1
|
Broz M, Oostenbrink C, Bren U. The Effect of Microwaves on Protein Structure: Molecular Dynamics Approach. J Chem Inf Model 2024; 64:2077-2083. [PMID: 38477115 PMCID: PMC10966651 DOI: 10.1021/acs.jcim.3c01937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
The impact of microwave (MW) irradiation on protein folding, potentially inciting misfolding, was investigated by employing molecular dynamics (MD) simulations. Twenty-nine proteins were subjected to MD simulations under equilibrium (300 K) and MW conditions, where the rotational temperature was elevated to 700 K. The utilized replacement model captures the microwave effects of δ- and γ-relaxation processes (frequency range of ∼300 MHz to ∼20 GHz). The results disclosed that MW heating incited a shift toward more compact protein conformations, as indicated by decreased root-mean-square deviations, root-mean-square fluctuations, head-to-tail distances, and radii of gyration. This compaction was attributed to the intensification of intramolecular electrostatic interactions and hydrogen bonds within the protein caused by MW-destabilized hydrogen bonds between the protein and solvent. The solvent-accessible surface area (SASA), particularly that of polar amino-acid residues, shrank under MW conditions, corresponding to a reduced polarity of the water solvent. However, MW irradiation produced no significant alterations in protein secondary structures; hence, MW heating was observed to primarily affect the protein tertiary structures.
Collapse
Affiliation(s)
- Matic Broz
- Faculty
of Chemistry and Chemical Engineering, University
of Maribor, Smetanova ulica 17, Maribor SI-2000, Slovenia
| | - Chris Oostenbrink
- Institute
of Molecular Modeling and Simulation, University
of Natural Resources and Life Sciences, Muthgasse 18, Vienna 1190, Austria
| | - Urban Bren
- Faculty
of Chemistry and Chemical Engineering, University
of Maribor, Smetanova ulica 17, Maribor SI-2000, Slovenia
- Faculty
of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška ulica 8, Koper SI-6000, Slovenia
- Institute
of Environmental Protection and Sensors, Beloruska ulica 7, Maribor SI-2000, Slovenia
| |
Collapse
|
2
|
Kodera S, Nishimura T, Rashed EA, Hasegawa K, Takeuchi I, Egawa R, Hirata A. Estimation of heat-related morbidity from weather data: A computational study in three prefectures of Japan over 2013-2018. ENVIRONMENT INTERNATIONAL 2019; 130:104907. [PMID: 31203028 DOI: 10.1016/j.envint.2019.104907] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
In recent years, the rates of heat-related morbidity and mortality have begun to increase with the increase in global warming; in this context, it is noteworthy that the number of patients transported by ambulance in heat-related cases in Japan reached 95,137 in 2018. The estimation of heat-related morbidity forms a key factor in proposing and implementing suitable intervention strategies and ambulance availability and arrangements. Heat-related morbidity is known to be fairly correlated to metrics related to ambient conditions, thus necessitating the exploration of new metrics to more accurately estimate morbidity. In this study, we use an integrated computational technique relating to thermodynamics and thermoregulation to estimate daily peak core temperature elevation and daily water loss, which are linked to heat-related illnesses, from weather data of three different prefectures in Japan (Tokyo, Osaka, and Aichi). The correlations of the computed core temperature elevation and water loss as well as conventional ambient conditions are investigated in terms of number of patients suffering from heat-related illnesses transported by ambulance from 2013 to 2018. The estimated water loss per the proposed computation yields better correlation with the number of patients transported by ambulance. In particular, the weight-sum daily water loss for two to three successive days is found to be an important metric for predicting the number of patients transported by ambulance. For the same ambient conditions, morbidity is found to decrease to 0.4 owing to heat adaption at the end of summer (60 days) as compared with that at the end of the rainy season. Thus, the weighted sum of water loss and daily average ambient temperature for successive days can be used as better metrics than conventional weather data for the application of intervention strategies and planning of ambulance arrangements for heat-related morbidity.
Collapse
Affiliation(s)
- Sachiko Kodera
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Taku Nishimura
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Essam A Rashed
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan; Department of Computer Science, Faculty of Informatics & Computer Science, The British University in Egypt, Cairo 11837, Egypt; Department of Mathematics, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Kazuma Hasegawa
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Ichiro Takeuchi
- Department of Computer Science, Nagoya Institute of Technology, Nagoya 466-8555, Japan; Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan; Frontier Research Institute for Information Science, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Ryusuke Egawa
- Cyberscience Center, Tohoku University, Sendai 980-8578, Japan
| | - Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan; Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan; Frontier Research Institute for Information Science, Nagoya Institute of Technology, Nagoya 466-8555, Japan.
| |
Collapse
|
3
|
Kodera S, Gomez-Tames J, Hirata A. Temperature elevation in the human brain and skin with thermoregulation during exposure to RF energy. Biomed Eng Online 2018; 17:1. [PMID: 29310661 PMCID: PMC5759877 DOI: 10.1186/s12938-017-0432-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/26/2017] [Indexed: 12/03/2022] Open
Abstract
Background Two international guidelines/standards for human protection from electromagnetic fields define the specific absorption rate (SAR) averaged over 10 g of tissue as a metric for protection against localized radio frequency field exposure due to portable devices operating below 3–10 GHz. Temperature elevation is suggested to be a dominant effect for exposure at frequencies higher than 100 kHz. No previous studies have evaluated temperature elevation in the human head for local exposure considering thermoregulation. This study aims to discuss the temperature elevation in a human head model considering vasodilation, to discuss the conservativeness of the current limit. Methods This study computes the temperature elevations in an anatomical human head model exposed to radiation from a dipole antenna and truncated plane waves at 300 MHz–10GHz. The SARs in the human model are first computed using a finite-difference time-domain method. The temperature elevation is calculated by solving the bioheat transfer equation by considering the thermoregulation that simulates the vasodilation. Results The maximum temperature elevation in the brain appeared around its periphery. At exposures with higher intensity, the temperature elevation became larger and reached around 40 °C at the peak SAR of 100 W/kg, and became lower at higher frequencies. The temperature elevation in the brain at the current limit of 10 W/kg is at most 0.93 °C. The effect of vasodilation became notable for tissue temperature elevations higher than 1–2 °C and for an SAR of 10 W/kg. The temperature at the periphery was below the basal brain temperature (37 °C). Conclusions The temperature elevation under the current guideline for occupational exposure is within the ranges of brain temperature variability for environmental changes in daily life. The effect of vasodilation is significant, especially at higher frequencies where skin temperature elevation is dominant.
Collapse
Affiliation(s)
- Sachiko Kodera
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan.
| | - Jose Gomez-Tames
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan.
| |
Collapse
|
4
|
Foster KR, Ziskin MC, Balzano Q. Thermal Response of Human Skin to Microwave Energy: A Critical Review. HEALTH PHYSICS 2016; 111:528-541. [PMID: 27798477 DOI: 10.1097/hp.0000000000000571] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This is a review/modeling study of heating of tissue by microwave energy in the frequency range from 3 GHz through the millimeter frequency range (30-300 GHz). The literature was reviewed to identify studies that reported RF-induced increases in skin temperature. A simple thermal model, based on a simplified form of Pennes' bioheat equation (BHTE), was developed, using parameter values taken from the literature with no further adjustment. The predictions of the model were in excellent agreement with available data. A parametric analysis of the model shows that there are two heating regimes with different dominant mechanisms of heat transfer. For small irradiated areas (less than about 0.5-1 cm in radius) the temperature increase at the skin surface is chiefly limited by conduction of heat into deeper tissue layers, while for larger irradiated areas, the steady-state temperature increase is limited by convective cooling by blood perfusion. The results support the use of this simple thermal model to aid in the development and evaluation of RF safety limits at frequencies above 3 GHz and for millimeter waves, particularly when the irradiated area of skin is small. However, very limited thermal response data are available, particularly for exposures lasting more than a few minutes to areas of skin larger than 1-2 cm in diameter. The paper concludes with comments about possible uses and limitations of thermal modeling for setting exposure limits in the considered frequency range.
Collapse
Affiliation(s)
- Kenneth R Foster
- *Department of Bioengineering University of Pennsylvania, Philadelphia, PA; †Temple University Medical School, Philadelphia, PA; ‡Department of Electrical and Computer Engineering, University of Maryland, College Park, MD
| | | | | |
Collapse
|
5
|
Mathematical modeling of radiofrequency ablation for varicose veins. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2014:485353. [PMID: 25587351 PMCID: PMC4281440 DOI: 10.1155/2014/485353] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/08/2014] [Accepted: 12/01/2014] [Indexed: 12/04/2022]
Abstract
We present a three-dimensional mathematical model for the study of radiofrequency ablation (RFA) with blood flow for varicose vein. The model designed to analyze temperature distribution heated by radiofrequency energy and cooled by blood flow includes a cylindrically symmetric blood vessel with a homogeneous vein wall. The simulated blood velocity conditions are U = 0, 1, 2.5, 5, 10, 20, and 40 mm/s. The lower the blood velocity, the higher the temperature in the vein wall and the greater the tissue damage. The region that is influenced by temperature in the case of the stagnant flow occupies approximately 28.5% of the whole geometry, while the region that is influenced by temperature in the case of continuously moving electrode against the flow direction is about 50%. The generated RF energy induces a temperature rise of the blood in the lumen and leads to an occlusion of the blood vessel. The result of the study demonstrated that higher blood velocity led to smaller thermal region and lower ablation efficiency. Since the peak temperature along the venous wall depends on the blood velocity and pullback velocity, the temperature distribution in the model influences ablation efficiency. The vein wall absorbs more energy in the low pullback velocity than in the high one.
Collapse
|
6
|
Moore SM, McIntosh RL, Iskra S, Wood AW. Modeling the effect of adverse environmental conditions and clothing on temperature rise in a human body exposed to radio frequency electromagnetic fields. IEEE Trans Biomed Eng 2014; 62:627-37. [PMID: 25314694 DOI: 10.1109/tbme.2014.2362517] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study considers the computationally determined thermal profile of a fully clothed, finely discretized, heterogeneous human body model, subject to the maximum allowable reference level for a 1-GHz radio frequency electromagnetic field for a worker, and also subject to adverse environmental conditions, including high humidity and high ambient temperature. An initial observation is that while electromagnetic fields at the occupational safety limit will contribute an additional thermal load to the tissues, and subsequently, cause an elevated temperature, the magnitude of this effect is far outweighed by that due to the conditions including the ambient temperature, relative humidity, and the type of clothing worn. It is envisaged that the computational modeling approach outlined in this paper will be suitably modified in future studies to evaluate the thermal response of a body at elevated metabolic rates, and for different body shapes and sizes including children and pregnant women.
Collapse
|
7
|
Simonis FFJ, Petersen ET, Bartels LW, Lagendijk JJW, van den Berg CAT. Compensating for magnetic field inhomogeneity in multigradient-echo-based MR thermometry. Magn Reson Med 2014; 73:1184-9. [PMID: 24664621 DOI: 10.1002/mrm.25207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 12/18/2022]
Abstract
PURPOSE MR thermometry (MRT) is a noninvasive method for measuring temperature that can potentially be used for radio frequency (RF) safety monitoring. This application requires measuring absolute temperature. In this study, a multigradient-echo (mGE) MRT sequence was used for that purpose. A drawback of this sequence, however, is that its accuracy is affected by background gradients. In this article, we present a method to minimize this effect and to improve absolute temperature measurements using MRI. THEORY By determining background gradients using a B0 map or by combining data acquired with two opposing readout directions, the error can be removed in a homogenous phantom, thus improving temperature maps. METHODS All scans were performed on a 3T system using ethylene glycol-filled phantoms. Background gradients were varied, and one phantom was uniformly heated to validate both compensation approaches. Independent temperature recordings were made with optical probes. RESULTS Errors correlated closely to the background gradients in all experiments. Temperature distributions showed a much smaller standard deviation when the corrections were applied (0.21°C vs. 0.45°C) and correlated well with thermo-optical probes. CONCLUSION The corrections offer the possibility to measure RF heating in phantoms more precisely. This allows mGE MRT to become a valuable tool in RF safety assessment.
Collapse
Affiliation(s)
- Frank F J Simonis
- Department of Radiotherapy, Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
8
|
Murbach M, Neufeld E, Capstick M, Kainz W, Brunner DO, Samaras T, Pruessmann KP, Kuster N. Thermal tissue damage model analyzed for different whole-body SAR and scan durations for standard MR body coils. Magn Reson Med 2013; 71:421-31. [PMID: 23413107 DOI: 10.1002/mrm.24671] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 12/19/2012] [Accepted: 01/09/2013] [Indexed: 11/07/2022]
Abstract
PURPOSE This article investigates the safety of radiofrequency induced local thermal hotspots within a 1.5T body coil by assessing the transient local peak temperatures as a function of exposure level and local thermoregulation in four anatomical human models in different Z-positions. METHODS To quantize the effective thermal stress of the tissues, the thermal dose model cumulative equivalent minutes at 43°C was employed, allowing the prediction of thermal tissue damage risk and the identification of potentially hazardous MR scan-scenarios. The numerical results were validated by B1 (+) - and skin temperature measurements. RESULTS At continuous 4 W/kg whole-body exposure, peak tissue temperatures of up to 42.8°C were computed for the thermoregulated model (60°C in nonregulated case). When applying cumulative equivalent minutes at 43°C damage thresholds of 15 min (muscle, skin, fat, and bone) and 2 min (other), possible tissue damage cannot be excluded after 25 min for the thermoregulated model (4 min in nonregulated). CONCLUSION The results are found to be consistent with the history of safe use in MR scanning, but not with current safety guidelines. For future safety concepts, we suggest to use thermal dose models instead of temperatures or SAR. Special safety concerns for patients with impaired thermoregulation (e.g., the elderly, diabetics) should be addressed.
Collapse
Affiliation(s)
- Manuel Murbach
- IT'IS Foundation, Zurich, Switzerland; Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Hirata A, Laakso I, Oizumi T, Hanatani R, Chan KH, Wiart J. The relationship between specific absorption rate and temperature elevation in anatomically based human body models for plane wave exposure from 30 MHz to 6 GHz. Phys Med Biol 2013; 58:903-21. [DOI: 10.1088/0031-9155/58/4/903] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Hirata A, Masuda H, Kanai Y, Asai R, Fujiwara O, Arima T, Kawai H, Watanabe S, Lagroye I, Veyret B. Computational modeling of temperature elevation and thermoregulatory response in the brains of anesthetized rats locally exposed at 1.5 GHz. Phys Med Biol 2012; 56:7639-57. [PMID: 22086327 DOI: 10.1088/0031-9155/56/23/019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The dominant effect of human exposures to microwaves is caused by temperature elevation ('thermal effect'). In the safety guidelines/standards, the specific absorption rate averaged over a specific volume is used as a metric for human protection from localized exposure. Further investigation on the use of this metric is required, especially in terms of thermophysiology. The World Health Organization (2006 RF research agenda) has given high priority to research into the extent and consequences of microwave-induced temperature elevation in children. In this study, an electromagnetic-thermal computational code was developed to model electromagnetic power absorption and resulting temperature elevation leading to changes in active blood flow in response to localized 1.457 GHz exposure in rat heads. Both juvenile (4 week old) and young adult (8 week old) rats were considered. The computational code was validated against measurements for 4 and 8 week old rats. Our computational results suggest that the blood flow rate depends on both brain and core temperature elevations. No significant difference was observed between thermophysiological responses in 4 and 8 week old rats under these exposure conditions. The computational model developed herein is thus applicable to set exposure conditions for rats in laboratory investigations, as well as in planning treatment protocols in the thermal therapy.
Collapse
Affiliation(s)
- Akimasa Hirata
- Department of Computer Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Laakso I, Hirata A. Dominant factors affecting temperature rise in simulations of human thermoregulation during RF exposure. Phys Med Biol 2011; 56:7449-71. [PMID: 22080753 DOI: 10.1088/0031-9155/56/23/008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Numerical models of the human thermoregulatory system can be used together with realistic voxel models of the human anatomy to simulate the body temperature increases caused by the power absorption from radio-frequency electromagnetic fields. In this paper, the Pennes bioheat equation with a thermoregulatory model is used for calculating local peak temperatures as well as the body-core-temperature elevation in a realistic human body model for grounded plane-wave exposures at frequencies 39, 800 and 2400 MHz. The electromagnetic power loss is solved by the finite-difference time-domain (FDTD) method, and the discretized bioheat equation is solved by the geometric multigrid method. Human thermoregulatory models contain numerous thermophysiological and computational parameters--some of which may be subject to considerable uncertainty--that affect the simulated core and local temperature elevations. The goal of this paper is to find how greatly the computed temperature is influenced by changes in various modelling parameters, such as the skin blood flow rate, models for vasodilation and sweating, and clothing and air movement. The results show that the peak temperature rises are most strongly affected by the modelling of tissue blood flow and its temperature dependence, and mostly unaffected by the central control mechanism for vasodilation and sweating. Almost the opposite is true for the body-core-temperature rise, which is however typically greatly lower than the peak temperature rise. It also seems that ignoring the thermoregulation and the blood temperature increase is a good approximation when the local 10 g averaged specific absorption rate is smaller than 10 W kg(-1).
Collapse
Affiliation(s)
- Ilkka Laakso
- Department of Computer Science and Engineering, Nagoya Institute of Technology, Nagoya, Japan.
| | | |
Collapse
|
12
|
Hirata A, Kojima M, Kawai H, Yamashiro Y, Watanabe S, Sasaki H, Fujiwara O. Acute Dosimetry and Estimation of Threshold-Inducing Behavioral Signs of Thermal Stress in Rabbits at 2.45-GHz Microwave Exposure. IEEE Trans Biomed Eng 2010; 57:1234-42. [DOI: 10.1109/tbme.2009.2038896] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Leitgeb N, Omerspahic A, Niedermayr F. Exposure of non-target tissues in medical diathermy. Bioelectromagnetics 2010; 31:12-9. [PMID: 19711373 DOI: 10.1002/bem.20521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
With different prevalence in different regions, radio frequency (RF) electromagnetic fields (EMF) are widely used for therapeutic tissue heating. Although short-wave diathermy (27.12 MHz) is the most popular treatment modality, quantitative data on patient's exposure have been lacking. By numerical simulation with the numerical anatomical model NORMAN, intracorporal distributions of specific absorption rates (SAR) were investigated for different treatment scenarios and applicators. Quantitative data are provided for exposures of target treatment areas as well as for vulnerable regions such as the eye lenses, central nervous system, and testes. Different applicators and distances were investigated. Capacitive and inductive applicators exhibit quite a different heating efficiency. It could be shown that for the same output power therapeutic heat deposition can vary by almost one order of magnitude. By mimicking therapist's practice to use patient's heat perception as an indicator for output power setting, numerical data were elaborated demonstrating that muscle tissue exposures may be several times higher for inductive than for capacitive applicators. Presented quantitative data serve as a guide for power adjustment preventing relevant overexposures without compromising therapy; they also provide a basis for estimating target tissue heat load and developing therapeutic guidelines.
Collapse
Affiliation(s)
- N Leitgeb
- Institute of Health Care Engineering and European Notified Body of Medical Devices PMG (0636), Graz University of Technology, Graz, Austria.
| | | | | |
Collapse
|
14
|
Hirata A, Sugiyama H, Fujiwara O. ESTIMATION OF CORE TEMPERATURE ELEVATION IN HUMANS AND ANIMALS FOR WHOLE-BODY AVERAGED SAR. ACTA ACUST UNITED AC 2009. [DOI: 10.2528/pier09101603] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Adair ER. Reminiscences of a journeyman scientist: studies of thermoregulation in non-human primates and humans. Bioelectromagnetics 2008; 29:586-97. [PMID: 18780295 DOI: 10.1002/bem.20442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
After graduating from Mount Holyoke College in 1948 where I majored in experimental psychology I worked at the College for 2 years with the Johns Hopkins Thermophysiological Unit. My graduate work later at the University of Wisconsin, centering on sensory psychology, culminated in my 1955 PhD thesis on human dark adaptation. I continued work in sensory psychology later with Neal Miller at Yale and then moved to the John B. Pierce Foundation--a Yale affiliate--where I began the studies of thermoregulation that constitute the center of my scientific career. Those studies were largely--later wholly--conducted using microwave energy as a thermal load and were thus published in Bioelectromagnetics even as I played an active role in the Bioelectromagnetics Society. In the beginning this work was centered on the responses of Squirrel Monkeys to thermal loads. Later, serving as Senior Scientist at the Air Force Research Laboratory at San Antonio, I completed an extensive analysis of thermal regulation in humans. I consider this work of special note inasmuch as the extraordinary human thermoregulatory ability was surely among the attributes that were paramount in initially separating humans from the other anthropoid primates.
Collapse
|
16
|
Hirata A, Asano T, Fujiwara O. FDTD analysis of body-core temperature elevation in children and adults for whole-body exposure. Phys Med Biol 2008; 53:5223-38. [DOI: 10.1088/0031-9155/53/18/025] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
17
|
Hirata A, Asano T, Fujiwara O. FDTD computation of temperature elevation in human body for RF far-field exposure. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2008; 2007:1164-7. [PMID: 18002169 DOI: 10.1109/iembs.2007.4352503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper investigated specific absorption rate and temperature elevation in an anatomically-based human model for RF far-field exposure. First, we investigated the effect of blood temperature variation and thermoregulation modeling on body-core temperature. The modeling of blood temperature variation was found to be the dominant factor influencing the body core temperature. This is because the temperature in the inner tissues is elevated via the circulation of blood warmed due to EM absorption. For the same whole-body average SAR at different frequencies, the body-core temperature elevation was almost same, suggesting the effectiveness of the measure used in the ICNIRP guidelines. Then, we discussed the effect of sweating rate on the temperature elevation and thermal time constant of blood temperature. The uncertainty of temperature elevation due to the sweating rate was 30% or so.
Collapse
|
18
|
Hirata A, Asano T, Fujiwara O. Development of thermal model in a child and its application to dosimetry due to RF whole-body exposures. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2008; 2008:3277-3280. [PMID: 19163407 DOI: 10.1109/iembs.2008.4649904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this study, we developed a thermal model for children to simulate body-core temperature elevation. In comparison of measured and simulated temperatures, the thermoregulation in a child was reasonable to consider the same as in the adult. Based on this finding, we calculated the body-core temperature elevation in the 3-year child and adult for plane wave exposure at the basic restriction in the international safety guidelines. The body-core temperature elevation in the 3-year child model was 0.03 degrees C at the whole-body averaged specific absorption rate of 0.08 W/kg, which was 35% smaller than in the adult female. This difference is attributed to the ratio of the body surface area to the mass.
Collapse
|
19
|
Hirata A, Asano T, Fujiwara O. FDTD analysis of human body-core temperature elevation due to RF far-field energy prescribed in the ICNIRP guidelines. Phys Med Biol 2007; 52:5013-23. [PMID: 17671350 DOI: 10.1088/0031-9155/52/16/020] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study investigated the relationship between the specific absorption rate and temperature elevation in an anatomically-based model named NORMAN for exposure to radio-frequency far fields in the ICNIRP guidelines (1998 Health Phys. 74 494-522). The finite-difference time-domain method is used for analyzing the electromagnetic absorption and temperature elevation in NORMAN. In order to consider the variability of human thermoregulation, parameters for sweating are derived and incorporated into a conventional sweating formula. First, we investigated the effect of blood temperature variation modeling on body-core temperature. The computational results show that the modeling of blood temperature variation was the dominant factor influencing the body-core temperature. This is because the temperature in the inner tissues is elevated via the circulation of blood whose temperature was elevated due to EM absorption. Even at different frequencies, the body-core temperature elevation at an identical whole-body average specific absorption rate (SAR) was almost the same, suggesting the effectiveness of the whole-body average SAR as a measure in the ICNIRP guidelines. Next, we discussed the effect of sweating on the temperature elevation and thermal time constant of blood. The variability of temperature elevation caused by the sweating rate was found to be 30%. The blood temperature elevation at the basic restriction in the ICNIRP guidelines of 0.4 W kg(-1) is 0.25 degrees C even for a low sweating rate. The thermal time constant of blood temperature elevation was 23 min and 52 min for a man with a lower and a higher sweating rate, respectively, which is longer than the average time of the SAR in the ICNIRP guidelines. Thus, the whole-body average SAR required for blood temperature elevation of 1 degrees C was 4.5 W kg(-1) in the model of a human with the lower sweating coefficients for 60 min exposure. From a comparison of this value with the basic restriction in the ICNIRP guidelines of 0.4 W kg(-1), the safety factor was 11.
Collapse
Affiliation(s)
- Akimasa Hirata
- Department of Computer Science and Engineering, Nagoya Institute of Technology, Japan.
| | | | | |
Collapse
|
20
|
Jia F, Ushiyama A, Masuda H, Lawlor GF, Ohkubo C. Role of blood flow on RF exposure induced skin temperature elevations in rabbit ears. Bioelectromagnetics 2007; 28:163-72. [PMID: 17004244 DOI: 10.1002/bem.20286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this in vivo study, we measured local temperature changes in rabbit pinnae, which were evoked by radiofrequency (RF) exposure for 20 min at localized SAR levels of 0 (sham exposure), 2.3, 10.0, and 34.3 W/kg over 1.0 g rabbit ear tissue. The effects of RF exposures on skin temperature were measured under normal blood flow and without blood flow in the ear. The results showed: (1) physiological blood flow clearly modified RF induced thermal elevation in the pinna as blood flow significantly suppressed temperature increases even at 34.3 W/kg; (2) under normal blood flow conditions, exposures at 2.3 and 10.0 W/kg, approximating existing safety limits for the general public (2 W/kg) and occupational exposure (10 W/kg), did not induce significant temperature rises in the rabbit ear. However, 2.3 W/kg induced local skin temperature elevation under no blood flow conditions. Our results demonstrate that the physiological effects of blood flow should be considered when extrapolating modeling data to living animals, and particular caution is needed when interpreting the results of modeling studies that do not include blood flow.
Collapse
Affiliation(s)
- Fu Jia
- Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wako-shi, Saitama 351-0197, Japan.
| | | | | | | | | |
Collapse
|
21
|
Sclabassi RJ, Liu Q, Hackworth SA, Justin GA, Sun M. Platform technologies to support brain-computer interfaces. Neurosurg Focus 2006; 20:E5. [PMID: 16711662 DOI: 10.3171/foc.2006.20.5.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
There is a lack of adequate and cost-effective treatment options for many neurodegenerative diseases. The number of affected patients is in the millions, and this number will only increase as the population ages. The developing areas of neuromimetics and stimulative implants provide hope for treatment, as evidenced by the currently available, but limited, implants. New technologies are emerging that are leading to the development of highly intelligent, implantable sensors, activators, and mobile robots that will provide in vivo diagnosis, therapeutic interventions, and functional replacement. Two key platform technologies that are required to facilitate the development of these neuromimetic and stimulative implants are data communication channels and the devices' power supplies. In the research reported in this paper, investigators have examined the use of novel concepts that address these two needs. These concepts are based on ionic volume conduction (VC) to provide a natural communication channel to support the functioning of these devices, and on biofuel cells to provide a continuously rechargeable power supply that obtains electrons from the natural metabolic pathways. The fundamental principles of the VC communication channels, including novel antenna design, are demonstrated. These principles include the basic mechanisms, device sensitivity, bidirectionality of communication, and signal recovery. The demonstrations are conducted using mathematical and finite element analysis, physical experiments, and animal experiments. The fundamental concepts of the biofuel cells are presented, and three versions of the cells that have been studied are discussed, including bacteria-based cells and two white cell-based experiments. In this paper the authors summarize the proof or principal experiments for both a biomimetic data channel communication method and a biofuel cell approach, which promise to provide innovative platform technologies to support complex devices that will be ready for implantation in the human nervous system in the next decade.
Collapse
Affiliation(s)
- Robert J Sclabassi
- Department of Neurological Surgery, University of Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | |
Collapse
|
22
|
Adair ER, Blick DW, Allen SJ, Mylacraine KS, Ziriax JM, Scholl DM. Thermophysiological responses of human volunteers to whole body RF exposure at 220 MHz. Bioelectromagnetics 2005; 26:448-61. [PMID: 15906370 DOI: 10.1002/bem.20105] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Since 1994, our research has demonstrated how thermophysiological responses are mobilized in human volunteers exposed to three radio frequencies, 100, 450, and 2450 MHz. A significant gap in this frequency range is now filled by the present study, conducted at 220 MHz. Thermoregulatory responses of heat loss and heat production were measured in six adult volunteers (five males, one female, aged 24-63 years) during 45 min whole body dorsal exposures to 220 MHz radio frequency (RF) energy. Three power densities (PD = 9, 12, and 15 mW/cm(2) [1 mW/cm(2) = 10 W/m(2)], whole body average normalized specific absorption rate [SAR] = 0.045 [W/kg]/[mW/cm(2)] = 0.0045 [W/kg]/[W/m(2)]) were tested at each of three ambient temperatures (T(a) = 24, 28, and 31 degrees C) plus T(a) controls (no RF). Measured responses included esophageal (T(esoph)) and seven skin temperatures (T(sk)), metabolic rate (M), local sweat rate, and local skin blood flow (SkBF). Derived measures included heart rate (HR), respiration rate, and total evaporative water loss (EWL). Finite difference-time domain (FDTD) modeling of a seated 70 kg human exposed to 220 MHz predicted six localized "hot spots" at which local temperatures were also measured. No changes in M occurred under any test condition, while T(esoph) showed small changes (< or =0.35 degrees C) but never exceeded 37.3 degrees C. As with similar exposures at 100 MHz, local T(sk) changed little and modest increases in SkBF were recorded. At 220 MHz, vigorous sweating occurred at PD = 12 and 15 mW/cm(2), with sweating levels higher than those observed for equivalent PD at 100 MHz. Predicted "hot spots" were confirmed by local temperature measurements. The FDTD model showed the local SAR in deep neural tissues that harbor temperature-sensitive neurons (e.g., brainstem, spinal cord) to be greater at 220 than at 100 MHz. Human exposure at both 220 and 100 MHz results in far less skin heating than occurs during exposure at 450 MHz. However, the exposed subjects thermoregulate efficiently because of increased heat loss responses, particularly sweating. It is clear that these responses are controlled by neural signals from thermosensors deep in the brainstem and spinal cord, rather than those in the skin.
Collapse
|