering.
Collapse
Affiliation(s)
- Nitu Bhaskar
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, India
| | - Midhun C Kachappilly
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - Venkatesh Bhushan
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - Hardik J Pandya
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India.,Centre for Product Design and Manufacturing, Indian Institute of Science, Bangalore, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
12
|
Hyväri L, Vanhatupa S, Ojansivu M, Kelloniemi M, Pakarinen TK, Hupa L, Miettinen S. Heat Shock Protein 27 Is Involved in the Bioactive Glass Induced Osteogenic Response of Human Mesenchymal Stem Cells. Cells 2023; 12:cells12020224. [PMID: 36672159 PMCID: PMC9856363 DOI: 10.3390/cells12020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
Bioactive glass (BaG) materials are increasingly used in clinics, but their regulatory mechanisms on osteogenic differentiation remain understudied. In this study, we elucidated the currently unknown role of the p38 MAPK downstream target heat shock protein 27 (HSP27), in the osteogenic commitment of human mesenchymal stem cells (hMSCs), derived from adipose tissue (hASCs) and bone marrow (hBMSCs). Osteogenesis was induced with ionic extract of an experimental BaG in osteogenic medium (OM). Our results showed that BaG OM induced fast osteogenesis of hASCs and hBMSCs, demonstrated by enhanced alkaline phosphatase (ALP) activity, production of extracellular matrix protein collagen type I, and matrix mineralization. BaG OM stimulated early and transient activation of p38/HSP27 signaling by phosphorylation in hMSCs. Inhibition of HSP27 phosphorylation with SB202190 reduced the ALP activity, mineralization, and collagen type I production induced by BaG OM. Furthermore, the reduced pHSP27 protein by SB202190 corresponded to a reduced F-actin intensity of hMSCs. The phosphorylation of HSP27 allowed its co-localization with the cytoskeleton. In terminally differentiated cells, however, pHSP27 was found diffusely in the cytoplasm. This study provides the first evidence that HSP27 is involved in hMSC osteogenesis induced with the ionic dissolution products of BaG. Our results indicate that HSP27 phosphorylation plays a role in the osteogenic commitment of hMSCs, possibly through the interaction with the cytoskeleton.
Collapse
Affiliation(s)
- Laura Hyväri
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Elämänaukio, Kuntokatu 2, 33520 Tampere, Finland
| | - Sari Vanhatupa
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Elämänaukio, Kuntokatu 2, 33520 Tampere, Finland
| | - Miina Ojansivu
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Elämänaukio, Kuntokatu 2, 33520 Tampere, Finland
| | - Minna Kelloniemi
- Department of Plastic and Reconstructive Surgery, Tampere University Hospital, Elämänaukio, Kuntokatu 2, 33520 Tampere, Finland
| | - Toni-Karri Pakarinen
- Regea Cell and Tissue Center, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
| | - Leena Hupa
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Elämänaukio, Kuntokatu 2, 33520 Tampere, Finland
- Correspondence: ; Tel.: +358-40-1901789
| |
Collapse
|
13
|
Sahm F, Freiin Grote V, Zimmermann J, Haack F, Uhrmacher AM, van Rienen U, Bader R, Detsch R, Jonitz-Heincke A. Long-term stimulation with alternating electric fields modulates the differentiation and mineralization of human pre-osteoblasts. Front Physiol 2022; 13:965181. [PMID: 36246121 PMCID: PMC9562827 DOI: 10.3389/fphys.2022.965181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Biophysical stimulation by electric fields can promote bone formation in bone defects of critical size. Even though, long-term effects of alternating electric fields on the differentiation of osteoblasts are not fully understood. Human pre-osteoblasts were stimulated over 31 days to gain more information about these cellular processes. An alternating electric field with 0.7 Vrms and 20 Hz at two distances was applied and viability, mineralization, gene expression, and protein release of differentiation factors were analyzed. The viability was enhanced during the first days of stimulation. A higher electric field resulted in upregulation of typical osteogenic markers like osteoprotegerin, osteopontin, and interleukin-6, but no significant changes in mineralization. Upregulation of the osteogenic markers could be detected with a lower electric field after the first days of stimulation. As a significant increase in the mineralized matrix was identified, an enhanced osteogenesis due to low alternating electric fields can be assumed.
Collapse
Affiliation(s)
- Franziska Sahm
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, Rostock, Germany
- *Correspondence: Franziska Sahm, ; Anika Jonitz-Heincke,
| | - Vivica Freiin Grote
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, Rostock, Germany
| | - Julius Zimmermann
- Chair of Theoretical Electrical Engineering, Institute for General Electrical Engineering, University of Rostock, Rostock, Germany
| | - Fiete Haack
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
| | - Adelinde M. Uhrmacher
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
| | - Ursula van Rienen
- Chair of Theoretical Electrical Engineering, Institute for General Electrical Engineering, University of Rostock, Rostock, Germany
- Department Life, Light and Matter, University of Rostock, Rostock, Germany
- Department Ageing of Individuals and Society, University of Rostock, Rostock, Germany
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, Rostock, Germany
| | - Rainer Detsch
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Anika Jonitz-Heincke
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, Rostock, Germany
- *Correspondence: Franziska Sahm, ; Anika Jonitz-Heincke,
| |
Collapse
|
14
|
Guillot-Ferriols M, Lanceros-Méndez S, Gómez Ribelles JL, Gallego Ferrer G. Electrical stimulation: Effective cue to direct osteogenic differentiation of mesenchymal stem cells? BIOMATERIALS ADVANCES 2022; 138:212918. [PMID: 35913228 DOI: 10.1016/j.bioadv.2022.212918] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/02/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Mesenchymal stem cells (MSCs) play a major role in bone tissue engineering (BTE) thanks to their capacity for osteogenic differentiation and being easily available. In vivo, MSCs are exposed to an electroactive microenvironment in the bone niche, which has piezoelectric properties. The correlation between the electrically active milieu and bone's ability to adapt to mechanical stress and self-regenerate has led to using electrical stimulation (ES) as physical cue to direct MSCs differentiation towards the osteogenic lineage in BTE. This review summarizes the different techniques to electrically stimulate MSCs to induce their osteoblastogenesis in vitro, including general electrical stimulation and substrate mediated stimulation by means of conductive or piezoelectric cell culture supports. Several aspects are covered, including stimulation parameters, treatment times and cell culture media to summarize the best conditions for inducing MSCs osteogenic commitment by electrical stimulation, from a critical point of view. Electrical stimulation activates different signaling pathways, including bone morphogenetic protein (BMP) Smad-dependent or independent, regulated by mitogen activated protein kinases (MAPK), extracellular signal-regulated kinases (ERK) and p38. The roles of voltage gate calcium channels (VGCC) and integrins are also highlighted according to their application technique and parameters, mainly converging in the expression of RUNX2, the master regulator of the osteogenic differentiation pathway. Despite the evident lack of homogeneity in the approaches used, the ever-increasing scientific evidence confirms ES potential as an osteoinductive cue, mimicking aspects of the in vivo microenvironment and moving one step forward to the translation of this approach into clinic.
Collapse
Affiliation(s)
- M Guillot-Ferriols
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain; Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain.
| | - S Lanceros-Méndez
- Centre of Physics of Minho and Porto Universities, Universidade do Minho, 4710-058 Braga, Portugal; BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - J L Gómez Ribelles
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain; Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| | - G Gallego Ferrer
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain; Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| |
Collapse
|
15
|
Haroutunian GG, Tsaghikian A, Fedorova E, Chaurasia P, Gusella GL, Mosoian A. Electromagnetic Fields Generated by the IteraCoil Device Differentiate Mesenchymal Stem Progenitor Cells Into the Osteogenic Lineage. Bioelectromagnetics 2022; 43:245-256. [PMID: 35391494 PMCID: PMC9325380 DOI: 10.1002/bem.22401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/11/2022] [Accepted: 03/20/2022] [Indexed: 11/09/2022]
Abstract
Rapid advances in mesenchymal stem progenitor cells (MSPCs) have rendered impetus into the area of cell therapy and regenerative medicine. The main promise of future stem cell therapies is their reliance on autologous stem cells derived from adipose tissue, which also includes treatments of bone fractures and degeneration. The effectiveness of different electric devices utilized to reprogram MSPCs toward osteogenic differentiation has provided varying degrees of effectiveness for clinical use. Adipose tissue-derived MSPCs were flow-cytometrically characterized and further differentiated into osteoblasts by culturing either in growth medium with pro-osteogenic supplements or without supplements with alternating electromagnetic field (EMF) generated by IteraCoil. IteraCoil is a multi-solenoid coil with a specific complex geometry that creates a 3D-EMF with desired parameters without directly applying electrodes to the cells and tissues. The flow-cytometric analysis of highly enriched (≥95%) adipose-derived MSPCs (CD34- , CD73+ , CD90+ , and CD105+ ) was utilized for the study. Osteoblasts and chondrocyte differentiations were then assessed by specific staining and quantified using ImageJ (National Institutes of Health). The osteoblastic differentiation of MSPCs cultured in regular medium and exposed to EMF at 0.05 and 1 kHz frequencies was compared with MSPCs cultured in a pro-osteogenic supplemented medium. In this study, we demonstrated that EMF from IteraCoil might have affected the signaling pathways that induce the osteogenic differentiation of human adipose-derived MSPCs in the absence of exogenous osteogenic factors. Therefore, EMF-generated osteogenic differentiation of reprogrammed adipose-derived autologous MSPCs may treat the loss of osteoblasts and osteoporosis and open new avenues for the development of regenerative cellular therapy. © 2022 Bioelectromagnetics Society.
Collapse
Affiliation(s)
| | - Ashot Tsaghikian
- Data Processing and Field Engineering Corp., Glendale, California
| | | | | | | | | |
Collapse
|
16
|
Hao Z, Xu Z, Wang X, Wang Y, Li H, Chen T, Hu Y, Chen R, Huang K, Chen C, Li J. Biophysical Stimuli as the Fourth Pillar of Bone Tissue Engineering. Front Cell Dev Biol 2021; 9:790050. [PMID: 34858997 PMCID: PMC8630705 DOI: 10.3389/fcell.2021.790050] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/26/2021] [Indexed: 01/12/2023] Open
Abstract
The repair of critical bone defects remains challenging worldwide. Three canonical pillars (biomaterial scaffolds, bioactive molecules, and stem cells) of bone tissue engineering have been widely used for bone regeneration in separate or combined strategies, but the delivery of bioactive molecules has several obvious drawbacks. Biophysical stimuli have great potential to become the fourth pillar of bone tissue engineering, which can be categorized into three groups depending on their physical properties: internal structural stimuli, external mechanical stimuli, and electromagnetic stimuli. In this review, distinctive biophysical stimuli coupled with their osteoinductive windows or parameters are initially presented to induce the osteogenesis of mesenchymal stem cells (MSCs). Then, osteoinductive mechanisms of biophysical transduction (a combination of mechanotransduction and electrocoupling) are reviewed to direct the osteogenic differentiation of MSCs. These mechanisms include biophysical sensing, transmission, and regulation. Furthermore, distinctive application strategies of biophysical stimuli are presented for bone tissue engineering, including predesigned biomaterials, tissue-engineered bone grafts, and postoperative biophysical stimuli loading strategies. Finally, ongoing challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhenhua Xu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuan Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hanke Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tianhong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yingkun Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Renxin Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kegang Huang
- Wuhan Institute of Proactive Health Management Science, Wuhan, China
| | - Chao Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Orthopedics, Hefeng Central Hospital, Enshi, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Therapy of pancreatic cancer with alternating electric fields: Limitations of the method. Bioelectrochemistry 2021; 141:107881. [PMID: 34245959 DOI: 10.1016/j.bioelechem.2021.107881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/08/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with a poor prognosis. More effective treatment options are urgently needed. The use of physical and weak alternating electric fields (TTFields) can inhibit cell division of PDAC carcinoma and is currently being investigated in clinical trials. Here, we analyzed this new physical treatment under non-ideal conditions such as may occur during patient treatment. Three established human PDAC cell lines BxPC-3, gemcitabine-resistant BxPC-3 (BxGem), AsPC-1, and a non-malignant primary pancreatic cell line CRL-4023 were treated with TTFields in vitro. MTT assays, electrical impedance measurement, cell staining with Annexin V/7AAD followed by FACS analysis, digital image analysis and immunohistochemistry were performed. Treatment with TTFields smaller than 0.7 V/cm and field lines in the direction of mitotic spindle orientation significantly inhibited proliferation of all PDAC cells at 150 kHz, but significantly increased viability of AsPC-1 cells at all frequencies between 100 kHz and 300 kHz and that of BxPC-3 and BxGem cells at 250 kHz. Apoptosis or necrosis were not induced. Non-malignant CRL-4023 cells were not affected at 150 kHz. TTFields damaged PDAC cell lines but even favored their viability at very weak field strength and unfavorable frequency or inadequate field direction.
Collapse
|
18
|
Hatefi S, Alizargar J, Le Roux F, Hatefi K, Etemadi Sh M, Davids H, Hsieh NC, Smith F, Abou-El-Hossein K. Review of physical stimulation techniques for assisting distraction osteogenesis in maxillofacial reconstruction applications. Med Eng Phys 2021; 91:28-38. [PMID: 34074463 DOI: 10.1016/j.medengphy.2021.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 02/17/2021] [Accepted: 03/24/2021] [Indexed: 01/24/2023]
Abstract
Distraction Osteogenesis (DO) is an emerging limb lengthening method for the reconstruction of the hard tissue and the surrounding soft tissue, in different human body zones. DO plays an important role in treating bone defects in Maxillofacial Reconstruction Applications (MRA) due to reduced side effects and better formed bone tissue compared to conventional reconstruction methods i.e. autologous bone graft, and alloplast implantation. Recently, varying techniques have been evaluated to enhance the characteristics of the newly formed tissues and process parameters. Promising results have been shown in assisting DO treatments while benefiting bone formation mechanisms by using physical stimulation techniques, including photonic, electromagnetic, electrical, and mechanical stimulation technique. Using assisted DO techniques has provided superior results in the outcome of the DO procedure compared to a standard DO procedure. However, DO methods, as well as assisting technologies applied during the DO procedure, are still emerging. Studies and experiments on developed solutions related to this field have been limited to animal and clinical trials. In this review paper, recent advances in physical stimulation techniques and their effects on the outcome of the DO treatment in MRA are surveyed. By studying the effects of using assisting techniques during the DO treatment, enabling an ideal assisted DO technique in MRA can be possible. Although mentioned techniques have shown constructive effects during the DO procedure, there is still a need for more research and investigation to be done to fully understand the effects of assisting techniques and advanced technologies for use in an ultimate DO procedure in MRA.
Collapse
Affiliation(s)
- Shahrokh Hatefi
- Precision Engineering Laboratory, Nelson Mandela University, Port Elizabeth, South Africa.
| | - Javad Alizargar
- Research Center for Healthcare Industry Innovation, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan.
| | - Francis Le Roux
- Department of Mechatronics Engineering, Nelson Mandela University, Port Elizabeth, South Africa.
| | - Katayoun Hatefi
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran.
| | - Milad Etemadi Sh
- Department of Oral and Maxillofacial Surgery, Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hajierah Davids
- Department of Physiology, Nelson Mandela University, Port Elizabeth, South Africa.
| | - Nan-Chen Hsieh
- Department of Information Management, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan.
| | - Farouk Smith
- Department of Mechatronics Engineering, Nelson Mandela University, Port Elizabeth, South Africa.
| | - Khaled Abou-El-Hossein
- Precision Engineering Laboratory, Nelson Mandela University, Port Elizabeth, South Africa.
| |
Collapse
|
19
|
Ryan CNM, Doulgkeroglou MN, Zeugolis DI. Electric field stimulation for tissue engineering applications. BMC Biomed Eng 2021; 3:1. [PMID: 33397515 PMCID: PMC7784019 DOI: 10.1186/s42490-020-00046-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/06/2020] [Indexed: 01/02/2023] Open
Abstract
Electric fields are involved in numerous physiological processes, including directional embryonic development and wound healing following injury. To study these processes in vitro and/or to harness electric field stimulation as a biophysical environmental cue for organised tissue engineering strategies various electric field stimulation systems have been developed. These systems are overall similar in design and have been shown to influence morphology, orientation, migration and phenotype of several different cell types. This review discusses different electric field stimulation setups and their effect on cell response.
Collapse
Affiliation(s)
- Christina N M Ryan
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway & USI, Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Meletios N Doulgkeroglou
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway & USI, Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway & USI, Galway, Ireland. .,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland. .,Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland.
| |
Collapse
|
20
|
Kämmerer PW, Engel V, Plocksties F, Jonitz-Heincke A, Timmermann D, Engel N, Frerich B, Bader R, Thiem DGE, Skorska A, David R, Al-Nawas B, Dau M. Continuous Electrical Stimulation Affects Initial Growth and Proliferation of Adipose-Derived Stem Cells. Biomedicines 2020; 8:biomedicines8110482. [PMID: 33171654 PMCID: PMC7695310 DOI: 10.3390/biomedicines8110482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
The aim of the study was to establish electrical stimulation parameters in order to improve cell growth and viability of human adipose-derived stem cells (hADSC) when compared to non-stimulated cells in vitro. hADSC were exposed to continuous electrical stimulation with 1.7 V AC/20 Hz. After 24, 72 h and 7 days, cell number, cellular surface coverage and cell proliferation were assessed. In addition, cell cycle analysis was carried out after 3 and 7 days. After 24 h, no significant alterations were observed for stimulated cells. At day 3, stimulated cells showed a 4.5-fold increase in cell numbers, a 2.7-fold increase in cellular surface coverage and a significantly increased proliferation. Via cell cycle analysis, a significant increase in the G2/M phase was monitored for stimulated cells. Contrastingly, after 7 days, the non-stimulated group exhibited a 11-fold increase in cell numbers and a 4-fold increase in cellular surface coverage as well as a significant increase in cell proliferation. Moreover, the stimulated cells displayed a shift to the G1 and sub-G1 phase, indicating for metabolic arrest and apoptosis initiation. In accordance, continuous electrical stimulation of hADSC led to a significantly increased cell growth and proliferation after 3 days. However, longer stimulation periods such as 7 days caused an opposite result indicating initiation of apoptosis.
Collapse
Affiliation(s)
- Peer W. Kämmerer
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Center Mainz, 55131 Mainz, Germany; (D.G.E.T.); (B.A.-N.)
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Center Rostock, 18057 Rostock, Germany; (V.E.); (N.E.); (B.F.); (M.D.)
- Correspondence: ; Tel.: +49-6131-17-3752
| | - Vivien Engel
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Center Rostock, 18057 Rostock, Germany; (V.E.); (N.E.); (B.F.); (M.D.)
| | - Franz Plocksties
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, 18051 Rostock, Germany; (F.P.); (D.T.)
| | - Anika Jonitz-Heincke
- Department of Orthopedics, University Medical Center Rostock, 18057 Rostock, Germany; (A.J.-H.); (R.B.)
| | - Dirk Timmermann
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, 18051 Rostock, Germany; (F.P.); (D.T.)
| | - Nadja Engel
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Center Rostock, 18057 Rostock, Germany; (V.E.); (N.E.); (B.F.); (M.D.)
| | - Bernhard Frerich
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Center Rostock, 18057 Rostock, Germany; (V.E.); (N.E.); (B.F.); (M.D.)
| | - Rainer Bader
- Department of Orthopedics, University Medical Center Rostock, 18057 Rostock, Germany; (A.J.-H.); (R.B.)
| | - Daniel G. E. Thiem
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Center Mainz, 55131 Mainz, Germany; (D.G.E.T.); (B.A.-N.)
| | - Anna Skorska
- Department of Cardiac Surgery, University Medical Center Rostock, 18059 Rostock, Germany; (A.S.); (R.D.)
- Department Life, Light & Matter (LL&M), University of Rostock, 18059 Rostock, Germany
| | - Robert David
- Department of Cardiac Surgery, University Medical Center Rostock, 18059 Rostock, Germany; (A.S.); (R.D.)
- Department Life, Light & Matter (LL&M), University of Rostock, 18059 Rostock, Germany
| | - Bilal Al-Nawas
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Center Mainz, 55131 Mainz, Germany; (D.G.E.T.); (B.A.-N.)
| | - Michael Dau
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Center Rostock, 18057 Rostock, Germany; (V.E.); (N.E.); (B.F.); (M.D.)
| |
Collapse
|
21
|
Sahm F, Ziebart J, Jonitz-Heincke A, Hansmann D, Dauben T, Bader R. Alternating Electric Fields Modify the Function of Human Osteoblasts Growing on and in the Surroundings of Titanium Electrodes. Int J Mol Sci 2020; 21:ijms21186944. [PMID: 32971771 PMCID: PMC7555878 DOI: 10.3390/ijms21186944] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/15/2022] Open
Abstract
Endogenous electric fields created in bone tissue as a response to mechanical loading are known to influence the activity and differentiation of bone and precursor cells. Thus, electrical stimulation offers an adjunct therapy option for the promotion of bone regeneration. Understanding the influence of electric fields on bone cell function and the identification of suitable electrical stimulation parameters are crucial for the clinical success of stimulation therapy. Therefore, we investigated the impact of alternating electric fields on human osteoblasts that were seeded on titanium electrodes, which delivered the electrical stimulation. Moreover, osteoblasts were seeded on collagen-coated coverslips near the electrodes, representing the bone stock surrounding the implant. Next, 0.2 V, 1.4 V, or 2.8 V were applied to the in vitro system with 20 Hz frequency. After one, three, and seven days, the osteoblast morphology and expression of osteogenic genes were analysed. The actin organisation, as well as the proliferation, were not affected by the electrical stimulation. Changes in the gene expression and protein accumulation after electrical stimulation were voltage-dependent. After three days, the osteogenic gene expression and alkaline phosphatase activity were up to 2.35-fold higher following the electrical stimulation with 0.2 V and 1.4 V on electrodes and coverslips compared to controls. Furthermore, collagen type I mRNA, as well as the amount of the C-terminal propeptide of collagen type I were increased after the stimulation with 0.2 V and 1.4 V, while the higher electrical stimulation with 2.8 V led to decreased levels, especially on the electrodes.
Collapse
Affiliation(s)
- Franziska Sahm
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Centre, 18057 Rostock, Germany; (A.J.-H.); (D.H.); (R.B.)
- Correspondence: (F.S.); (J.Z.); Tel.: +49-0381-4949336 (J.Z.)
| | - Josefin Ziebart
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Centre, 18057 Rostock, Germany; (A.J.-H.); (D.H.); (R.B.)
- Correspondence: (F.S.); (J.Z.); Tel.: +49-0381-4949336 (J.Z.)
| | - Anika Jonitz-Heincke
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Centre, 18057 Rostock, Germany; (A.J.-H.); (D.H.); (R.B.)
| | - Doris Hansmann
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Centre, 18057 Rostock, Germany; (A.J.-H.); (D.H.); (R.B.)
| | - Thomas Dauben
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center, Schillingallee 70, 18057 Rostock, Germany;
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Centre, 18057 Rostock, Germany; (A.J.-H.); (D.H.); (R.B.)
| |
Collapse
|
22
|
Graphene Family Nanomaterial Reinforced Magnesium-Based Matrix Composites for Biomedical Application: A Comprehensive Review. METALS 2020. [DOI: 10.3390/met10081002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Together with the enhancement of the load-bearing implant process for bone substitution and reproduction, an increasing requirement was observed concerning biodegradable magnesium and its alloys with lighter density and outstanding characteristics. Regardless of the current great potential of Mg utilization currently, the broader use of Mg alloys continues to be constrained by several natural causes, such as low resistance of corrosion, inadequate mechanical integrity during the healing process, and poor antibacterial performance. In this perspective, Mg-based composite encapsulated within graphene family nanomaterials (GFNs) such as graphene (Gr), graphene oxide (GO), graphene nanoplatelets (GNPs), and reduced graphene oxide (rGO) as reinforcement agents present great antibacterial activity, as well as cellular response and depicted numerous benefits for biomedical use. Magnesium matrix nanocomposites reinforced with GFNs possess enhanced mechanical properties and high corrosion resistance (low concentration graphene). It is worth noting that numerous elements including the production technique of the Mg-based composite containing GFNs and the size, distribution, and amounts of GFNs in the Mg-based matrix have a crucial role in their properties and applications. Then, the antibacterial mechanisms of GFN-based composite are briefly described. Subsequently, the antibacterial and strengthening mechanisms of GFN-embedded Mg-based composites are briefly described. This review article is designed to wrap up and explore the most pertinent research performed in the direction of Mg-based composites encapsulated within GFNs. Feasible upcoming investigation directions in the field of GFN-embedded Mg-based composites are discussed in detail.
Collapse
|
23
|
Budde K, Zimmermann J, Neuhaus E, Schroder M, Uhrmacher AM, van Rienen U. Requirements for Documenting Electrical Cell Stimulation Experiments for Replicability and Numerical Modeling ∗. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:1082-1088. [PMID: 31946082 DOI: 10.1109/embc.2019.8856863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Thorough documentation of biological experiments is necessary for their replicability. This becomes even more evident when individual steps of in vitro wet-lab experiments are to be incorporated into computer simulation models. In the highly interdisciplinary field of electrical stimulation of biological cells, not only biological but also physical aspects play a crucial role. Simulations may help to identify parameters that influence cells and thereby reveal new insights into mechanisms of the cell biological system. However, missing or misleading documentation of the electrical stimulation step within wet-lab experiments may lead to discrepancies between reported and simulated electrical quantities. In addition, this threatens the replicability of electrical stimulation experiments. Thus, we argue that a minimal set of information is needed to enable a translation of electrical stimulation experiments of biological cells into computer simulation experiments and to support replicability. This set includes detailed information about the electronic devices and components, their set-up as well as the applied stimulus and shall be integrated into an existing guideline for cell biological experiments. Ideally, the documentation should also contain measured properties of the cellular and experimental environment. Furthermore, a realization of our proposed documentation requirements within electronic lab notebooks may provide a crucial step toward a more seamless integration of wet-lab data into simulations. Based on two exemplary studies, we demonstrate the relevance of our claim.
Collapse
|
24
|
Aldebs AI, Zohora FT, Nosoudi N, Singh SP, Ramirez‐Vick JE. Effect of Pulsed Electromagnetic Fields on Human Mesenchymal Stem Cells Using 3D Magnetic Scaffolds. Bioelectromagnetics 2020; 41:175-187. [PMID: 31944364 PMCID: PMC9290550 DOI: 10.1002/bem.22248] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/01/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Alyaa I. Aldebs
- Department of Biomedical, Industrial & Human Factors EngineeringWright State UniversityDayton Ohio
| | - Fatema T. Zohora
- Department of Biomedical, Industrial & Human Factors EngineeringWright State UniversityDayton Ohio
| | - Nasim Nosoudi
- Biomedical Engineering ProgramMarshall UniversityHuntington West Virginia
| | | | - Jaime E. Ramirez‐Vick
- Department of Biomedical, Industrial & Human Factors EngineeringWright State UniversityDayton Ohio
| |
Collapse
|
25
|
Song S, Amores D, Chen C, McConnell K, Oh B, Poon A, George PM. Controlling properties of human neural progenitor cells using 2D and 3D conductive polymer scaffolds. Sci Rep 2019; 9:19565. [PMID: 31863072 PMCID: PMC6925212 DOI: 10.1038/s41598-019-56021-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
Human induced pluripotent stem cell-derived neural progenitor cells (hNPCs) are a promising cell source for stem cell transplantation to treat neurological diseases such as stroke and peripheral nerve injuries. However, there have been limited studies investigating how the dimensionality of the physical and electrical microenvironment affects hNPC function. In this study, we report the fabrication of two- and three-dimensional (2D and 3D respectively) constructs composed of a conductive polymer to compare the effect of electrical stimulation of hydrogel-immobilized hNPCs. The physical dimension (2D vs 3D) of stimulating platforms alone changed the hNPCs gene expression related to cell proliferation and metabolic pathways. The addition of electrical stimulation was critical in upregulating gene expression of neurotrophic factors that are important in regulating cell survival, synaptic remodeling, and nerve regeneration. This study demonstrates that the applied electrical field controls hNPC properties depending on the physical nature of stimulating platforms and cellular metabolic states. The ability to control hNPC functions can be beneficial in understanding mechanistic changes related to electrical modulation and devising novel treatment methods for neurological diseases.
Collapse
Affiliation(s)
- Shang Song
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Danielle Amores
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Cheng Chen
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Kelly McConnell
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Byeongtaek Oh
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Ada Poon
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Paul M George
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Stroke Center and Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
26
|
Rohde M, Ziebart J, Kirschstein T, Sellmann T, Porath K, Kühl F, Delenda B, Bahls C, van Rienen U, Bader R, Köhling R. Human Osteoblast Migration in DC Electrical Fields Depends on Store Operated Ca 2+-Release and Is Correlated to Upregulation of Stretch-Activated TRPM7 Channels. Front Bioeng Biotechnol 2019; 7:422. [PMID: 31921825 PMCID: PMC6920109 DOI: 10.3389/fbioe.2019.00422] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/29/2019] [Indexed: 12/04/2022] Open
Abstract
Fracture healing and bone regeneration, particularly in the elderly, remains a challenge. There is an ongoing search for methods to activate osteoblasts, and the application of electrical fields is an attractive approach in this context. Although it is known that such electromagnetic fields lead to osteoblast migration and foster mesenchymal osteogenic differentiation, so far the mechanisms of osteoblast activation remain unclear. Possible mechanisms could rely on changes in Ca2+-influx via ion channels, as these are known to modulate osteoblast activity, e.g., via voltage-sensitive, stretch-sensitive, transient-receptor-potential (TRP) channels, or store-operated release. In the present in vitro study, we explored whether electrical fields are able to modulate the expression of voltage-sensitive calcium channels as well as TRP channels in primary human osteoblast cell lines. We show migration speed is significantly increased in stimulated osteoblasts (6.4 ± 2.1 μm/h stimulated, 3.6 ± 1.1 μm/h control), and directed toward the anode. However, within a range of 154–445 V/m, field strength did not correlate with migration velocity. Neither was there a correlation between electric field and voltage-gated calcium channel (Cav3.2 and Cav1.4) expression. However, the expression of TRPM7 significantly correlated positively to electric field strength. TRPM7 channel blockade using NS8593, in turn, did not significantly alter migration speed, nor did blockade of Cav3.2 and Cav1.4 channels using Ni+ or verapamil, respectively, while a general Ca2+-influx block using Mg2+ accelerated migration. Stimulating store-operated Ca2+-release significantly reduced migration speed, while blocking IP3 had only a minor effect (at low and high concentrations of 2-APB, respectively). We conclude that (i) store operated channels negatively modulate migration speed and that (ii) the upregulation of TRPM7 might constitute a compensatory mechanism-which might explain how increasing expression levels at increasing field strengths result in constant migration speeds.
Collapse
Affiliation(s)
- Marco Rohde
- Rostock University Medical Center, Oscar-Langendorff-Institute of Physiology, Rostock, Germany
| | - Josefin Ziebart
- Biomechanics and Implant Research Lab, Department of Orthopedics, Rostock University Medical Center, Rostock, Germany
| | - Timo Kirschstein
- Rostock University Medical Center, Oscar-Langendorff-Institute of Physiology, Rostock, Germany
| | - Tina Sellmann
- Rostock University Medical Center, Oscar-Langendorff-Institute of Physiology, Rostock, Germany
| | - Katrin Porath
- Rostock University Medical Center, Oscar-Langendorff-Institute of Physiology, Rostock, Germany
| | - Friederike Kühl
- Rostock University Medical Center, Oscar-Langendorff-Institute of Physiology, Rostock, Germany
| | - Bachir Delenda
- Faculty of Computer Science and Electrical Engineering, Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
| | - Christian Bahls
- Faculty of Computer Science and Electrical Engineering, Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
| | - Ursula van Rienen
- Faculty of Computer Science and Electrical Engineering, Institute of General Electrical Engineering, University of Rostock, Rostock, Germany.,Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Rainer Bader
- Biomechanics and Implant Research Lab, Department of Orthopedics, Rostock University Medical Center, Rostock, Germany.,Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Rüdiger Köhling
- Rostock University Medical Center, Oscar-Langendorff-Institute of Physiology, Rostock, Germany.,Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
27
|
Chen C, Bai X, Ding Y, Lee IS. Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering. Biomater Res 2019; 23:25. [PMID: 31844552 PMCID: PMC6896676 DOI: 10.1186/s40824-019-0176-8] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022] Open
Abstract
Recently, electrical stimulation as a physical stimulus draws lots of attention. It shows great potential in disease treatment, wound healing, and mechanism study because of significant experimental performance. Electrical stimulation can activate many intracellular signaling pathways, and influence intracellular microenvironment, as a result, affect cell migration, cell proliferation, and cell differentiation. Electrical stimulation is using in tissue engineering as a novel type of tool in regeneration medicine. Besides, with the advantages of biocompatible conductive materials coming into view, the combination of electrical stimulation with suitable tissue engineered scaffolds can well combine the benefits of both and is ideal for the field of regenerative medicine. In this review, we summarize the various materials and latest technologies to deliver electrical stimulation. The influences of electrical stimulation on cell alignment, migration and its underlying mechanisms are discussed. Then the effect of electrical stimulation on cell proliferation and differentiation are also discussed.
Collapse
Affiliation(s)
- Cen Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 People’s Republic of China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018 People’s Republic of China
| | - Xue Bai
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 People’s Republic of China
| | - Yahui Ding
- Department of Cardiology, Zhejiang Provincial People’s Hospital, Hangzhou, 310014 People’s Republic of China
- People’s Hospital of Hangzhou Medical College, Hangzhou, 310014 People’s Republic of China
| | - In-Seop Lee
- Institute of Natural Sciences, Yonsei University, 134 Shinchon-dong, Seodaemoon-gu, Seoul, 03722 Republic of Korea
| |
Collapse
|
28
|
Fu J, Liu X, Tan L, Cui Z, Zheng Y, Liang Y, Li Z, Zhu S, Yeung KWK, Feng X, Wang X, Wu S. Photoelectric-Responsive Extracellular Matrix for Bone Engineering. ACS NANO 2019; 13:13581-13594. [PMID: 31697055 DOI: 10.1021/acsnano.9b08115] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Using noninvasive stimulation of cells to control cell fate and improve bone regeneration by optical stimulation can achieve the aim of precisely orchestrating biological activities. In this study, we create a fast and repeatable photoelectric-responsive microenvironment around an implant using a bismuth sulfide/hydroxyapatite (BS/HAp) film. The unexpected increase of photocurrent on the BS/HAp film under near-infrared (NIR) light is mainly due to the depletion of holes through PO43- from HAp and interfacial charge transfer by HAp compared with BS. The electrons activate the Na+ channel of mesenchymal stem cells (MSCs) and change the cell adhesion in the intermediate environment. The behavior of MSCs is tuned by changing the photoelectronic microenvironment. RNA sequencing reveals that when photoelectrons transfer to the cell membrane, sodium ions flux and the membrane potential depolarizes to change the cell shape. Meanwhile, calcium ions fluxed and FDE1 was upregulated. Furthermore, the TCF/LEF in the cell nucleus began transcription to regulate the downstream genes involved in osteogenic differentiation, which is performed through the Wnt/Ca2+ signaling pathway. This research has created a biological therapeutic strategy, which can achieve in vitro remotely, precisely, and noninvasively controlling cell differentiation behaviors by tuning the in vivo photoelectric microenvironment using NIR light.
Collapse
Affiliation(s)
- Jieni Fu
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering , Hubei University , Wuhan 430062 , People's Republic of China
| | - Xiangmei Liu
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering , Hubei University , Wuhan 430062 , People's Republic of China
| | - Lei Tan
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering , Hubei University , Wuhan 430062 , People's Republic of China
| | - Zhenduo Cui
- School of Materials Science & Engineering, Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering , Peking University , Beijing 100871 , People's Republic of China
| | - Yanqin Liang
- School of Materials Science & Engineering, Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Zhaoyang Li
- School of Materials Science & Engineering, Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Shengli Zhu
- School of Materials Science & Engineering, Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Kelvin Wai Kwok Yeung
- Department of Orthopaedics & Traumatology, Li KaShing Faculty of Medicine , The University of Hong Kong , Pokfulam , Hong Kong 999077 , People's Republic of China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , People's Republic of China
| | - Xianbao Wang
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering , Hubei University , Wuhan 430062 , People's Republic of China
| | - Shuilin Wu
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering , Hubei University , Wuhan 430062 , People's Republic of China
- School of Materials Science & Engineering, Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China , Tianjin University , Tianjin 300072 , People's Republic of China
| |
Collapse
|
29
|
Magnesium matrix nanocomposites for orthopedic applications: A review from mechanical, corrosion, and biological perspectives. Acta Biomater 2019; 96:1-19. [PMID: 31181263 DOI: 10.1016/j.actbio.2019.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/28/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
Magnesium (Mg) and some of its alloys have attracted extensive interests for biomedical applications as they exhibit biodegradability and low elastic modulus that is closer to natural bones than the currently used metallic implant materials such as titanium (Ti) and its alloys, stainless steels, and cobalt-chromium (Co-Cr) alloys. However, the rapid degradation of Mg alloys and loss of their mechanical integrity before sufficient bone healing impede their clinical application. Our literature review shows that magnesium matrix nanocomposites (MMNCs) reinforced with nanoparticles possess enhanced strength, high corrosion resistance, and good biocompatibility. This article provides a detailed analysis of the effects of nanoparticle reinforcements on the mechanical properties, corrosion behavior, and biocompatibility of MMNCs as promising biodegradable implant materials. The governing equations to quantitatively predict the mechanical properties and underlying synergistic strengthening mechanisms in MMNCs are elucidated. The potential, recent advances, challenges and future research directions in relation to nanoparticles reinforced MMNCs are highlighted. STATEMENT OF SIGNIFICANCE: Critically reviewing magnesium metal matrix nanocomposites (MMNCs) for the biomedical application. Clear definitions of strengthening mechanisms using reinforcement particle in the magnesium matrix, as there were controversial in governing equations of strengthening parameters. Providing better understanding of the effect of particle size, volume fraction, interfacial bonding, and uniform dispersion of reinforcement particles on MMNCs.
Collapse
|
30
|
Biophysical implications of Maxwell stress in electric field stimulated cellular microenvironment on biomaterial substrates. Biomaterials 2019; 209:54-66. [DOI: 10.1016/j.biomaterials.2019.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 01/09/2023]
|
31
|
Dual functional approaches for osteogenesis coupled angiogenesis in bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109761. [PMID: 31349418 DOI: 10.1016/j.msec.2019.109761] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/11/2019] [Accepted: 05/15/2019] [Indexed: 12/31/2022]
Abstract
Bone fracture healing is a multistep and overlapping process of inflammation, angiogenesis and osteogenesis. It is initiated by inflammation, causing the release of various cytokines and growth factors. It leads to the recruitment of stem cells and formation of vasculature resulting in the functional bone formation. This combined phenomenon is used by bone tissue engineers from past few years to address the problem of vasculature and osteogenic differentiation during bone regeneration. In this review, we have discussed all major studies reporting the dual functioning approach to promote osteogenesis coupled angiogenesis using various scaffolds. These scaffolds are broadly classified into four types based on the nature of their structural and functional components. The functionality of the scaffold is either due to the structural components or the loaded cargo which conducts or induces the coupled functionality. Dual delivery system for osteoinductive and angioinductive factors ensures the co-delivery of two different types of molecules to induce osteogenesis and angiogenesis. Single delivery scaffold for angioinductive and osteoinductive molecule releases single type of molecules which could induce both angiogenesis and osteogenesis. Osteoconductive scaffold consisted of bone constituents releases angioinductive factors. Osteoconductive and angioconductive scaffold composed of components which provide the native substrate features for osteogenesis and angiogenesis. This review article also discusses the studies highlighting the synergism of physico-chemical stimuli as dual functioning feature to enhance angiogenesis and osteogenesis simultaneously. In addition, this article covers one of the least discussed area of the bone regeneration i.e. 'cartilage formation as a median between angiogenesis and osteogenesis'.
Collapse
|
32
|
Moskow J, Ferrigno B, Mistry N, Jaiswal D, Bulsara K, Rudraiah S, Kumbar SG. Review: Bioengineering approach for the repair and regeneration of peripheral nerve. Bioact Mater 2019; 4:107-113. [PMID: 30723843 PMCID: PMC6351356 DOI: 10.1016/j.bioactmat.2018.09.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 12/29/2022] Open
Abstract
Complex craniofacial surgeries of damaged tissues have several limitations, which present complications and challenges when trying to replicate facial function and structure. Traditional treatment techniques have shown suitable nerve function regeneration with various drawbacks. As technology continues to advance, new methods have been explored in order to regenerate damaged nerves in an effort to more efficiently and effectively regain original function and structure. This article will summarize recent bioengineering strategies involving biodegradable composite scaffolds, bioactive factors, and external stimuli alone or in combination to support peripheral nerve regeneration. Particular emphasis is made on the contributions of growth factors and electrical stimulation on the regenerative process.
Collapse
Affiliation(s)
- Joshua Moskow
- Department of Orthopaedic Surgery, University of Connecticut Health, 263Farmington Ave., Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, 260Glenbrook Road, Unit 3247, Storrs, CT 06269, USA
| | - Bryan Ferrigno
- Department of Orthopaedic Surgery, University of Connecticut Health, 263Farmington Ave., Farmington, CT 06030, USA
| | - Nikhil Mistry
- Department of Orthopaedic Surgery, University of Connecticut Health, 263Farmington Ave., Farmington, CT 06030, USA
| | - Devina Jaiswal
- Department of Orthopaedic Surgery, University of Connecticut Health, 263Farmington Ave., Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, 260Glenbrook Road, Unit 3247, Storrs, CT 06269, USA
| | - Ketan Bulsara
- Department of Surgery, University of Connecticut Health, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Swetha Rudraiah
- Department of Orthopaedic Surgery, University of Connecticut Health, 263Farmington Ave., Farmington, CT 06030, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Saint Joseph, 229 Trumbull St., Hartford CT 06103, USA
| | - Sangamesh G. Kumbar
- Department of Orthopaedic Surgery, University of Connecticut Health, 263Farmington Ave., Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, 260Glenbrook Road, Unit 3247, Storrs, CT 06269, USA
| |
Collapse
|
33
|
Rahmani A, Nadri S, Kazemi HS, Mortazavi Y, Sojoodi M. Conductive electrospun scaffolds with electrical stimulation for neural differentiation of conjunctiva mesenchymal stem cells. Artif Organs 2019; 43:780-790. [PMID: 30674064 DOI: 10.1111/aor.13425] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/13/2019] [Accepted: 01/17/2019] [Indexed: 12/23/2022]
Abstract
An electrical stimulus is a new approach to neural differentiation of stem cells. In this work, the neural differentiation of conjunctiva mesenchymal stem cells (CJMSCs) on a new 3D conductive fibrous scaffold of silk fibroin (SF) and reduced graphene oxide (rGo) were examined. rGo (3.5% w/w) was dispersed in SF-acid formic solution (10% w/v) and conductive nanofibrous scaffold was fabricated using the electrospinning method. SEM and TEM microscopies were used for fibrous scaffold characterization. CJMSCs were cultured on the scaffold and 2 electrical impulse models (Current 1:115 V/m, 100-Hz frequency and current 2:115 v/m voltages, 0.1-Hz frequency) were applied for 7 days. Also, the effect of the fibrous scaffold and electrical impulses on cell viability and neural gene expression were examined using MTT assay and qPCR analysis. Fibrous scaffold with the 220 ± 20 nm diameter and good dispersion of graphene nanosheets at the surface of nanofibers were fabricated. The MTT result showed the viability of cells on the scaffold, with current 2 lower than current 1. qPCR analysis confirmed that the expression of β-tubulin (2.4-fold P ≤ 0.026), MAP-2 (1.48-fold; P ≤ 0.03), and nestin (1.5-fold; P ≤ 0.03) genes were higher in CJMSCs on conductive scaffold with 100-Hz frequency compared to 0.1-Hz frequency. Collectively, we proposed that SF-rGo fibrous scaffolds, as a new conductive fibrous scaffold with electrical stimulation are good strategies for neural differentiation of stem cells and the type of electrical pulses has an influence on neural differentiation and proliferation of CJMSCs.
Collapse
Affiliation(s)
- Ali Rahmani
- Department of Medical Nanotechnology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samad Nadri
- Department of Medical Nanotechnology, Zanjan University of Medical Sciences, Zanjan, Iran.,Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Habib Sayed Kazemi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Yousef Mortazavi
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Medical Biotechnology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahdi Sojoodi
- Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
34
|
Munir KS, Wen C, Li Y. Carbon Nanotubes and Graphene as Nanoreinforcements in Metallic Biomaterials: a Review. ACTA ACUST UNITED AC 2019; 3:e1800212. [PMID: 32627403 DOI: 10.1002/adbi.201800212] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 01/22/2019] [Indexed: 12/13/2022]
Abstract
Current challenges in existing metallic biomaterials encourage undertaking research in the development of novel materials for biomedical applications. This paper critically reviews the potential of carbon nanotubes (CNT) and graphene as nanoreinforcements in metallic biomaterials for bone tissue engineering. Unique and remarkable mechanical, electrical, and biological properties of these carbon nanomaterials allow their use as secondary-phase reinforcements in monolithic biomaterials. The nanoscale dimensions and extraordinarily large surface areas of CNT and graphene make them suitable materials for purposeful reaction with living organisms. However, the cytocompatibility of CNT and graphene is still a controversial issue that impedes advances in utilizing these promising materials in clinical orthopedic applications. The interaction of CNT and graphene with biological systems including proteins, nucleic acids, and human cells is critically reviewed to assess their cytocompatibity in vitro and in vivo. It is revealed that composites reinforced with CNT and graphene show enhanced adhesion of osteoblast cells, which subsequently promotes bone tissue formation in vivo. This potential is expected to pave the way for developing ground-breaking technologies in regenerative medicine and bone tissue engineering. In addition, current progress and future research directions are highlighted for the development of CNT and graphene reinforced implants for bone tissue engineering.
Collapse
Affiliation(s)
- Khurram S Munir
- School of Engineering, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Yuncang Li
- School of Engineering, RMIT University, Bundoora, Victoria, 3083, Australia
| |
Collapse
|
35
|
Electric field-responsive nanoparticles and electric fields: physical, chemical, biological mechanisms and therapeutic prospects. Adv Drug Deliv Rev 2019; 138:56-67. [PMID: 30414494 DOI: 10.1016/j.addr.2018.10.017] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/05/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022]
Abstract
Electric fields are among physical stimuli that have revolutionized therapy. Occurring endogenously or exogenously, the electric field can be used as a trigger for controlled drug release from electroresponsive drug delivery systems, can stimulate wound healing and cell proliferation, may enhance endocytosis or guide stem cell differentiation. Electric field pulses may be applied to induce cell fusion, can increase the penetration of therapeutic agents into cells, or can be applied as a standalone therapy to ablate tumors. This review describes the main therapeutic trends and overviews the main physical, chemical and biological mechanisms underlying the actions of electric fields. Overall, the electric field can be used in therapeutic approaches in several ways. The electric field can act on drug carriers, cells and tissues. Understanding the multiple effects of this powerful tool will help harnessing its full therapeutic potential in an efficient and safe way.
Collapse
|
36
|
Quiescent Human Mesenchymal Stem Cells Are More Resistant to Heat Stress than Cycling Cells. Stem Cells Int 2018; 2018:3753547. [PMID: 30675168 PMCID: PMC6323451 DOI: 10.1155/2018/3753547] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/20/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022] Open
Abstract
Quiescence is the prevailing state of many cell types under homeostatic conditions. Yet, surprisingly, little is known about how quiescent cells respond to environmental challenges. The aim of the present study is to compare stress responses of cycling and quiescent mesenchymal stem cells (MSC). Human endometrial mesenchymal cells (eMSС) were employed as adult stem cells. eMSC quiescence was modeled by serum starvation. Sublethal heat shock (HS) was used as a stress factor. Both quiescent and cycling cells were heated at 45°C for 30 min and then returned to standard culture conditions for their recovery. HS response was monitored by DNA damage response, stress-induced premature senescence (SIPS), cell proliferation activity, and oxidative metabolism. It has been found that quiescent cells repair DNA more rapidly, resume proliferation, and undergo SIPS less than proliferating cells. HS-enforced ROS production in heated cycling cells was accompanied with increased expression of genes regulating redox-active proteins. Quiescent cells exposed to HS did not intensify the ROS production, and genes involved in antioxidant defense were mostly silent. Altogether, the results have shown that quiescent cells are more resistant to heat stress than cycling cells. Next-generation sequencing (NGS) demonstrates that HS-survived cells retain differentiation capacity and do not exhibit signs of spontaneous transformation.
Collapse
|
37
|
Zhou P, He F, Han Y, Liu B, Wei S. Nanosecond pulsed electric field induces calcium mobilization in osteoblasts. Bioelectrochemistry 2018; 124:7-12. [DOI: 10.1016/j.bioelechem.2018.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 01/19/2023]
|
38
|
SiNWs Biophysically Regulate the Fates of Human Mesenchymal Stem Cells. Sci Rep 2018; 8:12913. [PMID: 30150652 PMCID: PMC6110734 DOI: 10.1038/s41598-018-30854-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/06/2018] [Indexed: 01/17/2023] Open
Abstract
While biophysical stimuli from polymeric matrices are known to significantly affect the fates of human mesenchymal stem cells (hMSCs), the stimulatory effects of nano-sized silicon-based matrices on hMSCs have not been thoroughly investigated. We previously demonstrated that vertically aligned, single-crystalline silicon nanowires (SiNWs) can control the osteogenicity of hMSCs via controllable spring constants from SiNWs matrix. However, other possible differentiation fates of hMSCs on SiNWs have not been explored. We hypothesize that tunable spring constant from artificial SiNWs matrices can direct different types of hMSC differentiations. The spring constants of tunable SiNW matrices can be consistently controlled by tuning the SiNW length. The results of gene expression and cell stiffness suggest that hMSCs differentiations are sensitive to our distinguishable spring constants from the SiNWs groups, and simultaneously conduct osteogenicity and adipogenicity. These findings suggest that SiNW matrices can regulate the fates of hMSCs when the SiNW characteristics are carefully tuned.
Collapse
|
39
|
Analysis of Electrical Analogue of a Biological Cell and Its Response to External Electric Field. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018. [DOI: 10.1007/s40883-018-0073-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
40
|
Shuai C, Yang W, Peng S, Gao C, Guo W, Lai Y, Feng P. Physical stimulations and their osteogenesis-inducing mechanisms. Int J Bioprint 2018; 4:138. [PMID: 33102916 PMCID: PMC7581999 DOI: 10.18063/ijb.v4i2.138] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/09/2018] [Indexed: 12/27/2022] Open
Abstract
Physical stimulations such as magnetic, electric and mechanical stimulation could enhance cell activity and promote bone formation in bone repair process via activating signal pathways, modulating ion channels, regulating bonerelated gene expressions, etc. In this paper, bioeffects of physical stimulations on cell activity, tissue growth and bone healing were systematically summarized, which especially focused on their osteogenesis-inducing mechanisms. Detailedly, magnetic stimulation could produce Hall effect which improved the permeability of cell membrane and promoted the migration of ions, especially accelerating the extracellular calcium ions to pass through cell membrane. Electric stimulation could induce inverse piezoelectric effect which generated electric signals, accordingly up-regulating intracellular calcium levels and growth factor synthesis. And mechanical stimulation could produce mechanical signals which were converted into corresponding biochemical signals, thus activating various signaling pathways on cell membrane and inducing a series of gene expressions. Besides, bioeffects of physical stimulations combined with bone scaffolds which fabricated using 3D printing technology on bone cells were discussed. The equipments of physical stimulation system were described. The opportunities and challenges of physical stimulations were also presented from the perspective of bone repair.
Collapse
Affiliation(s)
- Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China.,Jiangxi University of Science and Technology, Ganzhou, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Wenjing Yang
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Shuping Peng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Wang Guo
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Yuxiao Lai
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
| | - Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| |
Collapse
|
41
|
George S, Hamblin MR, Abrahamse H. Current and Future Trends in Adipose Stem Cell Differentiation into Neuroglia. Photomed Laser Surg 2018; 36:230-240. [PMID: 29570423 DOI: 10.1089/pho.2017.4411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Neurological diseases and disorders pose a challenge for treatment and rehabilitation due to the limited capacity of the nervous system to repair itself. Adipose stem cells (ASCs) are more pliable than any adult stem cells and are capable of differentiating into non-mesodermal tissues, including neurons. Transdifferentiating ASCs to specific neuronal lineage cells enables us to deliver the right type of cells required for a replacement therapy into the nervous system. METHODS Several methodologies are being explored and tested to differentiate ASCs to functional neurons and glia with cellular factors and chemical compounds. However, none of these processes and prototypes has been wholly successful in changing the cellular structure and functional status of ASCs to become identical to neuroglial cells. In addition, successful integration and functional competence of these cells for use in clinical applications remain problematic. Photobiomodulation or low-level laser irradiation has been successfully applied to not only improve ASC viability and proliferation but has also shown promise as a possible enhancer of ASC differentiation. CONCLUSIONS Studies have shown that photobiomodulation improves the use of stem cell transplantation for neurological applications. This review investigates current neuro-differentiation inducers and suitable methodologies, including photobiomodulation, utilizing ASCs for induction of differentiation into neuronal lineages.
Collapse
Affiliation(s)
- Sajan George
- 1 Laser Research Centre, Faculty of Health Sciences, University of Johannesburg , Doornfontein, South Africa
| | - Michael R Hamblin
- 2 Wellman Centre for Photomedicine, Massachusetts General Hospital , Boston, Massachusetts.,3 Department of Dermatology, Harvard Medical School , Boston, Massachusetts.,4 Harvard-MIT Division of Health Sciences and Technology , Cambridge, Massachusetts
| | - Heidi Abrahamse
- 1 Laser Research Centre, Faculty of Health Sciences, University of Johannesburg , Doornfontein, South Africa
| |
Collapse
|
42
|
Eswaramoorthy SD, Bethapudi S, Almelkar SI, Rath SN. Regional Differentiation of Adipose-Derived Stem Cells Proves the Role of Constant Electric Potential in Enhancing Bone Healing. J Med Biol Eng 2018. [DOI: 10.1007/s40846-018-0373-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Oftadeh MO, Bakhshandeh B, Dehghan MM, Khojasteh A. Sequential application of mineralized electroconductive scaffold and electrical stimulation for efficient osteogenesis. J Biomed Mater Res A 2018; 106:1200-1210. [DOI: 10.1002/jbm.a.36316] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/24/2017] [Accepted: 12/20/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Mohammad Omid Oftadeh
- Department of Biotechnology; College of Science, University of Tehran; Tehran Iran
- Stem Cell Technology Research Center; Tehran Iran
| | - Behnaz Bakhshandeh
- Department of Biotechnology; College of Science, University of Tehran; Tehran Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology; Faculty of Veterinary Medicine, University of Tehran; Tehran Iran
- Institute of Biomedical Research; University of Tehran; Tehran Iran
| | - Arash Khojasteh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
44
|
Chen J, Yu M, Guo B, Ma PX, Yin Z. Conductive nanofibrous composite scaffolds based on in-situ formed polyaniline nanoparticle and polylactide for bone regeneration. J Colloid Interface Sci 2017; 514:517-527. [PMID: 29289734 DOI: 10.1016/j.jcis.2017.12.062] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022]
Abstract
Conducting polymers and biodegradable polylactide (PLA) scaffolds are both promising biomaterials applied in bone tissue engineering. It is necessary to develop a composite scaffold combining their properties of osteogenic differentiation promotion and three-dimension matrix. To conquer the problem of poor processability of conductive polymers, we use a novel in-situ polymerization/thermal induced phase separation (TIPS) method to fabricate conductive nanofibrous PLA scaffolds with well-distributed polyaniline (PANI) nano-structures. The simple preparation technique provides the possibility to scale-up production of these conductive nanofibrous composite scaffolds. The scaffold structure and content of in-situ formed polyaniline nanoparticles was thoroughly characterized with 1H NMR, FT-IR, XPS, TGA, SEM and UV-vis, and the conductivity/electrochemical properties of the composite scaffolds were controlled with varied feed ratios of aniline to PLA. Meanwhile, the good cytocompatibility of these composite scaffolds was evaluated by culturing bone marrow derived mesenchymal stem cells (BMSCs) on them. The effect of conductive nanofibrous scaffolds on osteogenic differentiation was studied with expression levels of alkaline phosphatase (Alp), osteocalcin (Ocn) and runt-related transcription factor 2 (Runx2) during the culture of BMSCs for three weeks. The calcium mineralization of BMSCs is determined by alizarin red staining. These results indicated that a moderate content of PANI in the conductive nanofibrous scaffolds significantly promoted osteogenic differentiation of BMSCs for engineering bone tissues.
Collapse
Affiliation(s)
- Jing Chen
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China; Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Meng Yu
- Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baolin Guo
- Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Peter X Ma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Zhanhai Yin
- Department of Orthopaedics, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
45
|
Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: A tissue engineering perspective. Biomaterials 2017; 150:60-86. [PMID: 29032331 DOI: 10.1016/j.biomaterials.2017.10.003] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
Abstract
Electric field (EF) stimulation can play a vital role in eliciting appropriate stem cell response. Such an approach is recently being established to guide stem cell differentiation through osteogenesis/neurogenesis/cardiomyogenesis. Despite significant recent efforts, the biophysical mechanisms by which stem cells sense, interpret and transform electrical cues into biochemical and biological signals still remain unclear. The present review critically analyses the variety of EF stimulation approaches that can be employed to evoke appropriate stem cell response and also makes an attempt to summarize the underlying concepts of this notion, placing special emphasis on stem cell based tissue engineering and regenerative medicine. This review also discusses the major signaling pathways and cellular responses that are elicited by electric stimulation, including the participation of reactive oxygen species and heat shock proteins, modulation of intracellular calcium ion concentration, ATP production and numerous other events involving the clustering or reassembling of cell surface receptors, cytoskeletal remodeling and so on. The specific advantages of using external electric stimulation in different modalities to regulate stem cell fate processes are highlighted with explicit examples, in vitro and in vivo.
Collapse
|
46
|
Silicone Substrate with Collagen and Carbon Nanotubes Exposed to Pulsed Current for MSC Osteodifferentiation. Int J Biomater 2017; 2017:3684812. [PMID: 28912813 PMCID: PMC5587965 DOI: 10.1155/2017/3684812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/16/2017] [Accepted: 07/24/2017] [Indexed: 01/05/2023] Open
Abstract
Autologous human adipose tissue-derived mesenchymal stem cells (MSCs) have the potential for clinical translation through their induction into osteoblasts for regeneration. Bone healing can be driven by biophysical stimulation using electricity for activating quiescent adult stem cells. It is hypothesized that application of electric current will enhance their osteogenic differentiation, and addition of conductive carbon nanotubes (CNTs) to the cell substrate will provide increased efficiency in current transmission. Cultured MSCs were seeded and grown onto fabricated silicone-based composites containing collagen and CNT fibers. Chemical inducers, namely, glycerol phosphate, dexamethasone, and vitamin C, were then added to the medium, and pulsatile submilliampere electrical currents (about half mA for 5 cycles at 4 mHz, twice a week) were applied for two weeks. Calcium deposition indicative of MSC differentiation and osteoblastic activity was quantified through Alizarin Red S and spectroscopy. It was found that pulsed current significantly increased osteodifferentiation on silicone-collagen films without CNTs. Under no external current, the presence of 10% (m/m) CNTs led to a significant and almost triple upregulation of calcium deposition. Both CNTs and current parameters did not appear to be synergistic. These conditions of enhanced osteoblastic activities may further be explored ultimately towards future therapeutic use of MSCs.
Collapse
|
47
|
Tomasello L, Mauceri R, Coppola A, Pitrone M, Pizzo G, Campisi G, Pizzolanti G, Giordano C. Mesenchymal stem cells derived from inflamed dental pulpal and gingival tissue: a potential application for bone formation. Stem Cell Res Ther 2017; 8:179. [PMID: 28764802 PMCID: PMC5540218 DOI: 10.1186/s13287-017-0633-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 06/26/2017] [Accepted: 07/14/2017] [Indexed: 12/18/2022] Open
Abstract
Background Chronic periodontal disease is an infectious disease consisting of prolonged inflammation of the supporting tooth tissue and resulting in bone loss. Guided bone regeneration procedures have become common and safe treatments in dentistry, and in this context dental stem cells would represent the ideal solution as autologous cells. In this study, we verified the ability of dental pulp mesenchymal stem cells (DPSCs) and gingival mesenchymal stem cells (GMSCs) harvested from periodontally affected teeth to produce new mineralized bone tissue in vitro, and compared this to cells from healthy teeth. Methods To characterize DPSCs and GMSCs, we assessed colony-forming assay, immunophenotyping, mesenchymal/stem cell phenotyping, stem gene profiling by means of flow cytometry, and quantitative polymerase chain reaction (qPCR). The effects of proinflammatory cytokines on mesenchymal stem cell (MSC) proliferation and differentiation potential were investigated. We also observed participation of several heat shock proteins (HSPs) and actin-depolymerizing factors (ADFs) during osteogenic differentiation. Results DPSCs and GMSCs were successfully isolated both from periodontally affected dental tissue and controls. Periodontally affected dental MSCs proliferated faster, and the inflamed environment did not affect MSC marker expressions. The calcium deposition was higher in periodontally affected MSCs than in the control group. Proinflammatory cytokines activate a cytoskeleton remodeling, interacting with HSPs including HSP90 and HSPA9, thioredoxin-1, and ADFs such as as profilin-1, cofilin-1, and vinculin that probably mediate the increased acquisition in the inflamed environment. Conclusions Our findings provide evidence that periodontally affected dental tissue (both pulp and gingiva) can be used as a source of MSCs with intact stem cell properties. Moreover, we demonstrated that the osteogenic capability of DPSCs and GMSCs in the test group was not only preserved but increased by the overexpression of several proinflammatory cytokine-dependent chaperones and stress response proteins. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0633-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura Tomasello
- Laboratory of Regenerative Medicine "Aldo Galluzzo", Department of Endocrinology, Diabetology and Metabolism, University of Palermo, Piazza Delle Cliniche 2, 90127, Palermo, Italy.,Advanced Technologies Network Center, University of Palermo, Palermo, Italy
| | - Rodolfo Mauceri
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Antonina Coppola
- Laboratory of Regenerative Medicine "Aldo Galluzzo", Department of Endocrinology, Diabetology and Metabolism, University of Palermo, Piazza Delle Cliniche 2, 90127, Palermo, Italy.,Advanced Technologies Network Center, University of Palermo, Palermo, Italy
| | - Maria Pitrone
- Laboratory of Regenerative Medicine "Aldo Galluzzo", Department of Endocrinology, Diabetology and Metabolism, University of Palermo, Piazza Delle Cliniche 2, 90127, Palermo, Italy.,Advanced Technologies Network Center, University of Palermo, Palermo, Italy
| | - Giuseppe Pizzo
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Giuseppina Campisi
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Giuseppe Pizzolanti
- Laboratory of Regenerative Medicine "Aldo Galluzzo", Department of Endocrinology, Diabetology and Metabolism, University of Palermo, Piazza Delle Cliniche 2, 90127, Palermo, Italy.,Advanced Technologies Network Center, University of Palermo, Palermo, Italy
| | - Carla Giordano
- Laboratory of Regenerative Medicine "Aldo Galluzzo", Department of Endocrinology, Diabetology and Metabolism, University of Palermo, Piazza Delle Cliniche 2, 90127, Palermo, Italy. .,Advanced Technologies Network Center, University of Palermo, Palermo, Italy.
| |
Collapse
|
48
|
Synergy of substrate conductivity and intermittent electrical stimulation towards osteogenic differentiation of human mesenchymal stem cells. Bioelectrochemistry 2017; 116:52-64. [DOI: 10.1016/j.bioelechem.2017.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 02/01/2023]
|
49
|
Strazic Geljic I, Melis N, Boukhechba F, Schaub S, Mellier C, Janvier P, Laugier J, Bouler J, Verron E, Scimeca J. Gallium enhances reconstructive properties of a calcium phosphate bone biomaterial. J Tissue Eng Regen Med 2017; 12:e854-e866. [DOI: 10.1002/term.2396] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 12/20/2016] [Accepted: 01/09/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Ivana Strazic Geljic
- Université Nice Sophia AntipolisCNRS, Inserm, iBV Nice France
- GRAFTYS SA Aix en Provence France
| | - Nicolas Melis
- Université Nice Sophia AntipolisCNRS, Inserm, iBV Nice France
| | - Florian Boukhechba
- Université Nice Sophia AntipolisCNRS, Inserm, iBV Nice France
- GRAFTYS SA Aix en Provence France
| | | | | | | | | | | | - Elise Verron
- LIOADUniversité de Nantes Inserm UMR791 BP84215 Nantes France
| | | |
Collapse
|
50
|
Husak Z, Dworzak MN. Chronic stress induces CD99, suppresses autophagy, and affects spontaneous adipogenesis in human bone marrow stromal cells. Stem Cell Res Ther 2017; 8:83. [PMID: 28420430 PMCID: PMC5395812 DOI: 10.1186/s13287-017-0532-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/20/2017] [Accepted: 03/09/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bone marrow-derived mesenchymal stromal cells (MSCs) are multipotent cells with a high constitutive level of autophagy and low expression of CD99. Under certain conditions, MSCs may develop tumorigenic properties. However, these transformation-induced conditions are largely unknown. Recently, we have identified an association between Hsp70, a main participant in cellular stress response and tumorigenesis, and CD99. Preliminary observations had revealed upregulation of both proteins in stressed long-term cultured MSCs. And so we hypothesized that CD99 is implicated in stress-induced mechanisms of cellular transformation in MSCs. Hence, we investigated the effects of prolonged stress on MSCs and the role of CD99 and autophagy in their survival. METHODS Human telomerase reverse transcriptase (hTERT) overexpressing immortalized MSCs and primary bone marrow stromal cells were used to investigate the influence of long-term serum deprivation and hypoxia on growth and differentiation of MSCs. Cell proliferation and apoptosis were evaluated using flow cytometry, differentiation capabilities of MSCs were assessed by immunohistochemical staining followed by microscopic examination. CD99, Hsp70 expression were analyzed using flow cytometry, western blotting, and reverse transcriptase polymerase chain reaction. Autophagy was explored with specific inhibitors using cell morphology examination and western blotting. RESULTS Chronic stress factors are able to change the morphology of MSCs and to inhibit spontaneous differentiation into adipocyte lineage. Furthermore, CD99 elevation and downregulation of p53 and p21 accompanied defective autophagy, which is usually associated with tumor formation. We found that inhibition of autophagy by chloroquine promoted cell detachment and modulated CD99 expression level whereas incorporation of CD99 recombinant protein into the cells suppressed autophagy. CONCLUSIONS Obtained results provide a model for chronic stress-induced transformation of MSCs via CD99 and may therefore be highly relevant to mesenchymal tumorigenesis.
Collapse
Affiliation(s)
- Zvenyslava Husak
- St. Anna Kinderkrebsforschung, Children’s Cancer Research Institute, Zimmermannplatz 10, 1090 Vienna, Austria
| | - Michael N. Dworzak
- St. Anna Kinderkrebsforschung, Children’s Cancer Research Institute, Zimmermannplatz 10, 1090 Vienna, Austria
- St. Anna Kinderspital, Kinderspitalgasse 6, 1090 Vienna, Austria
| |
Collapse
|