1
|
Łapińska Z, Rembiałkowska N, Szewczyk A, Przystupski D, Drąg-Zalesińska M, Novickij V, Saczko J, Kulbacka J, Baczyńska D. The additive effect of 17β-estradiol on the modulation of electrochemotherapy with calcium ions or cisplatin in human clear carcinoma cells. Biomed Pharmacother 2024; 181:117708. [PMID: 39608316 DOI: 10.1016/j.biopha.2024.117708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024] Open
Abstract
Calcium electroporation (CaEP) is an efficient approach for ovarian cancer treatment. It causes cell death by introducing elevated levels of calcium into cells. In this work, the research focused on two types of cell lines: CHO-K1, representing normal ovary cells, and OvBH-1, representing ovarian clear carcinoma cells. Those cell lines exhibited distinct reactions to calcium electroporation (CaEP). Also, we have evaluated the effects of 17β-estradiol following CaEP and electrochemotherapy (ECT) with cisplatin (CPP). The combination of ECT with CPP and CaEP with prior E2 preincubation resulted in approximately 23.55 % and 39 % decreases in cell survival compared to the control cells (exposed to CPP and CaCl2 alone) for ovarian cancer cells. The obtained results showed that ovarian cancer cells preincubated with 17β-estradiol after exposure to pulsed electric fields undergo primary necrosis. Additionally, preincubation of ovarian cancer cells with 17β-estradiol can significantly improve the effectiveness of both chemotherapy and electrochemotherapy involving cisplatin and calcium chloride.
Collapse
Affiliation(s)
- Zofia Łapińska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw 50-556, Poland.
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw 50-556, Poland
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw 50-556, Poland; Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Vilnius LT-08406, Lithuania
| | - Dawid Przystupski
- Department of Pediatric Bone Marrow Transplantation, Oncology and Hematology, Wroclaw Medical University, Wroclaw 50-556, Poland
| | - Małgorzata Drąg-Zalesińska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland
| | - Vitalij Novickij
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Vilnius LT-08406, Lithuania; Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius LT-10105, Lithuania
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw 50-556, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw 50-556, Poland; Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Vilnius LT-08406, Lithuania.
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw 50-556, Poland
| |
Collapse
|
2
|
Salazar FMV, Arcila IDP. In silico study about the influence of electroporation parameters on the cellular internalization, spatial uniformity, and cytotoxic effects of chemotherapeutic drugs using the Method of Fundamental Solutions. Med Biol Eng Comput 2024; 62:713-749. [PMID: 37989990 DOI: 10.1007/s11517-023-02964-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
Reversible electroporation is a suitable technique to aid the internalization of medicaments in cancer tissues without inducing permanent cellular damage, allowing the enhancement of cytotoxic effects without incurring in electric-driven necrotic or apoptotic processes by the presence of non-reversible aqueous pores. An adequate selection of electroporation parameters acquires relevance to reach these goals and avoid opposite effects. This work applies the Method of Fundamental Solutions (MFS) for drug transport simulations in electroporated cancer tissues, using a continuum tumor cord approach and considering both electro-permeabilization and vasoconstriction effects. The MFS algorithm is validated with published results, obtaining satisfactory accuracy and convergence. Then, MFS simulations are executed to study the influence of electric field magnitude [Formula: see text], number of electroporation treatments [Formula: see text], and electroporation time [Formula: see text] on three assessment parameters of electrochemotherapy: the internationalization efficacy accounting for the ability of the therapy to introduce moles into viable cells, cell-kill capacity indicating the faculty to reduce the survival fraction of cancer cells, and distribution uniformity specifying the competence to supply drug homogeneously through the whole tissue domain. According to numerical results, when [Formula: see text] is the reversibility threshold, a positive influence on the first two parameters is only possible once specific values of [Formula: see text] and [Formula: see text] have been exceeded; when [Formula: see text] is just the irreversibility threshold, any combination of [Formula: see text] and [Formula: see text] is beneficial. On the other hand, the drug distribution uniformity is always adversely affected by the application of electric pulses, being this more noticeable as [Formula: see text], [Formula: see text], and [Formula: see text] increases.
Collapse
Affiliation(s)
- Fabián Mauricio Vélez Salazar
- Grupo de Investigación E Innovación Ambiental (GIIAM), Institución Universitaria Pascual Bravo, Cl. 73 No 73A-226 (Bloque 7), Medellín, Colombia
- Grupo de Investigación de Ciencias Administrativas, Instituto Tecnológico Metropolitano - ITM, Medellín, Colombia
| | - Iván David Patiño Arcila
- Grupo de Investigación E Innovación Ambiental (GIIAM), Institución Universitaria Pascual Bravo, Cl. 73 No 73A-226 (Bloque 7), Medellín, Colombia.
| |
Collapse
|
3
|
Gabay B, Levkov K, Berl A, Wise J, Shir-Az O, Vitkin E, Saulis G, Shalom A, Golberg A. Electroporation-Based Biopsy Treatment Planning with Numerical Models and Tissue Phantoms. Ann Biomed Eng 2024; 52:71-88. [PMID: 37154990 DOI: 10.1007/s10439-023-03208-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023]
Abstract
Molecular sampling with vacuum-assisted tissue electroporation is a novel, minimally invasive method for molecular profiling of solid lesions. In this paper, we report on the design of the battery-powered pulsed electric field generator and electrode configuration for an electroporation-based molecular sampling device for skin cancer diagnostics. Using numerical models of skin electroporation corroborated by the potato tissue phantom model, we show that the electroporated tissue volume, which is the maximum volume for biomarker sampling, strongly depends on the electrode's geometry, needle electrode skin penetration depths, and the applied pulsed electric field protocol. In addition, using excised human basal cell carcinoma (BCC) tissues, we show that diffusion of proteins out of human BCC tissues into water strongly depends on the strength of the applied electric field and on the time after the field application. The developed numerical simulations, confirmed by experiments in potato tissue phantoms and excised human cancer lesions, provide essential tools for the development of electroporation-based molecular markers sampling devices for personalized skin cancer diagnostics.
Collapse
Affiliation(s)
- Batel Gabay
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Klimentiy Levkov
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Berl
- Department of Plastic Surgery, Meir Medical Center, Kfar Sava, Israel
| | - Julia Wise
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ofir Shir-Az
- Department of Plastic Surgery, Meir Medical Center, Kfar Sava, Israel
| | - Edward Vitkin
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gintautas Saulis
- Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Avshalom Shalom
- Department of Plastic Surgery, Meir Medical Center, Kfar Sava, Israel
| | - Alexander Golberg
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
4
|
Jouni A, Baragona M, Pedersoli F, Ritter A. Temperature Distribution on Classical Two Needles IRE Setup Versus a Single Needle Prototype. Technol Cancer Res Treat 2024; 23:15330338241288342. [PMID: 39440388 PMCID: PMC11500228 DOI: 10.1177/15330338241288342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/20/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
OBJECTIVES Irreversible Electroporation (IRE) is a non-thermal minimally invasive cancer therapy used in the treatment of liver tumors. However, the therapy entails an electrical current flux which can be high enough to cause a noticeable temperature increase. Therefore, the analysis of the heat distribution is important: during any IRE treatment, the target area is intended to be treated with non-thermal effects, where existing thermal effects should not damage nearby sensitive structures. This article aims to compare the established two parallel needles electrode setup, used by FDA-approved electroporation delivering devices, to a single needle, multiple electrode prototype design. METHODS Levels and distributions of the temperature at different distances from the applicators during an IRE liver treatment were investigated. The prototype results were collated with already published in-vivo data. All electrode configurations were analyzed numerically in COMSOL Multiphysics for different pulse protocols. RESULTS The extension of coagulation necrosis predicted by the model matched available in-vivo data. While the maximum average temperature during pulsation was higher for the prototype (74 °C) than for the two-needle IRE setup (57 °C), the thickness of the coagulation necrosis around the conductive electrodes was in the same range for both configurations. However, the location differed completely: the necrosis engendered by the prototype was located inside the tumor, while the two-needle IRE setup created necrosis outside the tumor, potentially closer to sensitive structures. CONCLUSION The results highlighted the importance of heat distribution analysis for the design of new IRE needles as well as for IRE treatment planning. Proper analysis ensures that the non-thermal effects are maximized while minimizing any potential thermal damage to surrounding sensitive structures.
Collapse
Affiliation(s)
- Ali Jouni
- University Hospital RWTH Aachen, Clinic for Diagnostic and Interventional Radiology, Aachen, Germany
| | | | - Federico Pedersoli
- Imaging Institute of Italian Switzerland, Bellinzona Regional Hospital, San Giovanni, Switzerland
| | - Andreas Ritter
- University Hospital RWTH Aachen, Clinic for Diagnostic and Interventional Radiology, Aachen, Germany
| |
Collapse
|
5
|
Vélez Salazar FM, Patiño Arcila ID. Influence of electric field, blood velocity, and pharmacokinetics on electrochemotherapy efficiency. Biophys J 2023; 122:3268-3298. [PMID: 37421133 PMCID: PMC10465711 DOI: 10.1016/j.bpj.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/13/2023] [Accepted: 07/05/2023] [Indexed: 07/09/2023] Open
Abstract
The convective delivery of chemotherapeutic drugs in cancerous tissues is directly proportional to the blood perfusion rate, which in turns can be transiently reduced by the application of high-voltage and short-duration electric pulses due to vessel vasoconstriction. However, electric pulses can also increase vessel wall and cell membrane permeabilities, boosting the extravasation and cell internalization of drug. These opposite effects, as well as possible adverse impacts on the viability of tissues and endothelial cells, suggest the importance of conducting in silico studies about the influence of physical parameters involved in electric-mediated drug transport. In the present work, the global method of approximate particular solutions for axisymmetric domains, together with two solution schemes (Gauss-Seidel iterative and linearization+successive over-relaxation), is applied for the simulation of drug transport in electroporated cancer tissues, using a continuum tumor cord approach and considering both the electropermeabilization and vasoconstriction phenomena. The developed global method of approximate particular solutions algorithm is validated with numerical and experimental results previously published, obtaining a satisfactory accuracy and convergence. Then, a parametric study about the influence of electric field magnitude and inlet blood velocity on the internalization efficacy, drug distribution uniformity, and cell-kill capacity of the treatment, as expressed by the number of internalized moles into viable cells, homogeneity of exposure to bound intracellular drug, and cell survival fraction, respectively, is analyzed for three pharmacokinetic profiles, namely one-short tri-exponential, mono-exponential, and uniform. According to numerical results, the trade-off between vasoconstriction and electropermeabilization effects and, consequently, the influence of electric field magnitude and inlet blood velocity on the assessment parameters considered here (efficacy, uniformity, and cell-kill capacity) is different for each pharmacokinetic profile deemed.
Collapse
Affiliation(s)
| | - Iván David Patiño Arcila
- Grupo de Investigación e Innovación Ambiental (GIIAM), Institución Universitaria Pascual Bravo, Medellín, Colombia.
| |
Collapse
|
6
|
Sun C, Ma X, Zhou C, Zhang Z, Guo J. Irreversible Electroporation Combined With Dendritic Cell-based Vaccines for the Treatment of Osteosarcoma. Anticancer Res 2023; 43:3389-3400. [PMID: 37500144 PMCID: PMC11396544 DOI: 10.21873/anticanres.16514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 07/29/2023]
Abstract
Osteosarcoma is the most common primary bone malignancy, and surgical resection combined with neoadjuvant chemotherapy is the gold-standard treatment for affected patients. Although the overall survival rates for patients with osteosarcoma currently range from 60% to 70%, outcomes remain disappointing for patients with recurrent, metastatic, or unresectable disease. Irreversible electroporation (IRE) is a novel ablation technique with the potential to elicit an immune response in solid tumors. Dendritic cell (DC)-based tumor vaccines have shown promising therapeutic efficacy in preclinical studies focused on osteosarcoma; however, only limited therapeutic efficacy has been observed in clinical trials. Thus, there is considerable potential therapeutic value in developing combination osteosarcoma treatments that involve IRE and DC-based tumor vaccines. In this review, we discuss recent advances in preclinical and clinical DC-based immunotherapies, as well as potential combinations of DC-based vaccines and IRE, that may improve therapeutic outcomes for patients with osteosarcoma.
Collapse
Affiliation(s)
- Chong Sun
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Xuexiao Ma
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Chuanli Zhou
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Zhuoli Zhang
- Department of Radiological Sciences, University of California Irvine, Irvine, CA, U.S.A.;
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, U.S.A
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, U.S.A
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, U.S.A
| | - Jianwei Guo
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China;
| |
Collapse
|
7
|
Vélez Salazar FM, Patiño Arcila ID. Influence of electric pulse characteristics on the cellular internalization of chemotherapeutic drugs and cell survival fraction in electroporated and vasoconstricted cancer tissues using boundary element techniques. J Math Biol 2023; 87:31. [PMID: 37462802 DOI: 10.1007/s00285-023-01963-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/09/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023]
Abstract
Electroporation has emerged as a suitable technique to induce the pore formation in the cell membrane of cancer tissues, facilitating the cellular internalization of chemotherapeutic drugs. An adequate selection of the electric pulse characteristics is crucial to guarantee the efficiency of this technique, minimizing the adverse effects. In the present work, the dual reciprocity boundary element method (DR-BEM) is applied for the simulation of drug transport in the extracellular and intracellular space of cancer tissues subjected to the application of controlled electric pulses, using a continuum tumour cord approach, and considering both the electro-permeabilization and vasoconstriction phenomena. The developed DR-BEM algorithm is validated with numerical and experimental results previously published, obtaining a satisfactory accuracy and convergence. Using the DR-BEM code, a study about the influence of the magnitude of electric field (E) and pulse spacing (dpulses) on the time behavior and spatial distribution of the internalized drug, as well as on the cell survival fraction, is carried out. In general, the change of drug concentration, drug exposure and cell survival fraction with the parameters E and dpulses is ruled by two important factors: the balance between the electro-permeabilization and vasoconstriction phenomena, and the relative importance of the sources of cell death (electric pulses and drug cytotoxicity); these two factors, in turn, significantly depend on the reversible and irreversible thresholds considered for the electric field.
Collapse
Affiliation(s)
- Fabián Mauricio Vélez Salazar
- Grupo de Investigación e Innovación Ambiental (GIIAM), Institución Universitaria Pascual Bravo, Cl. 73 No 73A-226 (Bloque 7), Medellín, Colombia
- Grupo de Investigación de Ciencias Administrativas, Instituto Tecnológico Metropolitano - ITM, Medellín, Colombia
| | - Iván David Patiño Arcila
- Grupo de Investigación e Innovación Ambiental (GIIAM), Institución Universitaria Pascual Bravo, Cl. 73 No 73A-226 (Bloque 7), Medellín, Colombia.
| |
Collapse
|
8
|
Agnass P, Rodermond HM, van Veldhuisen E, Vogel JA, Ten Cate R, van Lienden KP, van Gulik TM, Franken NAP, Oei AL, Kok HP, Besselink MG, Crezee J. Quantitative analysis of contribution of mild and moderate hyperthermia to thermal ablation and sensitization of irreversible electroporation of pancreatic cancer cells. J Therm Biol 2023; 115:103619. [PMID: 37437370 DOI: 10.1016/j.jtherbio.2023.103619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/09/2023] [Accepted: 05/30/2023] [Indexed: 07/14/2023]
Abstract
INTRODUCTION Irreversible electroporation (IRE) is an ablation modality that applies short, high-voltage electric pulses to unresectable cancers. Although considered a non-thermal technique, temperatures do increase during IRE. This temperature rise sensitizes tumor cells for electroporation as well as inducing partial direct thermal ablation. AIM To evaluate the extent to which mild and moderate hyperthermia enhance electroporation effects, and to establish and validate in a pilot study cell viability models (CVM) as function of both electroporation parameters and temperature in a relevant pancreatic cancer cell line. METHODS Several IRE-protocols were applied at different well-controlled temperature levels (37 °C ≤ T ≤ 46 °C) to evaluate temperature dependent cell viability at enhanced temperatures in comparison to cell viability at T = 37 °C. A realistic sigmoid CVM function was used based on thermal damage probability with Arrhenius Equation and cumulative equivalent minutes at 43 °C (CEM43°C) as arguments, and fitted to the experimental data using "Non-linear-least-squares"-analysis. RESULTS Mild (40 °C) and moderate (46 °C) hyperthermic temperatures boosted cell ablation with up to 30% and 95%, respectively, mainly around the IRE threshold Eth,50% electric-field strength that results in 50% cell viability. The CVM was successfully fitted to the experimental data. CONCLUSION Both mild- and moderate hyperthermia significantly boost the electroporation effect at electric-field strengths neighboring Eth,50%. Inclusion of temperature in the newly developed CVM correctly predicted both temperature-dependent cell viability and thermal ablation for pancreatic cancer cells exposed to a relevant range of electric-field strengths/pulse parameters and mild moderate hyperthermic temperatures.
Collapse
Affiliation(s)
- P Agnass
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Surgery, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam, the Netherlands.
| | - H M Rodermond
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Experimental Molecular Medicine, Meibergdreef 9, Amsterdam, the Netherlands.
| | - E van Veldhuisen
- Amsterdam UMC Location University of Amsterdam, Surgery, Meibergdreef 9, Amsterdam, the Netherlands.
| | - J A Vogel
- Amsterdam UMC Location University of Amsterdam, Gastroenterology & Hepatology, Meibergdreef 9, Amsterdam, the Netherlands.
| | - R Ten Cate
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Experimental Molecular Medicine, Meibergdreef 9, Amsterdam, the Netherlands.
| | - K P van Lienden
- Department of Intervention Radiology, St. Antonius Hospital, Nieuwegein, the Netherlands.
| | - T M van Gulik
- Amsterdam UMC Location University of Amsterdam, Surgery, Meibergdreef 9, Amsterdam, the Netherlands.
| | - N A P Franken
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Experimental Molecular Medicine, Meibergdreef 9, Amsterdam, the Netherlands.
| | - A L Oei
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Experimental Molecular Medicine, Meibergdreef 9, Amsterdam, the Netherlands.
| | - H P Kok
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, the Netherlands.
| | - M G Besselink
- Amsterdam UMC Location University of Amsterdam, Surgery, Meibergdreef 9, Amsterdam, the Netherlands.
| | - J Crezee
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Treatment of cervical cancer by electrochemotherapy with bleomycin, cisplatin, and calcium: an in vitro experimental study. Med Oncol 2022; 40:52. [DOI: 10.1007/s12032-022-01921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
|
10
|
Han X, Zhang N, Zhang Y, Li Z, Wang Y, Mao L, He T, Li Q, Zhao J, Chen X, Li Y, Qin Z, Lv Y, Ren F. Survival model database of human digestive system cells exposed to electroporation pulses: An in vitro and in silico study. Front Public Health 2022; 10:948562. [PMID: 36133930 PMCID: PMC9484541 DOI: 10.3389/fpubh.2022.948562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/04/2022] [Indexed: 01/21/2023] Open
Abstract
Background and objectives This study aimed to establish a mathematical survival model database containing cell-specific coefficients from human digestive system cells exposed to electroporation pulses (EPs). Materials and methods A total of 20 types of human digestive system cell lines were selected to investigate the effect of EPs on cell viability. Cell viability was measured after exposure to various pulse settings, and a cell survival model was established using the Peleg-Fermi model. Next, the cell-specific coefficients of each cell line were determined. Results Cell viability tended to decrease when exposed to stronger electric field strength (EFS), longer pulse duration, and more pulse number, but the decreasing tendency varied among different cell lines. When exposed to a lower EFS (<1,000 V/cm), only a slight decrease in cell viability occurred. All cell lines showed a similar tendency: the extent of electrical injury (EI) increased with the increase in pulse number and duration. However, there existed differences in heat sensitivity among organs. Conclusions This database can be used for the application of electroporation-based treatment (EBT) in the digestive system to predict cell survival and tissue injury distribution during the treatment.
Collapse
Affiliation(s)
- Xuan Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Nana Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuchi Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhuoqun Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingxue Wang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lujing Mao
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tianshuai He
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qingshan Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiawen Zhao
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xue Chen
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yixuan Li
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zitong Qin
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fenggang Ren
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
11
|
Khorasani A. Automated irreversible electroporated region prediction using deep neural network, a preliminary study for treatment planning. Electromagn Biol Med 2022; 41:379-388. [PMID: 35989633 DOI: 10.1080/15368378.2022.2114493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The primary purpose of cancer treatment with irreversible electroporation (IRE) is to maximize tumor damage and minimize surrounding healthy tissue damage. Finite element analysis is one of the popular ways to calculate electric field and cell kill probability in IRE. However, this method also has limitations. This paper will focus on using a deep neural network (DNN) in IRE to predict irreversible electroporated regions for treatment planning purposes. COMSOL Multiphysics was used to simulate the IRE. The electric conductivity change during IRE was considered to create accurate data sets of electric field distribution and cell kill probability distributions. We used eight pulses with a pulse width of 100 μs, frequency of 1 Hz, and different voltages. To create masks for DNN training, a 90% cell kill probability contour was used. After data set creation, U-Net architecture was trained to predict irreversible electroporated regions. In this study, the average U-Net DICE coefficient on test data was 0.96. Also, the average accuracy of U-Net for predicting irreversible electroporated regions was 0.97. As far as we are aware, this is the first time that U-Net was used to predict an irreversible electroporated region in IRE. The present study provides significant evidence for U-Net's use for predicting an irreversible electroporated region in treatment planning.
Collapse
Affiliation(s)
- Amir Khorasani
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Perera-Bel E, Mercadal B, Garcia-Sanchez T, Gonzalez Ballester MA, Ivorra A. Modeling methods for treatment planning in overlapping electroporation treatments. IEEE Trans Biomed Eng 2021; 69:1318-1327. [PMID: 34559631 DOI: 10.1109/tbme.2021.3115029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Irreversible electroporation (IRE) is a non thermal tissue ablation therapy which is induced by applying high voltage waveforms across electrode pairs. When multiple electrode pairs are sequentially used, the treatment volume (TV) is typically computed as the geometric union of the TVs of individual pairs. However, this method neglects that some regions are exposed to overlapping treatments. Recently, a model describing cell survival probability was introduced which effectively predicted TV with overlapping fields in vivo. However, treatment overlap has yet to be quantified. This study characterizes TV overlap in a controlled in vitro setup with the two existing methods which are compared to an adapted logistic model proposed here. METHODS CHO cells were immobilized in agarose gel. Initially, we characterized the electric field threshold and the cell survival probability for overlapping treatments. Subsequently, we created a 2D setup where we compared and validated the accuracy of the different methods in predicting the TV. RESULTS Overlap can reduce the electric field threshold required to induce cell death, particularly for treatments with low pulse number. However, it does not have a major impact on TV in the models assayed here, and all the studied methods predict TV with similar accuracy. CONCLUSION Treatment overlap has a minor influence in the TV for typical protocols found in IRE therapies. SIGNIFICANCE This study provides evidence that the modeling method used in most pre-clinical and clinical studies seems adequate.
Collapse
|
13
|
Ding L, Moser M, Luo Y, Zhang W, Zhang B. Treatment Planning Optimization in Irreversible Electroporation for Complete Ablation of Variously Sized Cervical Tumors: A Numerical Study. J Biomech Eng 2021; 143:014503. [PMID: 34043747 DOI: 10.1115/1.4047551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Indexed: 01/04/2023]
Abstract
Irreversible electroporation (IRE), a relatively new energy-based tumor ablation technology, has shown itself in the last decade to be able to safely ablate tumors with favorable clinical outcomes, yet little work has been done on optimizing the IRE protocol to variously sized tumors. Incomplete tumor ablation has been shown to be the main reason leading to the local recurrence and thus treatment failure. The goal of this study was to develop a general optimization approach to optimize the IRE protocol for cervical tumors in different sizes, while minimizing the damage to normal tissues. This kind of approach can lay a foundation for future personalized treatment of IRE. First, a statistical IRE cervical tumor death model was built using previous data in our group. Then, a multi-objective optimization problem model was built, in which the decision variables are five IRE-setting parameters, namely, the pulse strength (U), the length of active tip (H), the number of pulses delivered in one round between a pair of electrodes (A), the distance between electrodes (D), and the number of electrodes (N). The domains of the decision variables were determined based on the clinical experience. Finally, the problem model was solved by using nondominated sorting genetic algorithms II (NSGA-II) algorithm to give respective optimal protocol for three sizes of cervical tumors. Every protocol was assessed by the evaluation criterion established in the study to show the efficacy in a more straightforward way. The results of the study demonstrate this approach can theoretically provide the optimal IRE protocol for different sizes of tumors and may be generalizable to other types, sizes, and locations of tumors.
Collapse
Affiliation(s)
- Lujia Ding
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Michael Moser
- Department of Surgery, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Yigang Luo
- Department of Surgery, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Wenjun Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Bing Zhang
- Energy-Based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| |
Collapse
|
14
|
Caluori G, Odehnalova E, Jadczyk T, Pesl M, Pavlova I, Valikova L, Holzinger S, Novotna V, Rotrekl V, Hampl A, Crha M, Cervinka D, Starek Z. AC Pulsed Field Ablation Is Feasible and Safe in Atrial and Ventricular Settings: A Proof-of-Concept Chronic Animal Study. Front Bioeng Biotechnol 2020; 8:552357. [PMID: 33344428 PMCID: PMC7744788 DOI: 10.3389/fbioe.2020.552357] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction Pulsed field ablation (PFA) exploits the delivery of short high-voltage shocks to induce cells death via irreversible electroporation. The therapy offers a potential paradigm shift for catheter ablation of cardiac arrhythmia. We designed an AC-burst generator and therapeutic strategy, based on the existing knowledge between efficacy and safety among different pulses. We performed a proof-of-concept chronic animal trial to test the feasibility and safety of our method and technology. Methods We employed 6 female swine - weight 53.75 ± 4.77 kg - in this study. With fluoroscopic and electroanatomical mapping assistance, we performed ECG-gated AC-PFA in the following settings: in the left atrium with a decapolar loop catheter with electrodes connected in bipolar fashion; across the interventricular septum applying energy between the distal electrodes of two tip catheters. After procedure and 4-week follow-up, the animals were euthanized, and the hearts were inspected for tissue changes and characterized. We perform finite element method simulation of our AC-PFA scenarios to corroborate our method and better interpret our findings. Results We applied square, 50% duty cycle, AC bursts of 100 μs duration, 100 kHz internal frequency, 900 V for 60 pulses in the atrium and 1500 V for 120 pulses in the septum. The inter-burst interval was determined by the native heart rhythm - 69 ± 9 bpm. Acute changes in the atrial and ventricular electrograms were immediately visible at the sites of AC-PFA - signals were elongated and reduced in amplitude (p < 0.0001) and tissue impedance dropped (p = 0.011). No adverse event (e.g., esophageal temperature rises or gas bubble streams) was observed - while twitching was avoided by addition of electrosurgical return electrodes. The implemented numerical simulations confirmed the non-thermal nature of our AC-PFA and provided specific information on the estimated treated area and need of pulse trains. The postmortem chest inspection showed no peripheral damage, but epicardial and endocardial discolorations at sites of ablation. T1-weighted scans revealed specific tissue changes in atria and ventricles, confirmed to be fibrotic scars via trichrome staining. We found isolated, transmural and continuous scars. A surviving cardiomyocyte core was visible in basal ventricular lesions. Conclusion We proved that our method and technology of AC-PFA is feasible and safe for atrial and ventricular myocardial ablation, supporting their systematic investigation into effectiveness evaluation for the treatment of cardiac arrhythmia. Further optimization, with energy titration or longer follow-up, is required for a robust atrial and ventricular AC-PFA.
Collapse
Affiliation(s)
- Guido Caluori
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac, France.,Univ. Bordeaux, INSERM, UMR 1045, Cardiothoracic Research Center of Bordeaux, Pessac, France
| | - Eva Odehnalova
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Tomasz Jadczyk
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
| | - Martin Pesl
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,First Department of Internal Medicine-Cardioangiology, St. Anne's University Hospital, Masaryk University, Brno, Czechia
| | - Iveta Pavlova
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czechia
| | - Lucia Valikova
- Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| | | | - Veronika Novotna
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,Department of Power Electrical and Electronic Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Vladimir Rotrekl
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Ales Hampl
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Michal Crha
- Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| | - Dalibor Cervinka
- Department of Power Electrical and Electronic Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Zdenek Starek
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,First Department of Internal Medicine-Cardioangiology, St. Anne's University Hospital, Masaryk University, Brno, Czechia
| |
Collapse
|
15
|
The dose-response characteristics of four NTCP models: using a novel CT-based radiomic method to quantify radiation-induced lung density changes. Sci Rep 2020; 10:10559. [PMID: 32601297 PMCID: PMC7324586 DOI: 10.1038/s41598-020-67499-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/26/2020] [Indexed: 12/25/2022] Open
Abstract
Multiple competing normal tissue complication probability (NTCP) models have been proposed for predicting symptomatic radiation-induced lung injury in human. In this paper we tested the efficacy of four common NTCP models applied quantitatively to sub-clinical X-ray computed tomography (CT)-density changes in the lung following radiotherapy. Radiotherapy planning datasets and follow-up chest CTs were obtained in eight patients treated for targets within the lung or hilar region. Image pixel-wise radiation dose exposure versus change in observable CT Hounsfield units was recorded for early (2-5 months) and late (6-9 months) time-points. Four NTCP models, Lyman, Logistic, Weibull and Poisson, were fit to the population data. The quality of fits was assessed by five statistical criteria. All four models fit the data significantly (p < 0.05) well at early, late and cumulative time points. The Lyman model fitted best for early effects while the Weibull Model fitted best for late effects. No significant difference was found between the fits of the models and with respect to parameters D50 and γ50. The D50 estimates were more robust than γ50 to image registration error. For analyzing population-based sub-clinical CT pixel intensity-based dose response, all four models performed well.
Collapse
|
16
|
A numerical study on the effect of conductivity change in cell kill distribution in irreversible electroporation. POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING 2020. [DOI: 10.2478/pjmpe-2020-0008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Introduction: irreversible electroporation (IRE) is a tissue ablation technique and physical process used to kill the undesirable cells. In the IRE process by mathematical modelling we can calculate the cell kill probability and distribution inside the tissue. The purpose of the study is to determine the influence of electric conductivity change in the IRE process into the cell kill probability and distribution.
Methods: cell death probability and electric conductivity were calculated with COMSOL Multiphysics software package. 8 pulses with a frequency of 1 Hz, pulse width of 100 µs and electric field intensity from 1000 to 3000 V/Cm with steps of 500 V/Cm used as electric pulses.
Results: significantly, the electrical conductivity of tissue will increase during the time of pulse delivery. According to our results, electrical conductivity increased with an electric field intensity of pulses. By considering the effect of conductivity change on cell kill probability, the cell kill probability and distribution will change.
Conclusion: we believe that considering the impact of electric conductivity change on the cell kill probability will improve the accuracy of treatment outcome in the clinic for treatment with IRE.
Collapse
|
17
|
Zhao Y, Zheng S, Beitel-White N, Liu H, Yao C, Davalos RV. Development of a Multi-Pulse Conductivity Model for Liver Tissue Treated With Pulsed Electric Fields. Front Bioeng Biotechnol 2020; 8:396. [PMID: 32509742 PMCID: PMC7248411 DOI: 10.3389/fbioe.2020.00396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/08/2020] [Indexed: 12/18/2022] Open
Abstract
Pulsed electric field treatment modalities typically utilize multiple pulses to permeabilize biological tissue. This electroporation process induces conductivity changes in the tissue, which are indicative of the extent of electroporation. In this study, we characterized the electroporation-induced conductivity changes using all treatment pulses instead of solely the first pulse as in conventional conductivity models. Rabbit liver tissue was employed to study the tissue conductivity changes caused by multiple, 100 μs pulses delivered through flat plate electrodes. Voltage and current data were recorded during treatment and used to calculate the tissue conductivity during the entire pulsing process. Temperature data were also recorded to quantify the contribution of Joule heating to the conductivity according to the tissue temperature coefficient. By fitting all these data to a modified Heaviside function, where the two turning points (E0, E1) and the increase factor (A) are the main parameters, we calculated the conductivity as a function of the electric field (E), where the parameters of the Heaviside function (A and E0) were functions of pulse number (N). With the resulting multi-factor conductivity model, a numerical electroporation simulation can predict the electrical current for multiple pulses more accurately than existing conductivity models. Moreover, the saturating behavior caused by electroporation can be explained by the saturation trends of the increase factor A in this model. The conductivity change induced by electroporation has a significant increase at about the first 30 pulses, then tends to saturate at 0.465 S/m. The proposed conductivity model can simulate the electroporation process more accurately than the conventional conductivity model. The electric field distribution computed using this model is essential for treatment planning in biomedical applications utilizing multiple pulsed electric fields, and the method proposed here, relating the pulse number to the conductivity through the variables in the Heaviside function, may be adapted to investigate the effect of other parameters, like pulse frequency and pulse width, on electroporation.
Collapse
Affiliation(s)
- Yajun Zhao
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States.,Bioelectromechanical Systems Laboratory, Virginia Tech, Blacksburg, VA, United States
| | - Shuang Zheng
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, China.,School of Electrical Engineering, Chongqing University, Chongqing, China
| | - Natalie Beitel-White
- Bioelectromechanical Systems Laboratory, Virginia Tech, Blacksburg, VA, United States.,Department of Electrical and Computer Engineering at Virginia Tech, Blacksburg, VA, United States
| | - Hongmei Liu
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, China.,School of Electrical Engineering, Chongqing University, Chongqing, China
| | - Chenguo Yao
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, China.,School of Electrical Engineering, Chongqing University, Chongqing, China
| | - Rafael V Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States.,Bioelectromechanical Systems Laboratory, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
18
|
Agnass P, van Veldhuisen E, van Gemert MJC, van der Geld CWM, van Lienden KP, van Gulik TM, Meijerink MR, Besselink MG, Kok HP, Crezee J. Mathematical modeling of the thermal effects of irreversible electroporation for in vitro, in vivo, and clinical use: a systematic review. Int J Hyperthermia 2020; 37:486-505. [DOI: 10.1080/02656736.2020.1753828] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Pierre Agnass
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Eran van Veldhuisen
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Martin J. C. van Gemert
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Cees W. M. van der Geld
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Krijn P. van Lienden
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Thomas M. van Gulik
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Martijn R. Meijerink
- Department of Radiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marc G. Besselink
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - H. Petra Kok
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Johannes Crezee
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Vélez Salazar FM, Patiño Arcila ID, Ruiz Villa CA. Simulation of the influence of voltage level and pulse spacing on the efficiency, aggressiveness and uniformity of the electroporation process in tissues using meshless techniques. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3304. [PMID: 31899585 DOI: 10.1002/cnm.3304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/14/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Electroporation is a widely used method consisting of application of high-voltage, short-duration electric pulses to increase cell membrane permeability, allowing cellular internalization of medications. In this work, the influence of two primary parameters, voltage level (V) and pulse spacing (N), on electroporation efficiency, uniformity and aggressiveness, as quantified by the total mass transport to viable cells, intracellular concentration gradients and an aggressiveness factor introduced here, is studied by means of numerical simulations of drug transport in electroporated tissues. The global method of approximate particular solutions (Global MAPS) is used to solve the governing equations, together with domain scaling, singular value decomposition and smoothing algorithms, to address the ill-conditioning of the final system and suppress small scale oscillations. The accuracy of Global MAPS is evaluated by comparing the initial extracellular concentration, Ce , and final intracellular concentration, Ci , with previous finite volume method results, obtaining similar behavior of Ce and Ci along the tissue domain, with some differences for Ci in high-gradient zones. According to the Global MAPS results, the influence of V and N on Ci is only significant over a certain range, within which the largest drug transport to viable cells occurs. In general, both electroporation efficiency and aggressiveness change in nonuniform manner with V and decrease with N, whereas the electroporation uniformity decreases as V increases and N decreases. The contour plots obtained here can be considered useful tools to compare electroporation-based treatments in terms of their efficiency, aggressiveness and uniformity, assisting in the selection of a suitable treatment plan for cancer.
Collapse
Affiliation(s)
- Fabián M Vélez Salazar
- Grupo de Investigación e Innovación Ambiental - GIIAM, Institución Universitaria Pascual Bravo - IU Pascual Bravo, Medellín, Colombia
- Grupo de Ciencias Administrativas, Instituto Tecnológico Metropolitano - ITM, Medellín, Colombia
| | - Iván D Patiño Arcila
- Grupo de Investigación e Innovación Ambiental - GIIAM, Institución Universitaria Pascual Bravo - IU Pascual Bravo, Medellín, Colombia
| | - Carlos A Ruiz Villa
- Centro de Investigación, Innovación, Desarrollo y Transferencia de Tecnología - CI2DT2, Universidad de Caldas, Manizales, Colombia
- Departamento de Informática y Computación, Universidad Nacional de Colombia, Manizales, Colombia
| |
Collapse
|
20
|
Ren F, Li Q, Gao X, Zhu K, Zhang J, Chen X, Yan X, Chu D, Hu L, Gao Z, Wu Z, Wu R, Lv Y. Electrical and thermal analyses of catheter-based irreversible electroporation of digestive tract. Int J Hyperthermia 2019; 36:854-867. [PMID: 31452435 DOI: 10.1080/02656736.2019.1646928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Fenggang Ren
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine and Regenerative Medicine and Surgical Engineering Research Center of Shaanxi Province, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qingshan Li
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine and Regenerative Medicine and Surgical Engineering Research Center of Shaanxi Province, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xuyao Gao
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi’an, China
| | - Kun Zhu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Jing Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine and Regenerative Medicine and Surgical Engineering Research Center of Shaanxi Province, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xue Chen
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine and Regenerative Medicine and Surgical Engineering Research Center of Shaanxi Province, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaopeng Yan
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine and Regenerative Medicine and Surgical Engineering Research Center of Shaanxi Province, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Dake Chu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine and Regenerative Medicine and Surgical Engineering Research Center of Shaanxi Province, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Gastroenterology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Liangshuo Hu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine and Regenerative Medicine and Surgical Engineering Research Center of Shaanxi Province, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhongquan Gao
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi’an, China
| | - Zheng Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine and Regenerative Medicine and Surgical Engineering Research Center of Shaanxi Province, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine and Regenerative Medicine and Surgical Engineering Research Center of Shaanxi Province, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine and Regenerative Medicine and Surgical Engineering Research Center of Shaanxi Province, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
21
|
Namula Z, Wittayarat M, Hirata M, Hirano T, Nguyen NT, Le QA, Fahrudin M, Tanihara F, Otoi T. Genome mutation after the introduction of the gene editing by electroporation of Cas9 protein (GEEP) system into bovine putative zygotes. In Vitro Cell Dev Biol Anim 2019; 55:598-603. [PMID: 31297696 DOI: 10.1007/s11626-019-00385-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/01/2019] [Indexed: 12/21/2022]
Abstract
The present study was designed to investigate the effects of voltage strength on embryonic developmental rate and mutation efficiency in bovine putative zygotes during electroporation with the CRISPR/Cas9 system to target the MSTN gene at different time points after insemination. Results showed that there was no significant interaction between electroporation time and voltage strength on the embryonic cleavage and blastocyst formation rates. However, increasing the voltage strength to 20 V/mm to electroporate the zygotes at 10 h after the start of insemination yielded significantly lower blastocyst formation rates (P < 0.05) than those of the 10-V/mm electroporated zygotes. Mutation efficiency was then assessed in individual blastocysts by DNA sequence analysis of the target sites in the MSTN gene. A positive correlation between mutation rate and voltage strength was observed. The mutation efficiency in mutant blastocysts was significantly higher in the zygotes electroporated with 20 V/mm at 10 h after the start of insemination (P < 0.05) than in the zygotes electroporated at 15 h, irrespective of the voltage strength. We also noted that a certain number of blastocysts from zygotes that were electroporated with more than 15 V/mm at 10 h (4.8-16.7%) and 20 V/mm at 15 h (4.8%) were biallelic mutants. Our results suggest that the voltage strength during electroporation as well as electroporation time certainly have effects on the embryonic developmental rate and mutation efficiency in bovine putative zygotes.
Collapse
Affiliation(s)
- Zhao Namula
- Faculty of Veterinary Science, Guangdong Ocean University, Zhanjiang, China
| | - Manita Wittayarat
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand
| | - Maki Hirata
- Faculty of Veterinary Science, Guangdong Ocean University, Zhanjiang, China.,Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Takayuki Hirano
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Nhien Thi Nguyen
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Quynh Anh Le
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Mokhamad Fahrudin
- Faculty of Veterinary Science, Bogor Agricultural University, Bogor, Indonesia
| | - Fuminori Tanihara
- Faculty of Veterinary Science, Guangdong Ocean University, Zhanjiang, China. .,Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan.
| | - Takeshige Otoi
- Faculty of Veterinary Science, Guangdong Ocean University, Zhanjiang, China.,Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| |
Collapse
|
22
|
Huang J, Ruse RB, Walcott GP, Litovsky S, Bohanan SJ, Gong DW, Kroll MW. Ascending Defibrillation Waveform Significantly Reduces Myocardial Morphological Damage and Injury Current. JACC Clin Electrophysiol 2019; 5:854-862. [PMID: 31320015 DOI: 10.1016/j.jacep.2019.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/19/2019] [Accepted: 04/17/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVES This study tested the hypothesis that a biphasic defibrillation waveform with an ascending first phase (ASC) causes less myocardial damage by pathology and injury current than a standard biphasic truncated exponential (BTE) waveform in a swine model. BACKGROUND Although lifesaving, defibrillation shocks have significant iatrogenic effects that reduce their benefit for patient survival. METHODS An ASC waveform with an 8-ms linear ramp followed by an additional positive 0.5-ms decaying portion with amplitudes of 20 J (ASC 20J) and 25 J (ASC 25J) was used. The control was a 25-J BTE conventional waveform (BTE 25J) RESULTS: The ASC 20J and ASC 25J shocks were both successful in 6 of 6 pigs, but the BTE 25J was successful in only 6 of 14 pigs (p < 0.05). Post-shock ST-segment elevation (injury current) in the right ventricular electrode was significantly greater with BTE 25J than with ASC 20J and ASC 25J. With a blinded pathology reading, hemorrhage, inflammation, thrombi, and necrosis 24 h post-shock were significantly greater with BTE 25J than with ASC 20J and ASC 25J. Troponin levels were also markedly lower at 3, 4, 5, and 6 h post-shock. CONCLUSIONS Defibrillation shocks cause electrophysiological, histological, and biochemical signs of myocardial damage and necrosis. These signs of damage are markedly less for an ASC waveform than for a conventional BTE waveform.
Collapse
Affiliation(s)
- Jian Huang
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Gregory P Walcott
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Silvio Litovsky
- Department of Medicine, Department of Pathology, University of Alabama at Birmingham, Alabama
| | | | - Da-Wei Gong
- School of Medicine, University of Maryland, Baltimore, Maryland
| | - Mark W Kroll
- Department of Biomedical Engineering, University of Minnesota Crystal Bay, Minnesota; Department of Biomedical Engineering, California Polytechnical University, San Luis Obispo, California.
| |
Collapse
|
23
|
Rubin AE, Usta OB, Schloss R, Yarmush M, Golberg A. Selective Inactivation of Pseudomonas aeruginosa and Staphylococcus epidermidis with Pulsed Electric Fields and Antibiotics. Adv Wound Care (New Rochelle) 2019; 8:136-148. [PMID: 31737412 DOI: 10.1089/wound.2018.0819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 10/15/2018] [Indexed: 01/17/2023] Open
Abstract
Objective: Increasing numbers of multidrug-resistant bacteria make many antibiotics ineffective; therefore, new approaches to combat microbial infections are needed. In addition, antibiotics are not selective-they kill pathogenic organisms as well as organisms that could positively contribute to wound healing (bio flora). Approach: Here we report on selective inactivation of Pseudomonas aeruginosa and Staphylococcus epidermidis, potential pathogens involved in wound infections with pulsed electric fields (PEFs) and antibiotics (mix of penicillin, streptomycin, and nystatin). Results: Using a Taguchi experimental design in vitro, we found that, under similar electric field strengths, the pulse duration is the most important parameter for P. aeruginosa inactivation, followed by the number of pulses and pulse frequency. P. aeruginosa, a potential severe pathogen, is more sensitive than the less pathogenic S. epidermidis to PEF (alone or in combination with antibiotics). Applying 200 pulses with a duration of 60 μs at 2.8 Hz, the minimum electric fields of 308.8 ± 28.3 and 378.4 ± 12.9 V/mm were required to inactive P. aeruginosa and S. epidermidis, respectively. Addition of antibiotics reduced the threshold for minimum electric fields required to inactivate the bacteria. Innovation: This study provides essential information, such as critical electric field parameters for bacteria inactivation, required for developing in vivo treatment and clinical protocols for using PEF for wound healing. Conclusion: A combination of PEFs with antibiotics reduces the electric field threshold required for bacteria disinfection. Such an approach simplifies devices required to disinfect large areas of infected wounds.
Collapse
Affiliation(s)
- Andrey Ethan Rubin
- Porter School of Environment and Earth Sciences, Tel Aviv University Ramat Aviv, Tel Aviv, Israel
| | - Osman Berk Usta
- Center for Engineering in Medicine, Massachusetts General Hospital Shriners Burn Hospital for Children and Harvard Medical School, Boston, Massachusetts
| | - Rene Schloss
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Martin Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital Shriners Burn Hospital for Children and Harvard Medical School, Boston, Massachusetts
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Alexander Golberg
- Porter School of Environment and Earth Sciences, Tel Aviv University Ramat Aviv, Tel Aviv, Israel
| |
Collapse
|
24
|
Dermol-Cerne J, Miklavcic D. From Cell to Tissue Properties-Modeling Skin Electroporation With Pore and Local Transport Region Formation. IEEE Trans Biomed Eng 2019; 65:458-468. [PMID: 29364121 DOI: 10.1109/tbme.2017.2773126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Current models of tissue electroporation either describe tissue with its bulk properties or include cell level properties, but model only a few cells of simple shapes in low-volume fractions or are in two dimensions. We constructed a three-dimensional model of realistically shaped cells in realistic volume fractions. By using a 'unit cell' model, the equivalent dielectric properties of whole tissue could be calculated. We calculated the dielectric properties of electroporated skin. We modeled electroporation of single cells by pore formation on keratinocytes and on the papillary dermis which gave dielectric properties of the electroporated epidermis and papillary dermis. During skin electroporation, local transport regions are formed in the stratum corneum. We modeled local transport regions and increase in their radii or density which affected the dielectric properties of the stratum corneum. The final model of skin electroporation accurately describes measured electric current and voltage drop on the skin during electroporation with long low-voltage pulses. The model also accurately describes voltage drop on the skin during electroporation with short high-voltage pulses. However, our results indicate that during application of short high-voltage pulses additional processes may occur which increase the electric current. Our model connects the processes occurring at the level of cell membranes (pore formation), at the level of a skin layer (formation of local transport region in the stratum corneum) with the tissue (skin layers) and even level of organs (skin). Using a similar approach, electroporation of any tissue can be modeled, if the morphology of the tissue is known.
Collapse
|
25
|
Sano MB, Fesmire CC, DeWitt MR, Xing L. Burst and continuous high frequency irreversible electroporation protocols evaluated in a 3D tumor model. ACTA ACUST UNITED AC 2018; 63:135022. [DOI: 10.1088/1361-6560/aacb62] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Yang Y, Moser MAJ, Zhang E, Zhang W, Zhang B. Development of a statistical model for cervical cancer cell death with irreversible electroporation in vitro. PLoS One 2018; 13:e0195561. [PMID: 29694357 PMCID: PMC5919048 DOI: 10.1371/journal.pone.0195561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/23/2018] [Indexed: 12/18/2022] Open
Abstract
PURPOSE The aim of this study was to develop a statistical model for cell death by irreversible electroporation (IRE) and to show that the statistic model is more accurate than the electric field threshold model in the literature using cervical cancer cells in vitro. METHODS HeLa cell line was cultured and treated with different IRE protocols in order to obtain data for modeling the statistical relationship between the cell death and pulse-setting parameters. In total, 340 in vitro experiments were performed with a commercial IRE pulse system, including a pulse generator and an electric cuvette. Trypan blue staining technique was used to evaluate cell death after 4 hours of incubation following IRE treatment. Peleg-Fermi model was used in the study to build the statistical relationship using the cell viability data obtained from the in vitro experiments. A finite element model of IRE for the electric field distribution was also built. Comparison of ablation zones between the statistical model and electric threshold model (drawn from the finite element model) was used to show the accuracy of the proposed statistical model in the description of the ablation zone and its applicability in different pulse-setting parameters. RESULTS The statistical models describing the relationships between HeLa cell death and pulse length and the number of pulses, respectively, were built. The values of the curve fitting parameters were obtained using the Peleg-Fermi model for the treatment of cervical cancer with IRE. The difference in the ablation zone between the statistical model and the electric threshold model was also illustrated to show the accuracy of the proposed statistical model in the representation of ablation zone in IRE. CONCLUSIONS This study concluded that: (1) the proposed statistical model accurately described the ablation zone of IRE with cervical cancer cells, and was more accurate compared with the electric field model; (2) the proposed statistical model was able to estimate the value of electric field threshold for the computer simulation of IRE in the treatment of cervical cancer; and (3) the proposed statistical model was able to express the change in ablation zone with the change in pulse-setting parameters.
Collapse
Affiliation(s)
- Yongji Yang
- Tumor Ablation Group, Complex and Intelligent Systems Research Center, East China University of Science and Technology, Shanghai, China
| | - Michael A. J. Moser
- Department of Surgery, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Edwin Zhang
- Division of Vascular & Interventional Radiology, Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Wenjun Zhang
- Tumor Ablation Group, Complex and Intelligent Systems Research Center, East China University of Science and Technology, Shanghai, China
| | - Bing Zhang
- Biomedical Science and Technology Research Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| |
Collapse
|
27
|
Novickij V, Švedienė J, Paškevičius A, Markovskaja S, Girkontaitė I, Zinkevičienė A, Lastauskienė E, Novickij J. Pulsed electric field-assisted sensitization of multidrug-resistant Candida albicans to antifungal drugs. Future Microbiol 2017; 13:535-546. [PMID: 29227694 DOI: 10.2217/fmb-2017-0245] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM Determine the influence of pH on the inactivation efficiency of Candida albicans in pulsed electric fields (PEF) and evaluate the possibilities for sensitization of a drug-resistant strain to antifungal drugs. MATERIALS & METHODS The effects of PEF (2.5-25 kVcm-1) with fluconazole, terbinafine and naftifine were analyzed at a pH range of 3.0-9.0. Membrane permeabilization was determined by flow cytometry and propidium iodide. RESULTS PEF induced higher inactivation of C. albicans at low pH and increased sensitivity to terbinafine and naftifine to which the strain was initially resistant. Up to 5 log reduction in cell survival was achieved. CONCLUSION A proof of concept that electroporation can be used to sensitize drug-resistant microorganisms was presented, which is promising for treating biofilm-associated infections.
Collapse
Affiliation(s)
- Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Naugarduko St 41, 03227 Vilnius, Lithuania
| | - Jurgita Švedienė
- Laboratory of Biodeterioration Research, Nature Research Centre, Akademijos St 2, 08412 Vilnius, Lithuania
| | - Algimantas Paškevičius
- Laboratory of Biodeterioration Research, Nature Research Centre, Akademijos St 2, 08412 Vilnius, Lithuania.,Laboratory of Microbiology of the Centre of Laboratory Medicine, Vilnius University Hospital Santariškių Clinics, Santariškių St 2, 08661 Vilnius, Lithuania
| | - Svetlana Markovskaja
- Laboratory of Mycology, Nature Research Centre, Žaliųjų ežerų St 49, 08406 Vilnius, Lithuania
| | - Irutė Girkontaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Santariškių St 5, 08406 Vilnius, Lithuania
| | - Auksė Zinkevičienė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Santariškių St 5, 08406 Vilnius, Lithuania
| | - Eglė Lastauskienė
- Department of Microbiology & Biotechnology, Vilnius University, Sauletekio al. 7, 10257 Vilnius, Lithuania
| | - Jurij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Naugarduko St 41, 03227 Vilnius, Lithuania
| |
Collapse
|
28
|
Anistropically varying conductivity in irreversible electroporation simulations. Theor Biol Med Model 2017; 14:20. [PMID: 29089031 PMCID: PMC5664922 DOI: 10.1186/s12976-017-0065-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/28/2017] [Indexed: 11/10/2022] Open
Abstract
Background One recent area of cancer research is irreversible electroporation (IRE). Irreversible electroporation is a minimally invasive procedure where needle electrodes are inserted into the body to ablate tumor cells with electricity. The aim of this paper is to propose a mathematical model that incorporates a tissue’s conductivity increasing more in the direction of the electrical field as this has been shown to occur in experiments. Method It was necessary to mathematically derive a valid form of the conductivity tensor such that it is dependent on the electrical field direction and can be easily implemented into numerical software. The derivation of a conductivity tensor that can take arbitrary functions for the conductivity in the directions tangent and normal to the electrical field is the main contribution of this paper. Numerical simulations were performed for isotropic-varying and anisotropic-varying conductivities to evaluate the importance of including the electrical field’s direction in the formulation for conductivity. Results By starting from previously published experimental results, this paper derived a general formulation for an anistropic-varying tensor for implementation into irreversible electroporation modeling software. The anistropic-varying tensor formulation allows the conductivity to take into consideration both electrical field direction and magnitude, as opposed to previous published works that only took into account electrical field magnitude. The anisotropic formulation predicts roughly a five percent decrease in ablation size for the monopolar simulation and approximately a ten percent decrease in ablation size for the bipolar simulations. This is a positive result as previously reported results found the isotropic formulation to overpredict ablation size for both monopolar and bipolar simulations. Furthermore, it was also reported that the isotropic formulation overpredicts the ablation size more for the bipolar case than the monopolar case. Thus, our results are following the experimental trend by having a larger percentage change in volume for the bipolar case than the monopolar case. Conclusions The predicted volume of ablated cells decreased, and could be a possible explanation for the slight over-prediction seen by isotropic-varying formulations.
Collapse
|
29
|
Predicting irreversible electroporation-induced tissue damage by means of magnetic resonance electrical impedance tomography. Sci Rep 2017; 7:10323. [PMID: 28871138 PMCID: PMC5583379 DOI: 10.1038/s41598-017-10846-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/15/2017] [Indexed: 02/07/2023] Open
Abstract
Irreversible electroporation (IRE) is gaining importance in routine clinical practice for nonthermal ablation of solid tumors. For its success, it is extremely important that the coverage and exposure time of the treated tumor to the electric field is within the specified range. Measurement of electric field distribution during the electroporation treatment can be achieved using magnetic resonance electrical impedance tomography (MREIT). Here, we show improved MREIT-enabled electroporation monitoring of IRE-treated tumors by predicting IRE-ablated tumor areas during IRE of mouse tumors in vivo. The in situ prediction is enabled by coupling MREIT with a corresponding Peleg-Fermi mathematical model to obtain more informative monitoring of IRE tissue ablation by providing cell death probability in the IRE-treated tumors. This technique can potentially be used in electroporation-based clinical applications, such as IRE tissue ablation and electrochemotherapy, to improve and assure the desired treatment outcome.
Collapse
|
30
|
Garcia PA, Kos B, Rossmeisl JH, Pavliha D, Miklavčič D, Davalos RV. Predictive therapeutic planning for irreversible electroporation treatment of spontaneous malignant glioma. Med Phys 2017; 44:4968-4980. [DOI: 10.1002/mp.12401] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 04/14/2017] [Accepted: 05/07/2017] [Indexed: 12/18/2022] Open
Affiliation(s)
- Paulo A. Garcia
- School of Biomedical Engineering and Sciences Virginia Tech – Wake Forest University Blacksburg VA 24061 USA
- Laboratory for Energy and Microsystems Innovation Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge MA 02142 USA
| | - Bor Kos
- Faculty of Electrical Engineering University of Ljubljana Trzaska 25 1000 Ljubljana Slovenia
| | - John H. Rossmeisl
- School of Biomedical Engineering and Sciences Virginia Tech – Wake Forest University Blacksburg VA 24061 USA
- Department of Small Animal Clinical Sciences Virginia‐Maryland Regional College of Veterinary Medicine Blacksburg VA 24060 USA
- Veterinary and Comparative Neuro‐oncology LaboratoryVirginia‐Maryland Regional College of Veterinary Medicine Blacksburg VA 24060 USA
| | - Denis Pavliha
- Faculty of Electrical Engineering University of Ljubljana Trzaska 25 1000 Ljubljana Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering University of Ljubljana Trzaska 25 1000 Ljubljana Slovenia
| | - Rafael V. Davalos
- School of Biomedical Engineering and Sciences Virginia Tech – Wake Forest University Blacksburg VA 24061 USA
| |
Collapse
|
31
|
Labarbera N. Uncertainty Quantification in Irreversible Electroporation Simulations. Bioengineering (Basel) 2017; 4:bioengineering4020041. [PMID: 28952520 PMCID: PMC5590475 DOI: 10.3390/bioengineering4020041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 12/18/2022] Open
Abstract
One recent area of cancer research is irreversible electroporation (IRE). Irreversible electroporation is a minimally invasive procedure where needle electrodes are inserted into the body to ablate tumor cells with electricity. The aim of this paper is to investigate how uncertainty in tissue and tumor conductivity propagate into final ablation predictions used for treatment planning. Two dimensional simulations were performed for a circular tumor surrounded by healthy tissue, and electroporated from two monopolar electrodes. The conductivity values were treated as random variables whose distributions were taken from published literature on the average and standard deviation of liver tissue and liver tumors. Three different Monte Carlo setups were simulated each at three different voltages. Average and standard deviation data was reported for a multitude of electrical field properties experienced by the tumor. Plots showing the variability in the electrical field distribution throughout the tumor are also presented.
Collapse
Affiliation(s)
- Nicholas Labarbera
- Engineering Science & Mechanics, The Pennsylvania State University, State College, PA 16801, USA.
| |
Collapse
|
32
|
Kostrzak A, Caval V, Escande M, Pliquet E, Thalmensi J, Bestetti T, Julithe M, Fiette L, Huet T, Wain-Hobson S, Langlade-Demoyen P. APOBEC3A intratumoral DNA electroporation in mice. Gene Ther 2016; 24:74-83. [PMID: 27858943 DOI: 10.1038/gt.2016.77] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 10/26/2016] [Accepted: 11/11/2016] [Indexed: 12/21/2022]
Abstract
Human APOBEC3A (A3A) cytidine deaminase shows pro-apoptotic properties resulting from hypermutation of genomic DNA, induction of double-stranded DNA breaks (DSBs) and G1 cell cycle arrest. Given this, we evaluated the antitumor efficacy of A3A by intratumoral electroporation of an A3A expression plasmid. DNA was repeatedly electroporated into B16OVA, B16Luc tumors of C57BL/6J mice as well as the aggressive fibrosarcoma Sarc2 tumor of HLA-A*0201/DRB1*0101 transgenic mice using noninvasive plate electrodes. Intratumoral electroporation of A3A plasmid DNA resulted in regression of ~50% of small B16OVA melanoma tumors that did not rebound in the following 2 months without treatment. Larger or more aggressive tumors escaped regression when so treated. As APOBEC3A was much less efficient in provoking hypermutation and DSBs in B16OVA cells compared with human or quail cells, it is likely that APOBEC3A would be more efficient in a human setting than in a mouse model.
Collapse
Affiliation(s)
- A Kostrzak
- Invectys, Pepinière Paris Biotech Santé Cochin, Paris, France
| | - V Caval
- Molecular Retrovirology Unit, Institut Pasteur, Paris, France
| | - M Escande
- Invectys, Pepinière Paris Biotech Santé Cochin, Paris, France
| | - E Pliquet
- Invectys, Pepinière Paris Biotech Santé Cochin, Paris, France
| | - J Thalmensi
- Invectys, Pepinière Paris Biotech Santé Cochin, Paris, France
| | - T Bestetti
- Invectys, Pepinière Paris Biotech Santé Cochin, Paris, France
| | - M Julithe
- Invectys, Pepinière Paris Biotech Santé Cochin, Paris, France
| | - L Fiette
- Human Histopathology and Animal Models, Infection & Epidemiology Department, Institut Pasteur, Paris, France.,Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
| | - T Huet
- Invectys, Pepinière Paris Biotech Santé Cochin, Paris, France
| | - S Wain-Hobson
- Invectys, Pepinière Paris Biotech Santé Cochin, Paris, France.,Molecular Retrovirology Unit, Institut Pasteur, Paris, France
| | - P Langlade-Demoyen
- Invectys, Pepinière Paris Biotech Santé Cochin, Paris, France.,Molecular Retrovirology Unit, Institut Pasteur, Paris, France
| |
Collapse
|
33
|
Rubinsky L, Guenther E, Mikus P, Stehling M, Rubinsky B. Electrolytic Effects During Tissue Ablation by Electroporation. Technol Cancer Res Treat 2016; 15:NP95-NP103. [PMID: 26323571 DOI: 10.1177/1533034615601549] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/22/2015] [Indexed: 11/17/2022] Open
Abstract
Nonthermal irreversible electroporation is a new tissue ablation technique that consists of applying pulsed electric fields across cells to induce cell death by creating permanent defects in the cell membrane. Nonthermal irreversible electroporation is of interest because it allows treatment near sensitive tissue structures such as blood vessels and nerves. Two recent articles report that electrolytic reaction products at electrodes can be combined with electroporation pulses to augment and optimize tissue ablation. Those articles triggered a concern that the results of earlier studies on nonthermal irreversible electroporation may have been tainted by unaccounted for electrolytic effects. The goal of this study was to reexamine previous studies on nonthermal irreversible electroporation in the context of these articles. The study shows that the results from some of the earlier studies on nonthermal irreversible electroporation were affected by unaccounted for electrolysis, in particular the research with cells in cuvettes. It also shows that tissue ablation ascribed in the past to irreversible electroporation is actually caused by at least 3 different cytotoxic effects: irreversible electroporation without electrolysis, irreversible electroporation combined with electrolysis, and reversible electroporation combined with electrolysis. These different mechanisms may affect cell and tissue ablation in different ways, and the effects may depend on various clinical parameters such as the polarity of the electrodes, the charge delivered (voltage, number, and length of pulses), and the distance of the target tissue from the electrodes. Current clinical protocols employ ever-increasing numbers of electroporation pulses to values that are now an order of magnitude larger than those used in our first fundamental nonthermal irreversible electroporation studies in tissues. The different mechanisms of cell death, and the effect of the clinical parameters on the mechanisms may explain discrepancies between results of different clinical studies and should be taken into consideration in the design of optimal electroporation ablation protocols.
Collapse
Affiliation(s)
| | | | | | - Michael Stehling
- Interscience, Luzern, Switzerland
- Boston University School of Medicine, MA, USA
| | | |
Collapse
|
34
|
Langus J, Kranjc M, Kos B, Šuštar T, Miklavčič D. Dynamic finite-element model for efficient modelling of electric currents in electroporated tissue. Sci Rep 2016; 6:26409. [PMID: 27211822 PMCID: PMC4876422 DOI: 10.1038/srep26409] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 05/03/2016] [Indexed: 12/18/2022] Open
Abstract
In silico experiments (numerical simulations) are a valuable tool for non-invasive research of the influences of tissue properties, electrode placement and electric pulse delivery scenarios in the process of electroporation. The work described in this article was aimed at introducing time dependent effects into a finite element model developed specifically for electroporation. Reference measurements were made ex vivo on beef liver samples and experimental data were used both as an initial condition for simulation (applied pulse voltage) and as a reference value for numerical model calibration (measured pulse current). The developed numerical model is able to predict the time evolution of an electric pulse current within a 5% error over a broad range of applied pulse voltages, pulse durations and pulse repetition frequencies. Given the good agreement of the current flowing between the electrodes, we are confident that the results of our numerical model can be used both for detailed in silico research of electroporation mechanisms (giving researchers insight into time domain effects) and better treatment planning algorithms, which predict the outcome of treatment based on both spatial and temporal distributions of applied electric pulses.
Collapse
Affiliation(s)
- J Langus
- C3M d.o.o., Technology park 21, SI-1000 Ljubljana, Slovenia
| | - M Kranjc
- University of Ljubljana, Faculty of Electrical Engineering, Laboratory of Biocybernetics, Tržaška 25, 1000 Ljubljana, Slovenia
| | - B Kos
- University of Ljubljana, Faculty of Electrical Engineering, Laboratory of Biocybernetics, Tržaška 25, 1000 Ljubljana, Slovenia
| | - T Šuštar
- C3M d.o.o., Technology park 21, SI-1000 Ljubljana, Slovenia
| | - D Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Laboratory of Biocybernetics, Tržaška 25, 1000 Ljubljana, Slovenia
| |
Collapse
|
35
|
Wendler JJ, Ganzer R, Hadaschik B, Blana A, Henkel T, Köhrmann KU, Machtens S, Roosen A, Salomon G, Sentker L, Witzsch U, Schlemmer HP, Baumunk D, Köllermann J, Schostak M, Liehr UB. Why we should not routinely apply irreversible electroporation as an alternative curative treatment modality for localized prostate cancer at this stage. World J Urol 2016; 35:11-20. [DOI: 10.1007/s00345-016-1838-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 04/22/2016] [Indexed: 01/05/2023] Open
|
36
|
van den Bos W, de Bruin DM, Jurhill RR, Savci-Heijink CD, Muller BG, Varkarakis IM, Skolarikos A, Zondervan PJ, Laguna-Pes MP, Wijkstra H, de Reijke TM, de la Rosette JJMCH. The correlation between the electrode configuration and histopathology of irreversible electroporation ablations in prostate cancer patients. World J Urol 2016; 34:657-64. [PMID: 26296371 PMCID: PMC4841841 DOI: 10.1007/s00345-015-1661-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/30/2015] [Indexed: 01/19/2023] Open
Abstract
PURPOSE Irreversible electroporation (IRE) is a novel minimally invasive therapy for prostate cancer using short electric pulses to ablate prostate tissue. The purpose of this study is to determine the IRE effects in prostate tissue and correlate electrode configuration with the histology of radical prostatectomy (RP) specimens. We hypothesize that the area within the electrode configuration is completely ablated and that the area within the electrode configuration is predictive for the ablated area after treatment. METHODS A prospective phase I/II study was conducted in 16 consecutive patients with histopathologically confirmed prostate cancer scheduled for RP. Focal or extended IRE treatment of the prostate was performed 4 weeks prior to RP. The locations of the electrodes were used to calculate the planned ablation zone. Following RP, the specimens were processed into whole-mount sections, histopathology (PA) was assessed and ablation zones were delineated. The area of the tissue alteration was determined by measuring the surface. The planned and the histological ablation zones were compared, analysed per individual patient and per protocol (focal vs. extended). RESULTS All cells within the electrode configuration were completely ablated and consisted only of necrotic and fibrotic tissue without leaving any viable cells. The histological ablation zone was always larger than the electrodes configuration (2.9 times larger for the 3 electrodes configuration and 2.5 times larger for the ≥4 electrode configuration). These ablation effects extended beyond the prostatic capsule in the neurovascular bundle in 13 out of 15 cases. CONCLUSIONS IRE in prostate cancer results in completely ablated, sharply demarcated lesions with a histological ablation zone beyond the electrode configuration. No skip lesions were observed within the electrode configuration. CLINICAL TRIALS ClinicalTrials.gov Identifier: NCT01790451 https://clinicaltrials.gov/ct2/show/NCT01790451.
Collapse
Affiliation(s)
- W van den Bos
- Department of Urology Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - D M de Bruin
- Department of Urology Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Biomedical Engineering and Physics. Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - R R Jurhill
- Department of Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - C D Savci-Heijink
- Department of Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - B G Muller
- Department of Urology Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - I M Varkarakis
- 2nd Department of Urology, Athens Medical University, University of Athens, Athens, Greece
| | - A Skolarikos
- 2nd Department of Urology, Athens Medical University, University of Athens, Athens, Greece
| | - P J Zondervan
- Department of Urology Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - M P Laguna-Pes
- Department of Urology Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - H Wijkstra
- Department of Urology Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - T M de Reijke
- Department of Urology Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - J J M C H de la Rosette
- Department of Urology Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Esmekaya MA, Kayhan H, Coskun A, Canseven AG. Effects of Cisplatin Electrochemotherapy on Human Neuroblastoma Cells. J Membr Biol 2016; 249:601-610. [PMID: 27021229 DOI: 10.1007/s00232-016-9891-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/19/2016] [Indexed: 10/22/2022]
Abstract
Electrochemotherapy is the usage of electroporation to introduce chemotherapeutic drugs through membrane pores into target cells for cancer treatment. The effectiveness of chemotherapeutic drugs would be increased dramatically when they are used in electrochemotherapy than standard chemotherapy. In the present study, we investigated the effects of cisplatin treatment with electroporation on human SH-SY5Y neuroblastoma cells. SH-SY5Y cells were treated with different concentrations (0.15-24 µg/mL) of cisplatin and then exposed to 1500 volts per centimeter (V/cm), 100 microseconds (µs) pulse duration, and 1 Hertz (Hz) electric pulses. Cisplatin alone showed a dose-dependent effect on cell viability. On the other hand, cisplatin + electroporation treatment was more effective than cisplatin treatment alone. Lower doses of cisplatin treatment with electroporation was as effective as higher doses of cisplatin treatment without electroporation. These results indicated that cisplatin cytotoxicity was potentiated after exposure of cells to high intensity electric pulses and low doses of cisplatin can be used with electroporation in the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Meric Arda Esmekaya
- Department of Biophysics, Faculty of Medicine, Gazi University, 06510, Beşevler, Ankara, Turkey.
| | - Handan Kayhan
- Department of Internal Medicine, Division of Hematology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Alaaddin Coskun
- Department of Biophysics, Faculty of Medicine, Gazi University, 06510, Beşevler, Ankara, Turkey
| | - Ayse G Canseven
- Department of Biophysics, Faculty of Medicine, Gazi University, 06510, Beşevler, Ankara, Turkey
| |
Collapse
|
38
|
Sharabi S, Kos B, Last D, Guez D, Daniels D, Harnof S, Mardor Y, Miklavcic D. A statistical model describing combined irreversible electroporation and electroporation-induced blood-brain barrier disruption. Radiol Oncol 2016; 50:28-38. [PMID: 27069447 PMCID: PMC4825337 DOI: 10.1515/raon-2016-0009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/03/2016] [Indexed: 12/11/2022] Open
Abstract
Background Electroporation-based therapies such as electrochemotherapy (ECT) and irreversible electroporation (IRE) are emerging as promising tools for treatment of tumors. When applied to the brain, electroporation can also induce transient blood-brain-barrier (BBB) disruption in volumes extending beyond IRE, thus enabling efficient drug penetration. The main objective of this study was to develop a statistical model predicting cell death and BBB disruption induced by electroporation. This model can be used for individual treatment planning. Material and methods Cell death and BBB disruption models were developed based on the Peleg-Fermi model in combination with numerical models of the electric field. The model calculates the electric field thresholds for cell kill and BBB disruption and describes the dependence on the number of treatment pulses. The model was validated using in vivo experimental data consisting of rats brains MRIs post electroporation treatments. Results Linear regression analysis confirmed that the model described the IRE and BBB disruption volumes as a function of treatment pulses number (r2 = 0.79; p < 0.008, r2 = 0.91; p < 0.001). The results presented a strong plateau effect as the pulse number increased. The ratio between complete cell death and no cell death thresholds was relatively narrow (between 0.88-0.91) even for small numbers of pulses and depended weakly on the number of pulses. For BBB disruption, the ratio increased with the number of pulses. BBB disruption radii were on average 67% ± 11% larger than IRE volumes. Conclusions The statistical model can be used to describe the dependence of treatment-effects on the number of pulses independent of the experimental setup.
Collapse
Affiliation(s)
| | - Bor Kos
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
| | - David Last
- The Advanced Technology Center, Sheba Medical Center, Ramat-Gan, Israel
| | - David Guez
- The Advanced Technology Center, Sheba Medical Center, Ramat-Gan, Israel
| | | | | | | | - Damijan Miklavcic
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
| |
Collapse
|
39
|
Golberg A, Rubinsky B. Towards electroporation based treatment planning considering electric field induced muscle contractions. Technol Cancer Res Treat 2015; 11:189-201. [PMID: 22335414 DOI: 10.7785/tcrt.2012.500249] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The electric field threshold for muscle contraction is two orders of magnitudes lower than that for electroporation. Current electroporation treatment planning and electrode design studies focus on optimizing the delivery of electroporation electric fields to the targeted tissue. The goal of one part of this study was to investigate the relation between the volumes of tissue that experience electroporation electric fields in a targeted tissue volume and the volumes of tissue that experience muscle contraction inducing electric fields around the electroporated tissue volume, (V(MC)), during standard electroporation procedures and for various electroporation electrodes designs. The numerical analysis shows that conventional electroporation protocols and electrode design can generate muscle contraction inducing electric fields in surprisingly large volumes of non-target tissue, around the electroporation treated tissue. In studying various electrode configurations, we found that electrode placement in a structure we refer to as a "Current Cage" can substantially reduce the volume of non-target tissue exposed to electric fields above the muscle contraction threshold. In an experimental study on a tissue phantom we compare a commercial two parallel needle electroporation system with the Current Cage design. While tissue electroporated volumes were similar, V(MC) of tissue treated using the Current Cage design electrodes was an order of magnitude smaller than that using a commercially available system. An important aspect of the entire study is that it suggests the benefit of including the calculations of V(MC) for planning of electroporation based treatments such as DNA vaccination, electrochemotherapy and irreversible electroporation.
Collapse
Affiliation(s)
- Alex Golberg
- Department of Mechanical Engineering, Etcheverry Hall, 6124, University of California at Berkeley, Berkeley, CA 94720, USA.
| | | |
Collapse
|
40
|
Dermol J, Miklavčič D. Mathematical Models Describing Chinese Hamster Ovary Cell Death Due to Electroporation In Vitro. J Membr Biol 2015. [PMID: 26223863 DOI: 10.1007/s00232-015-9825-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Electroporation is a phenomenon used in the treatment of tumors by electrochemotherapy, non-thermal ablation with irreversible electroporation, and gene therapy. When treating patients, either predefined or variable electrode geometry is used. Optimal pulse parameters are predetermined for predefined electrode geometry, while they must be calculated for each specific case for variable electrode geometry. The position and number of electrodes are also determined for each patient. It is currently assumed that above a certain experimentally determined value of electric field, all cells are permeabilized/destroyed and under it they are unaffected. In this paper, mathematical models of survival in which the probability of cell death is continuously distributed from 0 to 100 % are proposed and evaluated. Experiments were performed on cell suspensions using electrical parameters similar to standard electrochemotherapy and irreversible electroporation parameters. The proportion of surviving cells was determined using clonogenic assay for assessing the ability of a cell to grow into a colony. Various mathematical models (first-order kinetics, Hülsheger, Peleg-Fermi, Weibull, logistic, adapted Gompertz, Geeraerd) were fitted to experimental data using a non-linear least-squares method. The fit was evaluated by calculating goodness of fit and by observing the trend of values of models' parameters. The most appropriate models of cell survival as a function of treatment time were the adapted Gompertz and the Geeraerd models and, as a function of the electric field, the logistic, adapted Gompertz and Peleg-Fermi models. The next steps to be performed are validation of the most appropriate models on tissues and determination of the models' predictive power.
Collapse
Affiliation(s)
- Janja Dermol
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia
| | | |
Collapse
|
41
|
|
42
|
Effect of blood vessel segmentation on the outcome of electroporation-based treatments of liver tumors. PLoS One 2015; 10:e0125591. [PMID: 25941806 PMCID: PMC4420486 DOI: 10.1371/journal.pone.0125591] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/14/2015] [Indexed: 12/18/2022] Open
Abstract
Electroporation-based treatments rely on increasing the permeability of the cell membrane by high voltage electric pulses applied to tissue via electrodes. To ensure that the whole tumor is covered with sufficiently high electric field, accurate numerical models are built based on individual patient anatomy. Extraction of patient's anatomy through segmentation of medical images inevitably produces some errors. In order to ensure the robustness of treatment planning, it is necessary to evaluate the potential effect of such errors on the electric field distribution. In this work we focus on determining the effect of errors in automatic segmentation of hepatic vessels on the electric field distribution in electroporation-based treatments in the liver. First, a numerical analysis was performed on a simple 'sphere and cylinder' model for tumors and vessels of different sizes and relative positions. Second, an analysis of two models extracted from medical images of real patients in which we introduced variations of an error of the automatic vessel segmentation method was performed. The results obtained from a simple model indicate that ignoring the vessels when calculating the electric field distribution can cause insufficient coverage of the tumor with electric fields. Results of this study indicate that this effect happens for small (10 mm) and medium-sized (30 mm) tumors, especially in the absence of a central electrode inserted in the tumor. The results obtained from the real-case models also show higher negative impact of automatic vessel segmentation errors on the electric field distribution when the central electrode is absent. However, the average error of the automatic vessel segmentation did not have an impact on the electric field distribution if the central electrode was present. This suggests the algorithm is robust enough to be used in creating a model for treatment parameter optimization, but with a central electrode.
Collapse
|
43
|
Tissue heterogeneity in structure and conductivity contribute to cell survival during irreversible electroporation ablation by "electric field sinks". Sci Rep 2015; 5:8485. [PMID: 25684630 PMCID: PMC4329566 DOI: 10.1038/srep08485] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/07/2015] [Indexed: 12/18/2022] Open
Abstract
Irreversible electroporation (IRE) is an emerging, minimally invasive technique for solid tumors ablation, under clinical investigation for cancer therapy. IRE affects only the cell membrane, killing cells while preserving the extracellular matrix structure. Current reports indicate tumors recurrence rate after IRE averaging 31% of the cases, of which 10% are local recurrences. The mechanisms for these recurrences are not known and new explanations for incomplete cell death are needed. Using finite elements method for electric field distribution, we show that presence of vascular structures with blood leads to the redistribution of electric fields leading to the areas with more than 60% reduced electric field strength in proximity to large blood vessels and clustered vessel structures. In an in vivo rat model of liver IRE ablation, we show that cells located in the proximity of larger vessel structures and in proximity of clustered vessel structures appear less affected by IRE ablation than cells in the tissue parenchyma or in the proximity of small, more isolated vessels. These findings suggest a role for “electric field sinks” in local tumors recurrences after IRE and emphasize the importance of the precise mapping of the targeted organ structure and conductivity for planning of electroporation procedures.
Collapse
|
44
|
Mahnič-Kalamiza S, Vorobiev E, Miklavčič D. Electroporation in food processing and biorefinery. J Membr Biol 2014; 247:1279-304. [PMID: 25287023 DOI: 10.1007/s00232-014-9737-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/25/2014] [Indexed: 12/12/2022]
Abstract
Electroporation is a method of treatment of plant tissue that due to its nonthermal nature enables preservation of the natural quality, colour and vitamin composition of food products. The range of processes where electroporation was shown to preserve quality, increase extract yield or optimize energy input into the process is overwhelming, though not exhausted; e.g. extraction of valuable compounds and juices, dehydration, cryopreservation, etc. Electroporation is--due to its antimicrobial action--a subject of research as one stage of the pasteurization or sterilization process, as well as a method of plant metabolism stimulation. This paper provides an overview of electroporation as applied to plant materials and electroporation applications in food processing, a quick summary of the basic technical aspects on the topic, and a brief discussion on perspectives for future research and development in the field. The paper is a review in the very broadest sense of the word, written with the purpose of orienting the interested newcomer to the field of electroporation applications in food technology towards the pertinent, highly relevant and more in-depth literature from the respective subdomains of electroporation research.
Collapse
Affiliation(s)
- Samo Mahnič-Kalamiza
- Centre de Recherches de Royallieu, University of Technology of Compiègne, BP 20529, 60205, Compiègne Cedex, France,
| | | | | |
Collapse
|
45
|
Garcia PA, Davalos RV, Miklavcic D. A numerical investigation of the electric and thermal cell kill distributions in electroporation-based therapies in tissue. PLoS One 2014; 9:e103083. [PMID: 25115970 PMCID: PMC4130512 DOI: 10.1371/journal.pone.0103083] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/27/2014] [Indexed: 12/18/2022] Open
Abstract
Electroporation-based therapies are powerful biotechnological tools for enhancing the delivery of exogeneous agents or killing tissue with pulsed electric fields (PEFs). Electrochemotherapy (ECT) and gene therapy based on gene electrotransfer (EGT) both use reversible electroporation to deliver chemotherapeutics or plasmid DNA into cells, respectively. In both ECT and EGT, the goal is to permeabilize the cell membrane while maintaining high cell viability in order to facilitate drug or gene transport into the cell cytoplasm and induce a therapeutic response. Irreversible electroporation (IRE) results in cell kill due to exposure to PEFs without drugs and is under clinical evaluation for treating otherwise unresectable tumors. These PEF therapies rely mainly on the electric field distributions and do not require changes in tissue temperature for their effectiveness. However, in immediate vicinity of the electrodes the treatment may results in cell kill due to thermal damage because of the inhomogeneous electric field distribution and high current density during the electroporation-based therapies. Therefore, the main objective of this numerical study is to evaluate the influence of pulse number and electrical conductivity in the predicted cell kill zone due to irreversible electroporation and thermal damage. Specifically, we simulated a typical IRE protocol that employs ninety 100-µs PEFs. Our results confirm that it is possible to achieve predominant cell kill due to electroporation if the PEF parameters are chosen carefully. However, if either the pulse number and/or the tissue conductivity are too high, there is also potential to achieve cell kill due to thermal damage in the immediate vicinity of the electrodes. Therefore, it is critical for physicians to be mindful of placement of electrodes with respect to critical tissue structures and treatment parameters in order to maintain the non-thermal benefits of electroporation and prevent unnecessary damage to surrounding healthy tissue, critical vascular structures, and/or adjacent organs.
Collapse
Affiliation(s)
- Paulo A. Garcia
- Bioelectromechanical Systems Laboratory, Virginia Tech – Wake Forest University, Blacksburg, Virginia, United States of America
| | - Rafael V. Davalos
- Bioelectromechanical Systems Laboratory, Virginia Tech – Wake Forest University, Blacksburg, Virginia, United States of America
| | - Damijan Miklavcic
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
| |
Collapse
|
46
|
Yarmush ML, Golberg A, Serša G, Kotnik T, Miklavčič D. Electroporation-Based Technologies for Medicine: Principles, Applications, and Challenges. Annu Rev Biomed Eng 2014; 16:295-320. [DOI: 10.1146/annurev-bioeng-071813-104622] [Citation(s) in RCA: 519] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Martin L. Yarmush
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School and Shriners Burn Hospital for Children, Boston, Massachusetts 02114; email (M.L.Y.):
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854;
| | - Alexander Golberg
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School and Shriners Burn Hospital for Children, Boston, Massachusetts 02114; email (M.L.Y.):
| | - Gregor Serša
- Department of Experimental Oncology, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Tadej Kotnik
- Department of Biomedical Engineering, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Damijan Miklavčič
- Department of Biomedical Engineering, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
47
|
Jourabchi N, Beroukhim K, Tafti BA, Kee ST, Lee EW. Irreversible electroporation (NanoKnife) in cancer treatment. GASTROINTESTINAL INTERVENTION 2014. [DOI: 10.1016/j.gii.2014.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
Planning irreversible electroporation in the porcine kidney: are numerical simulations reliable for predicting empiric ablation outcomes? Cardiovasc Intervent Radiol 2014; 38:182-90. [PMID: 24831827 DOI: 10.1007/s00270-014-0905-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 04/02/2014] [Indexed: 12/16/2022]
Abstract
PURPOSE Numerical simulations are used for treatment planning in clinical applications of irreversible electroporation (IRE) to determine ablation size and shape. To assess the reliability of simulations for treatment planning, we compared simulation results with empiric outcomes of renal IRE using computed tomography (CT) and histology in an animal model. METHODS The ablation size and shape for six different IRE parameter sets (70-90 pulses, 2,000-2,700 V, 70-100 µs) for monopolar and bipolar electrodes was simulated using a numerical model. Employing these treatment parameters, 35 CT-guided IRE ablations were created in both kidneys of six pigs and followed up with CT immediately and after 24 h. Histopathology was analyzed from postablation day 1. RESULTS Ablation zones on CT measured 81 ± 18 % (day 0, p ≤ 0.05) and 115 ± 18 % (day 1, p ≤ 0.09) of the simulated size for monopolar electrodes, and 190 ± 33 % (day 0, p ≤ 0.001) and 234 ± 12 % (day 1, p ≤ 0.0001) for bipolar electrodes. Histopathology indicated smaller ablation zones than simulated (71 ± 41 %, p ≤ 0.047) and measured on CT (47 ± 16 %, p ≤ 0.005) with complete ablation of kidney parenchyma within the central zone and incomplete ablation in the periphery. CONCLUSION Both numerical simulations for planning renal IRE and CT measurements may overestimate the size of ablation compared to histology, and ablation effects may be incomplete in the periphery.
Collapse
|
49
|
Zhang Z, Li W, Procissi D, Tyler P, Omary RA, Larson AC. Rapid dramatic alterations to the tumor microstructure in pancreatic cancer following irreversible electroporation ablation. Nanomedicine (Lond) 2013; 9:1181-92. [PMID: 24024571 DOI: 10.2217/nnm.13.72] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM NanoKnife(®) (Angiodynamics, Inc., NY, USA) or irreversible electroporation (IRE) is a newly available ablation technique to induce the formation of nanoscale pores within the cell membrane in targeted tissues. The purpose of this study was to elucidate morphological alterations following 30 min of IRE ablation in a mouse model of pancreatic cancer. MATERIALS & METHODS Immunohistochemistry markers were compared with diffusion-weighted MRI apparent diffusion coefficient measurements before and after IRE ablation. RESULTS Immunohistochemistry apoptosis index measurements were significantly higher in IRE-treated tumors than in controls. Rapid tissue alterations after 30 min of IRE ablation procedures (structural and morphological alterations along with significantly elevated apoptosis markers) were consistently observed and well correlated to apparent diffusion coefficient measurements. DISCUSSION This imaging assay offers the potential to serve as an in vivo biomarker for noninvasive detection of tumor response following IRE ablation.
Collapse
Affiliation(s)
- Zhuoli Zhang
- Department of Radiology, Northwestern University, 737 N. Michigan Avenue, 16th Floor, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
50
|
Golberg A, Bei M, Sheridan RL, Yarmush ML. Regeneration and control of human fibroblast cell density by intermittently delivered pulsed electric fields. Biotechnol Bioeng 2013; 110:1759-68. [DOI: 10.1002/bit.24831] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 12/20/2022]
|