1
|
Rahul J, Sharma D, Sharma LD, Nanda U, Sarkar AK. A systematic review of EEG based automated schizophrenia classification through machine learning and deep learning. Front Hum Neurosci 2024; 18:1347082. [PMID: 38419961 PMCID: PMC10899326 DOI: 10.3389/fnhum.2024.1347082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
The electroencephalogram (EEG) serves as an essential tool in exploring brain activity and holds particular importance in the field of mental health research. This review paper examines the application of artificial intelligence (AI), encompassing machine learning (ML) and deep learning (DL), for classifying schizophrenia (SCZ) through EEG. It includes a thorough literature review that addresses the difficulties, methodologies, and discoveries in this field. ML approaches utilize conventional models like Support Vector Machines and Decision Trees, which are interpretable and effective with smaller data sets. In contrast, DL techniques, which use neural networks such as convolutional neural networks (CNNs) and long short-term memory networks (LSTMs), are more adaptable to intricate EEG patterns but require significant data and computational power. Both ML and DL face challenges concerning data quality and ethical issues. This paper underscores the importance of integrating various techniques to enhance schizophrenia diagnosis and highlights AI's potential role in this process. It also acknowledges the necessity for collaborative and ethically informed approaches in the automated classification of SCZ using AI.
Collapse
Affiliation(s)
- Jagdeep Rahul
- Department of Electronics and Communication Engineering, Rajiv Gandhi University, Arunachal Pradesh, India
| | - Diksha Sharma
- Department of Electronics and Communication, Indian Institute of Information Technology, Sri City, India
| | - Lakhan Dev Sharma
- School of Electronics Engineering, VIT-AP University, Amrawati, India
| | - Umakanta Nanda
- School of Electronics Engineering, VIT-AP University, Amrawati, India
| | - Achintya Kumar Sarkar
- Department of Electronics and Communication, Indian Institute of Information Technology, Sri City, India
| |
Collapse
|
2
|
Laghari AA, Sun Y, Alhussein M, Aurangzeb K, Anwar MS, Rashid M. Deep residual-dense network based on bidirectional recurrent neural network for atrial fibrillation detection. Sci Rep 2023; 13:15109. [PMID: 37704659 PMCID: PMC10499947 DOI: 10.1038/s41598-023-40343-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/09/2023] [Indexed: 09/15/2023] Open
Abstract
Atrial fibrillation easily leads to stroke, cerebral infarction and other complications, which will seriously harm the life and health of patients. Traditional deep learning methods have weak anti-interference and generalization ability. Therefore, we propose a new-fashioned deep residual-dense network via bidirectional recurrent neural network (RNN) model for atrial fibrillation detection. The combination of one-dimensional dense residual network and bidirectional RNN for atrial fibrillation detection simplifies the tedious feature extraction steps, and constructs the end-to-end neural network to achieve atrial fibrillation detection through data feature learning. Meanwhile, the attention mechanism is utilized to fuse the different features and extract the high-value information. The accuracy of the experimental results is 97.72%, the sensitivity and specificity are 93.09% and 98.71%, respectively compared with other methods.
Collapse
Affiliation(s)
- Asif Ali Laghari
- Software College, Shenyang Normal University, Shenyang, 110034, China
| | - Yanqiu Sun
- Liaoning University of Traditional Chinese Medicine, Shenyang, China.
| | - Musaed Alhussein
- Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, P.O. Box 51178, Riyadh, 11543, Kingdom of Saudi Arabia
| | - Khursheed Aurangzeb
- Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, P.O. Box 51178, Riyadh, 11543, Kingdom of Saudi Arabia
| | | | - Mamoon Rashid
- Department of Computer Engineering, Faculty of Science and Technology, Vishwakarma University, Pune, 411048, India
| |
Collapse
|
3
|
Torakis I, Antonakakis M, Bei ES, Gikas P, Sakkalis V, Zervakis M. Design of a Multi-Feature Classification Scheme for Infant Epileptic Seizures. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083337 DOI: 10.1109/embc40787.2023.10341164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Neonatal epileptic seizures take place in the early childhood years, accounting for a severe condition with several deaths and neurological problems in newborn neonates. Despite the early advancements on the diagnosis and/or treatment of this condition, as a major difficulty accounts the inability of the physicians to identify and characterize a seizure, as one a small percentage gets detected in neonatal intensive care units (NICU). An important step towards any kind of seizure classification is the detection and reduction of non-cerebral activity. Towards this direction, our multi-feature approach contains spectral and statistical characteristics of EEG signals of 79 infants with suspicion of seizure and assesses the performance of two classification algorithms iteratively. The trained models (Support Vector Machine (SVM) and Random Forest classifiers) yielded high classification performance (>80% and >85% respectively). A robust neonatal seizure classification scheme is thus proposed, along with nine high scoring spectrum and statistical features. The importance of embedding an artefact reduction approach is also discussed, since the complex artifacts spread throughout the signals have great impact on the accuracy of the algorithms. The nine extracted high scoring spectral and statistical features might be used as potential biomarkers for neonatal seizure prediction in a clinical setting.
Collapse
|
4
|
Shi Y, Guo D, Chun Y, Liu J, Liu L, Tu L, Xu J. A lung cancer risk warning model based on tongue images. Front Physiol 2023; 14:1154294. [PMID: 37324390 PMCID: PMC10267397 DOI: 10.3389/fphys.2023.1154294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
Objective: To investigate the tongue image features of patients with lung cancer and benign pulmonary nodules and to construct a lung cancer risk warning model using machine learning methods. Methods: From July 2020 to March 2022, we collected 862 participants including 263 patients with lung cancer, 292 patients with benign pulmonary nodules, and 307 healthy subjects. The TFDA-1 digital tongue diagnosis instrument was used to capture tongue images, using feature extraction technology to obtain the index of the tongue images. The statistical characteristics and correlations of the tongue index were analyzed, and six machine learning algorithms were used to build prediction models of lung cancer based on different data sets. Results: Patients with benign pulmonary nodules had different statistical characteristics and correlations of tongue image data than patients with lung cancer. Among the models based on tongue image data, the random forest prediction model performed the best, with a model accuracy of 0.679 ± 0.048 and an AUC of 0.752 ± 0.051. The accuracy for the logistic regression, decision tree, SVM, random forest, neural network, and naïve bayes models based on both the baseline and tongue image data were 0.760 ± 0.021, 0.764 ± 0.043, 0.774 ± 0.029, 0.770 ± 0.050, 0.762 ± 0.059, and 0.709 ± 0.052, respectively, while the corresponding AUCs were 0.808 ± 0.031, 0.764 ± 0.033, 0.755 ± 0.027, 0.804 ± 0.029, 0.777 ± 0.044, and 0.795 ± 0.039, respectively. Conclusion: The tongue diagnosis data under the guidance of traditional Chinese medicine diagnostic theory was useful. The performance of models built on tongue image and baseline data was superior to that of the models built using only the tongue image data or the baseline data. Adding objective tongue image data to baseline data can significantly improve the efficacy of lung cancer prediction models.
Collapse
Affiliation(s)
- Yulin Shi
- Experimental Education Center of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dandan Guo
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Chun
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiayi Liu
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingshuang Liu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liping Tu
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiatuo Xu
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Murugappan M, Zheng BS, Khairunizam W. Recurrent Quantification Analysis-Based Emotion Classification in Stroke Using Electroencephalogram Signals. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-05369-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Swami CP, Lenhard N, Kang J. A novel framework for designing a multi-DoF prosthetic wrist control using machine learning. Sci Rep 2021; 11:15050. [PMID: 34294804 PMCID: PMC8298628 DOI: 10.1038/s41598-021-94449-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/12/2021] [Indexed: 12/03/2022] Open
Abstract
Prosthetic arms can significantly increase the upper limb function of individuals with upper limb loss, however despite the development of various multi-DoF prosthetic arms the rate of prosthesis abandonment is still high. One of the major challenges is to design a multi-DoF controller that has high precision, robustness, and intuitiveness for daily use. The present study demonstrates a novel framework for developing a controller leveraging machine learning algorithms and movement synergies to implement natural control of a 2-DoF prosthetic wrist for activities of daily living (ADL). The data was collected during ADL tasks of ten individuals with a wrist brace emulating the absence of wrist function. Using this data, the neural network classifies the movement and then random forest regression computes the desired velocity of the prosthetic wrist. The models were trained/tested with ADLs where their robustness was tested using cross-validation and holdout data sets. The proposed framework demonstrated high accuracy (F-1 score of 99% for the classifier and Pearson's correlation of 0.98 for the regression). Additionally, the interpretable nature of random forest regression was used to verify the targeted movement synergies. The present work provides a novel and effective framework to develop an intuitive control for multi-DoF prosthetic devices.
Collapse
Affiliation(s)
- Chinmay P Swami
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY, 14260, USA
- Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY, 14260, USA
| | - Nicholas Lenhard
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, 14260, USA
| | - Jiyeon Kang
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY, 14260, USA.
- Department of Rehabilitation Science, University at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
7
|
Noninvasive Machine Learning Screening Model for Dacryocystitis Based on Ocular Surface Indicators. J Craniofac Surg 2021; 33:e23-e28. [PMID: 34267140 DOI: 10.1097/scs.0000000000007863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Dacryocystitis is an orbital disease that can be easily misdiagnosed. The most common diagnostic tools for dacryocystitis are computed tomography, lacrimal duct angiography, and lacrimal tract irrigation. Yet, those are invasive methods, which are not conducive to extensive screening. OBJECTIVE To explore the significance of ocular surface indicators and demographic data in the screening of dacryocystitis. MATERIALS AND METHODS Data were prospectively collected from 56 patients with dacryocystitis (56 eyes) and 56 healthy individuals. Collected indicators included demographic information (gender, age), ocular surface data of tear meniscus height, objective scatter index (OSI), and clinical diagnosis. The model features were screened out by machine learning to establish a dacryocystitis screening model. RESULTS Tear meniscus height, OSI_maximum Lyapunov exponent, basic OSI, median of OSI, mean of OSI, slope coefficient of OSI linear regression, coefficient of variation in OSI, interquartile range of OSI, and other 8 parameters were used as model parameters to establish a dacryocystitis screening model with an overall detection accuracy of 85.71%. CONCLUSIONS This new screening model that is based on ocular surface indicators provides a new option for noninvasive screening of dacryocystitis.
Collapse
|
8
|
Brasil S, Neves CJ, Rijoff T, Falcão M, Valadão G, Videira PA, Dos Reis Ferreira V. Artificial Intelligence in Epigenetic Studies: Shedding Light on Rare Diseases. Front Mol Biosci 2021; 8:648012. [PMID: 34026829 PMCID: PMC8131862 DOI: 10.3389/fmolb.2021.648012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/09/2021] [Indexed: 12/29/2022] Open
Abstract
More than 7,000 rare diseases (RDs) exist worldwide, affecting approximately 350 million people, out of which only 5% have treatment. The development of novel genome sequencing techniques has accelerated the discovery and diagnosis in RDs. However, most patients remain undiagnosed. Epigenetics has emerged as a promise for diagnosis and therapies in common disorders (e.g., cancer) with several epimarkers and epidrugs already approved and used in clinical practice. Hence, it may also become an opportunity to uncover new disease mechanisms and therapeutic targets in RDs. In this “big data” age, the amount of information generated, collected, and managed in (bio)medicine is increasing, leading to the need for its rapid and efficient collection, analysis, and characterization. Artificial intelligence (AI), particularly deep learning, is already being successfully applied to analyze genomic information in basic research, diagnosis, and drug discovery and is gaining momentum in the epigenetic field. The application of deep learning to epigenomic studies in RDs could significantly boost discovery and therapy development. This review aims to collect and summarize the application of AI tools in the epigenomic field of RDs. The lower number of studies found, specific for RDs, indicate that this is a field open to expansion, following the results obtained for other more common disorders.
Collapse
Affiliation(s)
- Sandra Brasil
- Portuguese Association for CDG, Lisbon, Portugal.,CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - Cátia José Neves
- Portuguese Association for CDG, Lisbon, Portugal.,CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - Tatiana Rijoff
- Portuguese Association for CDG, Lisbon, Portugal.,CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - Marta Falcão
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Gonçalo Valadão
- Instituto de Telecomunicações, Lisbon, Portugal.,Departamento de Ciências e Tecnologias, Autónoma Techlab - Universidade Autónoma de Lisboa, Lisbon, Portugal.,Electronics, Telecommunications and Computers Engineering Department, Instituto Superior de Engenharia de Lisboa, Lisbon, Portugal
| | - Paula A Videira
- Portuguese Association for CDG, Lisbon, Portugal.,CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal.,UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Vanessa Dos Reis Ferreira
- Portuguese Association for CDG, Lisbon, Portugal.,CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| |
Collapse
|
9
|
Abstract
Imagined speech is a relatively new electroencephalography (EEG) neuro-paradigm, which has seen little use in Brain-Computer Interface (BCI) applications. Imagined speech can be used to allow physically impaired patients to communicate and to use smart devices by imagining desired commands and then detecting and executing those commands in a smart device. The goal of this research is to verify previous classification attempts made and then design a new, more efficient neural network that is noticeably less complex (fewer number of layers) that still achieves a comparable classification accuracy. The classifiers are designed to distinguish between EEG signal patterns corresponding to imagined speech of different vowels and words. This research uses a dataset that consists of 15 subjects imagining saying the five main vowels (a, e, i, o, u) and six different words. Two previous studies on imagined speech classifications are verified as those studies used the same dataset used here. The replicated results are compared. The main goal of this study is to take the proposed convolutional neural network (CNN) model from one of the replicated studies and make it much more simpler and less complex, while attempting to retain a similar accuracy. The pre-processing of data is described and a new CNN classifier with three different transfer learning methods is described and used to classify EEG signals. Classification accuracy is used as the performance metric. The new proposed CNN, which uses half as many layers and less complex pre-processing methods, achieved a considerably lower accuracy, but still managed to outperform the initial model proposed by the authors of the dataset by a considerable margin. It is recommended that further studies investigating classifying imagined speech should use more data and more powerful machine learning techniques. Transfer learning proved beneficial and should be used to improve the effectiveness of neural networks.
Collapse
|
10
|
Lian J, Shi Y, Zhang Y, Jia W, Fan X, Zheng Y. Revealing False Positive Features in Epileptic EEG Identification. Int J Neural Syst 2020; 30:2050017. [DOI: 10.1142/s0129065720500173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Feature selection plays a vital role in the detection and discrimination of epileptic seizures in electroencephalogram (EEG) signals. The state-of-the-art EEG classification techniques commonly entail the extraction of the multiple features that would be fed into classifiers. For some techniques, the feature selection strategies have been used to reduce the dimensionality of the entire feature space. However, most of these approaches focus on the performance of classifiers while neglecting the association between the feature and the EEG activity itself. To enhance the inner relationship between the feature subset and the epileptic EEG task with a promising classification accuracy, we propose a machine learning-based pipeline using a novel feature selection algorithm built upon a knockoff filter. First, a number of temporal, spectral, and spatial features are extracted from the raw EEG signals. Second, the proposed feature selection algorithm is exploited to obtain the optimal subgroup of features. Afterwards, three classifiers including [Formula: see text]-nearest neighbor (KNN), random forest (RF) and support vector machine (SVM) are used. The experimental results on the Bonn dataset demonstrate that the proposed approach outperforms the state-of-the-art techniques, with accuracy as high as 99.93% for normal and interictal EEG discrimination and 98.95% for interictal and ictal EEG classification. Meanwhile, it has achieved satisfactory sensitivity (95.67% in average), specificity (98.83% in average), and accuracy (98.89% in average) over the Freiburg dataset.
Collapse
Affiliation(s)
- Jian Lian
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
- Department of Electrical Engineering and Information Technology, Shandong University of Science and Technology, Jinan 250031, P. R. China
| | - Yunfeng Shi
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Yan Zhang
- Department of Electrical Engineering and Information Technology, Shandong University of Science and Technology, Jinan 250031, P. R. China
| | - Weikuan Jia
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Xiaojun Fan
- Antai College of Economics and Management, Shanghai Jiaotong University, Shanghai 200240, P. R. China
| | - Yuanjie Zheng
- School of Information Science and Engineering, Shandong Normal University, Key Lab of Intelligent Computing and Information Security in Universities of Shandong, Institute of Life Sciences, Shandong Provincial Key Laboratory for Distributed Computer Software and Novel Technologies, and Key Lab of Intelligent Information Processing, Jinan 250358, P. R. China
| |
Collapse
|
11
|
A Novel Hybrid Soft Computing Model Using Random Forest and Particle Swarm Optimization for Estimation of Undrained Shear Strength of Soil. SUSTAINABILITY 2020. [DOI: 10.3390/su12062218] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Determination of shear strength of soil is very important in civil engineering for foundation design, earth and rock fill dam design, highway and airfield design, stability of slopes and cuts, and in the design of coastal structures. In this study, a novel hybrid soft computing model (RF-PSO) of random forest (RF) and particle swarm optimization (PSO) was developed and used to estimate the undrained shear strength of soil based on the clay content (%), moisture content (%), specific gravity (%), void ratio (%), liquid limit (%), and plastic limit (%). In this study, the experimental results of 127 soil samples from national highway project Hai Phong-Thai Binh of Vietnam were used to generate datasets for training and validating models. Pearson correlation coefficient (R) method was used to evaluate and compare performance of the proposed model with single RF model. The results show that the proposed hybrid model (RF-PSO) achieved a high accuracy performance (R = 0.89) in the prediction of shear strength of soil. Validation of the models also indicated that RF-PSO model (R = 0.89 and Root Mean Square Error (RMSE) = 0.453) is superior to the single RF model without optimization (R = 0.87 and RMSE = 0.48). Thus, the proposed hybrid model (RF-PSO) can be used for accurate estimation of shear strength which can be used for the suitable designing of civil engineering structures.
Collapse
|
12
|
Goh SK, Abbass HA, Tan KC, Al-Mamun A, Thakor N, Bezerianos A, Li J. Spatio–Spectral Representation Learning for Electroencephalographic Gait-Pattern Classification. IEEE Trans Neural Syst Rehabil Eng 2018; 26:1858-1867. [DOI: 10.1109/tnsre.2018.2864119] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Zhu L, Lee CR, Margolis DJ, Najafizadeh L. Decoding cortical brain states from widefield calcium imaging data using visibility graph. BIOMEDICAL OPTICS EXPRESS 2018; 9:3017-3036. [PMID: 29984080 PMCID: PMC6033549 DOI: 10.1364/boe.9.003017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/12/2018] [Accepted: 05/12/2018] [Indexed: 06/08/2023]
Abstract
Widefield optical imaging of neuronal populations over large portions of the cerebral cortex in awake behaving animals provides a unique opportunity for investigating the relationship between brain function and behavior. In this paper, we demonstrate that the temporal characteristics of calcium dynamics obtained through widefield imaging can be utilized to infer the corresponding behavior. Cortical activity in transgenic calcium reporter mice (n=6) expressing GCaMP6f in neocortical pyramidal neurons is recorded during active whisking (AW) and no whisking (NW). To extract features related to the temporal characteristics of calcium recordings, a method based on visibility graph (VG) is introduced. An extensive study considering different choices of features and classifiers is conducted to find the best model capable of predicting AW and NW from calcium recordings. Our experimental results show that temporal characteristics of calcium recordings identified by the proposed method carry discriminatory information that are powerful enough for decoding behavior.
Collapse
Affiliation(s)
- Li Zhu
- Integrated Systems and NeuroImaging Laboratory, Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, USA
| | - Christian R Lee
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - David J Margolis
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
- Equal contribution
| | - Laleh Najafizadeh
- Integrated Systems and NeuroImaging Laboratory, Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, USA
- Equal contribution
| |
Collapse
|
14
|
Neonatal intensive care decision support systems using artificial intelligence techniques: a systematic review. Artif Intell Rev 2018. [DOI: 10.1007/s10462-018-9635-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
15
|
Yang T, Chen W, Cao G. Automated classification of neonatal amplitude-integrated EEG based on gradient boosting method. Biomed Signal Process Control 2016. [DOI: 10.1016/j.bspc.2016.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Z-Flores E, Trujillo L, Sotelo A, Legrand P, Coria LN. Regularity and Matching Pursuit feature extraction for the detection of epileptic seizures. J Neurosci Methods 2016; 266:107-25. [DOI: 10.1016/j.jneumeth.2016.03.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 11/25/2022]
|
17
|
Koley S, Sadhu AK, Mitra P, Chakraborty B, Chakraborty C. Delineation and diagnosis of brain tumors from post contrast T1-weighted MR images using rough granular computing and random forest. Appl Soft Comput 2016. [DOI: 10.1016/j.asoc.2016.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|