1
|
Ofner H, Kramer G, Shariat SF, Hassler MR. TP53 Deficiency in the Natural History of Prostate Cancer. Cancers (Basel) 2025; 17:645. [PMID: 40002239 PMCID: PMC11853097 DOI: 10.3390/cancers17040645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Prostate cancer remains a leading cause of cancer-related mortality in men, with advanced stages posing significant treatment challenges due to high morbidity and mortality. Among genetic alterations, TP53 mutations are among the most prevalent in cancers and are strongly associated with poor clinical outcomes and therapeutic resistance. This review investigates the role of TP53 mutations in prostate cancer progression, prognosis, and therapeutic development. A comprehensive analysis of preclinical and clinical studies was conducted to elucidate the molecular mechanisms, clinical implications, and potential therapeutic approaches associated with TP53 alterations in prostate cancer. TP53 mutations are highly prevalent in advanced stages, contributing to genomic instability, aggressive tumor phenotypes, and resistance to standard treatments. Emerging evidence supports the utility of liquid biopsy techniques, such as circulating tumor DNA analysis, for detecting TP53 mutations, providing prognostic value and facilitating early intervention strategies. Novel therapeutic approaches targeting TP53 have shown promise in preclinical settings, but their clinical efficacy requires further validation. Overall, TP53 mutations represent a critical biomarker for disease progression and therapeutic response in prostate cancer. Advances in detection methods and targeted therapies hold significant potential to improve outcomes for patients with TP53-mutated prostate cancer. Further research is essential to integrate TP53-based strategies into routine clinical practice.
Collapse
Affiliation(s)
- Heidemarie Ofner
- Department of Urology, Medical University of Vienna, 1090 Vienna, Austria; (H.O.); (G.K.); (S.F.S.)
| | - Gero Kramer
- Department of Urology, Medical University of Vienna, 1090 Vienna, Austria; (H.O.); (G.K.); (S.F.S.)
| | - Shahrokh F. Shariat
- Department of Urology, Medical University of Vienna, 1090 Vienna, Austria; (H.O.); (G.K.); (S.F.S.)
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman 19328, Jordan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Urology, Second Faculty of Medicine, Charles University, 150 06 Prague, Czech Republic
- Department of Urology, Weill Cornell Medical College, New York, NY 10065, USA
- Karl Landsteiner Institute of Urology and Andrology, 1090 Vienna, Austria
| | - Melanie R. Hassler
- Department of Urology, Medical University of Vienna, 1090 Vienna, Austria; (H.O.); (G.K.); (S.F.S.)
| |
Collapse
|
2
|
Andrysik Z, Espinosa JM. Harnessing p53 for targeted cancer therapy: new advances and future directions. Transcription 2025; 16:3-46. [PMID: 40031988 PMCID: PMC11970777 DOI: 10.1080/21541264.2025.2452711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 03/05/2025] Open
Abstract
The transcription factor p53 is the most frequently impaired tumor suppressor in human cancers. In response to various stress stimuli, p53 activates transcription of genes that mediate its tumor-suppressive functions. Distinctive characteristics of p53 outlined here enable a well-defined program of genes involved in cell cycle arrest, apoptosis, senescence, differentiation, metabolism, autophagy, DNA repair, anti-viral response, and anti-metastatic functions, as well as facilitating autoregulation within the p53 network. This versatile, anti-cancer network governed chiefly by a single protein represents an immense opportunity for targeted cancer treatment, since about half of human tumors retain unmutated p53. During the last two decades, numerous compounds have been developed to block the interaction of p53 with the main negative regulator MDM2. However, small molecule inhibitors of MDM2 only induce a therapeutically desirable apoptotic response in a limited number of cancer types. Moreover, clinical trials of the MDM2 inhibitors as monotherapies have not met expectations and have revealed hematological toxicity as a characteristic adverse effect across this drug class. Currently, combination treatments are the leading strategy for enhancing efficacy and reducing adverse effects of MDM2 inhibitors. This review summarizes efforts to identify and test therapeutics that work synergistically with MDM2 inhibitors. Two main types of drugs have emerged among compounds used in the following combination treatments: first, modulators of the p53-regulated transcriptome (including chromatin modifiers), translatome, and proteome, and second, drugs targeting the downstream pathways such as apoptosis, cell cycle arrest, DNA repair, metabolic stress response, immune response, ferroptosis, and growth factor signaling. Here, we review the current literature in this field, while also highlighting overarching principles that could guide target selection in future combination treatments.
Collapse
Affiliation(s)
- Zdenek Andrysik
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joaquin M. Espinosa
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
3
|
Wang C, Chang R, Li J, Li L. TRIM47 silencing inhibits the malignant biological behaviors of prostate cancer cells by regulating MDM2/p53 signaling. Cell Biochem Biophys 2024; 82:1567-1578. [PMID: 38802602 DOI: 10.1007/s12013-024-01308-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Prostate cancer (PCa) is a prevalent male malignancy globally. Tripartite motif 47 (TRIM47) has been reported to be associated with PCa. However, how TRIM47 acts on PCa is still incompletely understood. Here, we explored the biological roles of TRIM47 in PCa cells and investigated its potential regulatory mechanism. TRIM47 expression in PCa cells was detected by qRT-PCR and western blot. After TRIM47 silencing, the viability of PCa cells was measured using CCK-8 method. Flow cytometry was employed to estimate cell cycle. Cell apoptotic level was subjected to appraisement with TUNEL assay. Additionally, wound healing- and transwell assays were adopted for evaluation of migration and invasion of PCa cells. Moreover, the Biogrid database and HDOCK SERVER predicated that TRIM47 could interact with mouse double minute 2 (MDM2), which was detected using the Co-immunoprecipitation (co-IP) assay and glutathione S-transferase (GST) pull-down assay. The expression of proteins in MDM2/p53 signaling was detected by western blot analysis. Results indicated that TRIM47 expression was highly expressed in PCa cells. TRIM47 knockdown inhibited PCa proliferation and cell cycle whereas promoted cell apoptosis. Besides, TRIM47 knockdown significantly inhibited the migration and invasion of PCa cells. In addition, TRIM47 was proved to bind to MDM2 and regulated MDM2/p53 expression. Importantly, MDM2 overexpression counteracted the impacts of TRIM47 knockdown on cell viability, cell cycle, apoptosis, migration and invasion by regulating the MDM2/p53 pathway. Collectively, our results suggested that TRIM47 silencing inhibits the malignant biological behaviors of prostate cancer cells by regulating MDM2/p53 signaling, which may provide a novel therapeutic target for PCa treatment.
Collapse
Affiliation(s)
- Chengyong Wang
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, 233000, Anhui Province, China.
| | - Rui Chang
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, 233000, Anhui Province, China
| | - Jian Li
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, 233000, Anhui Province, China
| | - Liqiang Li
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, 233000, Anhui Province, China
| |
Collapse
|
4
|
Ben-Eltriki M, Shankar G, Tomlinson Guns ES, Deb S. Pharmacokinetics and pharmacodynamics of Rh2 and aPPD ginsenosides in prostate cancer: a drug interaction perspective. Cancer Chemother Pharmacol 2023; 92:419-437. [PMID: 37709921 DOI: 10.1007/s00280-023-04583-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Ginsenoside Rh2 and its aglycon (aPPD) are one of the major metabolites from Panax ginseng. Preclinical studies suggest that Rh2 and aPPD have antitumor effects in prostate cancer (PCa). Our aims in this review are (1) to describe the pharmacokinetic (PK) properties of Rh2 and aPPD ginsenosides; 2) to provide an overview of the preclinical findings on the use of Rh2 and aPPD in the treatment of PCa; and (3) to highlight the mechanisms of its PK and pharmacodynamic (PD) drug interactions. Increasing evidence points to the potential efficacy of Rh2 or aPPD for PCa treatment. Based on the laboratory studies, Rh2 or aPPD combinations revealed an additive or synergistic interaction or enhanced sensitivity of anticancer drugs toward PCa. This review reveals that enhanced anticancer activities were demonstrated in preclinical studies through interactions of Rh2 and/or aPPD with the proteins related to PK (e.g., cytochrome P450 enzymes, transporters) or PD of the other anticancer drugs or PCa signaling pathways. In conclusion, combining Rh2 or aPPD with anti-prostate cancer drugs leads to PK or PD interactions which could facilitate either therapeutically beneficial or toxic effects.
Collapse
Affiliation(s)
- Mohamed Ben-Eltriki
- The Vancouver Prostate Centre at Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
- Cochrane Hypertension Review Group, Therapeutic Initiative, University of British Columbia, Vancouver, BC, Canada.
- Community Pharmacist, Vancouver Area, BC, Canada.
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
| | - Gehana Shankar
- The Vancouver Prostate Centre at Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Emma S Tomlinson Guns
- The Vancouver Prostate Centre at Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Subrata Deb
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, 33169, USA.
| |
Collapse
|
5
|
Li J, Wang Z, Li H, Cao J, Nan N, Zhai X, Liu Y, Chong T. Resveratrol inhibits TRAF6/PTCH/SMO signal and regulates prostate cancer progression. Cytotechnology 2022; 74:549-558. [PMID: 36238265 PMCID: PMC9525528 DOI: 10.1007/s10616-022-00544-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/10/2022] [Indexed: 11/03/2022] Open
Abstract
Prostate cancer (PC) is one of the most common types of cancers among men, referring to the uncontrolled growth of the prostate gland. It is increasingly recognized that the interaction of the glioma-associated oncogene (GLI) pathway and androgen receptor affects PC progression. Nevertheless, the effects of resveratrol on PC progression via Hedgehog (HH) signaling remain unexplored. In this study, the castration-sensitive and castration-resistant xenograft models in mice are systematically established using two different PC cell lines (LNCaP and PC-3). Further, the Western blotting, immunohistochemistry, MTT, Transwell, and RT-qPCR analyses are performed to verify the mechanistic views of resveratrol on PC and HH signals in vitro and in vivo. Resveratrol showed epithelial-mesenchymal transition (EMT) progression, inhibiting the tumor size and expression levels of vimentin, vascular endothelial growth factor (VEGF), and matrix metalloproteinases (MMP) 7, as well as upregulating the expression profiles the E-cadherin and Annexin 2. Moreover, resveratrol inhibited the hedgehog (HH) signals and tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) levels exhibiting the therapeutic action on castration-sensitive and castration-resistant PC cell lines. In summary, the overexpression of TRAF6 enhanced the viability and EMT progression of cancer cells. The resveratrol could alleviate the TRAF6 effect and regulate the HH signal to affect PC progression. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-022-00544-0.
Collapse
Affiliation(s)
- Jianping Li
- Department of Urology, The Second Affiliated Hospital of Xi’an Jiaotong University, No. 157, Xiwu Road, Xincheng Road, Xi’an, 710004 Shanxi People’s Republic of China
| | - Ziming Wang
- Department of Urology, The Second Affiliated Hospital of Xi’an Jiaotong University, No. 157, Xiwu Road, Xincheng Road, Xi’an, 710004 Shanxi People’s Republic of China
| | - Hecheng Li
- Department of Urology, The Second Affiliated Hospital of Xi’an Jiaotong University, No. 157, Xiwu Road, Xincheng Road, Xi’an, 710004 Shanxi People’s Republic of China
| | - Jun Cao
- Department of Urology, The Second Affiliated Hospital of Xi’an Jiaotong University, No. 157, Xiwu Road, Xincheng Road, Xi’an, 710004 Shanxi People’s Republic of China
| | - Ning Nan
- Department of Urology, The Second Affiliated Hospital of Xi’an Jiaotong University, No. 157, Xiwu Road, Xincheng Road, Xi’an, 710004 Shanxi People’s Republic of China
| | - Xiaoqiang Zhai
- Department of Urology, The Second Affiliated Hospital of Xi’an Jiaotong University, No. 157, Xiwu Road, Xincheng Road, Xi’an, 710004 Shanxi People’s Republic of China
| | - Ying Liu
- Department of Urology, The Second Affiliated Hospital of Xi’an Jiaotong University, No. 157, Xiwu Road, Xincheng Road, Xi’an, 710004 Shanxi People’s Republic of China
| | - Tie Chong
- Department of Urology, The Second Affiliated Hospital of Xi’an Jiaotong University, No. 157, Xiwu Road, Xincheng Road, Xi’an, 710004 Shanxi People’s Republic of China
| |
Collapse
|
6
|
Xie K, Tan K, Naylor MJ. Transcription Factors as Novel Therapeutic Targets and Drivers of Prostate Cancer Progression. Front Oncol 2022; 12:854151. [PMID: 35547880 PMCID: PMC9082354 DOI: 10.3389/fonc.2022.854151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/23/2022] [Indexed: 11/24/2022] Open
Abstract
Prostate cancer is the second most diagnosed cancer among men worldwide. Androgen deprivation therapy, the most common targeted therapeutic option, is circumvented as prostate cancer progresses from androgen dependent to castrate-resistant disease. Whilst the nuclear receptor transcription factor, androgen receptor, drives the growth of prostate tumor during initial stage of the disease, androgen resistance is associated with poorly differentiated prostate cancer. In the recent years, increased research has highlighted the aberrant transcriptional activities of a small number of transcription factors. Along with androgen receptors, dysregulation of these transcription factors contributes to both the poorly differentiated phenotypes of prostate cancer cells and the initiation and progression of prostate carcinoma. As master regulators of cell fate decisions, these transcription factors may provide opportunity for the development of novel therapeutic targets for the management of prostate cancer. Whilst some transcriptional regulators have previously been notoriously difficult to directly target, technological advances offer potential for the indirect therapeutic targeting of these transcription factors and the capacity to reprogram cancer cell phenotype. This mini review will discuss how recent advances in our understanding of transcriptional regulators and material science pave the way to utilize these regulatory molecules as therapeutic targets in prostate cancer.
Collapse
Affiliation(s)
- Kangzhe Xie
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney, NSW, Australia
| | - Keely Tan
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney, NSW, Australia
| | - Matthew J Naylor
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Wu M, Cui J, Hou H, Li Y, Liu S, Wan L, Zhang L, Huang W, Sun G, Liu J, Jin P, He S, Liu M. Novel MDM2 Inhibitor XR-2 Exerts Potent Anti-Tumor Efficacy and Overcomes Enzalutamide Resistance in Prostate Cancer. Front Pharmacol 2022; 13:871259. [PMID: 35548335 PMCID: PMC9081362 DOI: 10.3389/fphar.2022.871259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022] Open
Abstract
Background: The inactivation of tumor-suppressor p53 plays an important role in second generation anti-androgens (SGAs) drug resistance and neuroendocrine differentiation in castration-resistant prostate cancer (CRPC). The reactivation of p53 by blocking the MDM2–p53 interaction represents an attractive therapeutic remedy in cancers with wild-type or functional p53. Whether MDM2-p53 inhibitor could overcome SGAs drug resistance in CRPC is still needed further research. Here, we investigated the anti-tumor efficacy and mechanisms of a novel MDM2-p53 inhibitor XR-2 in CRPC. Methods: To investigate the functions and mechanisms of XR-2 in prostate cancer, in vitro and in vivo biofunctional assays were performed. Western blot and qRT-PCR assay were performed to detect the protein and mRNA expression levels of indicated genes. CCK8, colony formation, flow cytometry and senescence assays were performed for cell function identifications. RNA-sequencing and bioinformatics analysis were mainly used to identify the influence of XR-2 on prostate cancer cells transcriptome. Subcutaneous 22Rv1 derived xenografts mice model was used to investigate the in vivo anti-tumor activity of XR-2. In addition, the broad-spectrum anti-tumor activities in vivo of XR-2 were evaluated by different xenografts mice models. Results: XR-2 could directly bind to MDM2, potently reactivate the p53 pathway and thus induce cell cycle arrest and apoptosis in wild-type p53 CRPC cell lines. XR-2 also suppresses the AR pathway as p53 regulates AR transcription inhibition and MDM2 participates in AR degradation. As a result, XR-2 efficiently inhibited CRPC cell viability, showed a synergistic effect with enzalutamide and overcame enzalutamide resistance both in vitro and in vivo. Moreover, results illustrated that XR-2 possesses broad-spectrum anti-tumor activities in vivo with favourable safety. Conclusion: MDM2-p53 inhibitor (XR-2) possesses potently prostate cancer progresses inhibition activity both in vitro and in vivo. XR-2 shows a synergistic effect with enzalutamide and overcomes enzalutamide resistance.
Collapse
Affiliation(s)
- Meng Wu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jingyi Cui
- Graduate School of Peking Union Medical College, Beijing, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Huimin Hou
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Li
- Graduate School of Peking Union Medical College, Beijing, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Shengjie Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Wan
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lili Zhang
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Huang
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Gaoyuan Sun
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingchao Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Pengfei Jin
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, China
- *Correspondence: Ming Liu, ; Shunmin He, ; Pengfei Jin,
| | - Shunmin He
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Ming Liu, ; Shunmin He, ; Pengfei Jin,
| | - Ming Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Ming Liu, ; Shunmin He, ; Pengfei Jin,
| |
Collapse
|
8
|
Kumari S, Sharma V, Tiwari R, Maurya JP, Subudhi BB, Senapati D. Therapeutic potential of p53 reactivation in prostate cancer: Strategies and opportunities. Eur J Pharmacol 2022; 919:174807. [DOI: 10.1016/j.ejphar.2022.174807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/20/2022] [Accepted: 02/08/2022] [Indexed: 12/25/2022]
|
9
|
Elmarakeby HA, Hwang J, Arafeh R, Crowdis J, Gang S, Liu D, AlDubayan SH, Salari K, Kregel S, Richter C, Arnoff TE, Park J, Hahn WC, Van Allen EM. Biologically informed deep neural network for prostate cancer discovery. Nature 2021; 598:348-352. [PMID: 34552244 PMCID: PMC8514339 DOI: 10.1038/s41586-021-03922-4] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 08/17/2021] [Indexed: 12/20/2022]
Abstract
The determination of molecular features that mediate clinically aggressive phenotypes in prostate cancer remains a major biological and clinical challenge1,2. Recent advances in interpretability of machine learning models as applied to biomedical problems may enable discovery and prediction in clinical cancer genomics3-5. Here we developed P-NET-a biologically informed deep learning model-to stratify patients with prostate cancer by treatment-resistance state and evaluate molecular drivers of treatment resistance for therapeutic targeting through complete model interpretability. We demonstrate that P-NET can predict cancer state using molecular data with a performance that is superior to other modelling approaches. Moreover, the biological interpretability within P-NET revealed established and novel molecularly altered candidates, such as MDM4 and FGFR1, which were implicated in predicting advanced disease and validated in vitro. Broadly, biologically informed fully interpretable neural networks enable preclinical discovery and clinical prediction in prostate cancer and may have general applicability across cancer types.
Collapse
Affiliation(s)
- Haitham A Elmarakeby
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Al-Azhar University, Cairo, Egypt
| | - Justin Hwang
- University of Minnesota, Division of Hematology, Oncology and Transplantation, Minneapolis, MN, USA
| | - Rand Arafeh
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jett Crowdis
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sydney Gang
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - David Liu
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Saud H AlDubayan
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Keyan Salari
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven Kregel
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Taylor E Arnoff
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jihye Park
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - William C Hahn
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eliezer M Van Allen
- Dana-Farber Cancer Institute, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
10
|
Li D, Hu C, Yang J, Liao Y, Chen Y, Fu SZ, Wu JB. Enhanced Anti-Cancer Effect of Folate-Conjugated Olaparib Nanoparticles Combined with Radiotherapy in Cervical Carcinoma. Int J Nanomedicine 2020; 15:10045-10058. [PMID: 33328733 PMCID: PMC7735794 DOI: 10.2147/ijn.s272730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Radiotherapy (RT), one of the main treatments for cervical cancer, has tremendous potential for improvement in the efficacy. Poly (ADP-ribose) polymerase (PARP) is a key enzyme in the repair of DNA strand breaks (DSB). Olaparib (Ola) is a PARP inhibitor that is involved in preventing the release of PARP from RT-induced damaged DNA to potentiate the effect of RT. Although the basic mechanism of Ola's radiosensitization is well known, the radiosensitization mechanism of its nanomedicine is still unclear. In addition, the lack of tumor tissue targeting is a major obstacle for the clinical success of Ola. MATERIALS AND METHODS In this study, we developed folate-conjugated active targeting olaparib nanoparticles (ATO) and investigated the anti-tumor effect of ATO combined with radiotherapy (RT) in nude mice using cervical cancer xenograft models. We used folate (FA)-conjugated poly (ε-caprolactone)-poly (ethyleneglycol)-poly (e-caprolactone) (PCEC) copolymer to prepare ATO via emulsification/solvent diffusion. Further, we evaluated ATO particle size, potential, encapsulation efficiency, and in vitro release characteristics, and evaluated the shape of ATO via transmission electron microscopy (TEM). We then performed MTT and cell uptake assays to detect cytotoxicity and targeting uptake in vitro. We investigated the anti-tumor properties of ATO in vivo by apoptosis test, 18 F-FDG PET/CT, and immunohistochemical analysis. Finally, the xenografted tumor in nude mice was subjected to RT and/or ATO treatment. RESULTS The results confirmed that ATO in combination with RT significantly inhibited tumor growth and prolonged survival time of tumor-bearing mice. This may be related to the inhibition of tumor proliferation and DNA damage repair and induction of cell apoptosis in vivo. CONCLUSION The ATO developed in this study may represent a novel formulation for olaparib delivery and have promising potential for treating tumors with an over-expression of folate receptors.
Collapse
Affiliation(s)
- Dong Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
| | - Chuanfei Hu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
| | - Juan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
| | - Yin Liao
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
| | - Shao Zhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
| | - Jing Bo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
| |
Collapse
|
11
|
Pudova EA, Krasnov GS, Nyushko KM, Kobelyatskaya AA, Savvateeva MV, Poloznikov AA, Dolotkazin DR, Klimina KM, Guvatova ZG, Simanovsky SA, Gladysh NS, Tokarev AT, Melnikova NV, Dmitriev AA, Alekseev BY, Kaprin AD, Kiseleva MV, Snezhkina AV, Kudryavtseva AV. miRNAs expression signature potentially associated with lymphatic dissemination in locally advanced prostate cancer. BMC Med Genomics 2020; 13:129. [PMID: 32948204 PMCID: PMC7500008 DOI: 10.1186/s12920-020-00788-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023] Open
Abstract
Background Prostate cancer is one of the most common and socially significant cancers among men. The aim of our study was to reveal changes in miRNA expression profiles associated with lymphatic dissemination in prostate cancer and to identify the most prominent miRNAs as potential prognostic markers for future studies. Methods High-throughput miRNA sequencing was performed for 44 prostate cancer specimens taken from Russian patients, with and without lymphatic dissemination (N1 – 20 samples; N0 – 24 samples). Results We found at least 18 microRNAs with differential expression between N0 and N1 sample groups: miR-182-5p, miR-183-5p, miR-96-5p, miR-25-3p, miR-93-5p, miR-7-5p, miR-615-3p, miR-10b, miR-1248 (N1-miRs; elevated expression in N1 cohort; p < 0.05); miR-1271-5p, miR-184, miR-222-3p, miR-221-5p, miR-221-3p, miR-455-3p, miR-143-5p, miR-181c-3p and miR-455-5p (N0-miRs; elevated expression in N0; p < 0.05). The expression levels of N1-miRs were highly correlated between each other (the same is applied for N0-miRs) and the expression levels of N0-miRs and N1-miRs were anti-correlated. The tumor samples can be divided into two groups depending on the expression ratio between N0-miRs and N1-miRs. Conclusions We found the miRNA expression signature associated with lymphatic dissemination, in particular on the Russian patient cohort. Many of these miRNAs are well-known players in either oncogenic transformation or tumor suppression. Further experimental studies with extended sampling are required to validate these results.
Collapse
Affiliation(s)
- Elena A Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kirill M Nyushko
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | | | - Maria V Savvateeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey A Poloznikov
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Daniyar R Dolotkazin
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Kseniya M Klimina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Zulfiya G Guvatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey A Simanovsky
- A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Nataliya V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Boris Y Alekseev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrey D Kaprin
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Marina V Kiseleva
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | | | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
12
|
Zanjirband M, Rahgozar S. Targeting p53-MDM2 Interaction Using Small Molecule Inhibitors and the Challenges Needed to be Addressed. Curr Drug Targets 2020; 20:1091-1111. [PMID: 30947669 DOI: 10.2174/1389450120666190402120701] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/16/2022]
Abstract
MDM2 protein is the core negative regulator of p53 that maintains the cellular levels of p53 at a low level in normal cells. Mutation of the TP53 gene accounts for 50% of all human cancers. In the remaining malignancies with wild-type TP53, p53 function is inhibited through other mechanisms. Recently, synthetic small molecule inhibitors have been developed which target a small hydrophobic pocket on MDM2 to which p53 normally binds. Given that MDM2-p53 antagonists have been undergoing clinical trials for different types of cancer, this review illustrates different aspects of these new cancer targeted therapeutic agents with the focus on the major advances in the field. It emphasizes on the p53 function, regulation of p53, targeting of the p53-MDM2 interaction for cancer therapy, and p53-dependent and -independent effects of inhibition of p53-MDM2 interaction. Then, representatives of small molecule MDM2-p53 binding antagonists are introduced with a focus on those entered into clinical trials. Furthermore, the review discusses the gene signatures in order to predict sensitivity to MDM2 antagonists, potential side effects and the reasons for the observed hematotoxicity, mechanisms of resistance to these drugs, their evaluation as monotherapy or in combination with conventional chemotherapy or with other targeted therapeutic agents. Finally, it highlights the certainly intriguing questions and challenges which would be addressed in future studies.
Collapse
Affiliation(s)
- Maryam Zanjirband
- Department of Cellular and Molecular Biology, Faculty of Science, University of Isfahan, Azadi Square, Isfahan, Iran
| | - Soheila Rahgozar
- Department of Cellular and Molecular Biology, Faculty of Science, University of Isfahan, Azadi Square, Isfahan, Iran
| |
Collapse
|
13
|
Saad F, Shore N, Zhang T, Sharma S, Cho HK, Jacobs IA. Emerging therapeutic targets for patients with advanced prostate cancer. Cancer Treat Rev 2019; 76:1-9. [DOI: 10.1016/j.ctrv.2019.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
|
14
|
20(S)-protopanaxadiol regio-selectively targets androgen receptor: anticancer effects in castration-resistant prostate tumors. Oncotarget 2018; 9:20965-20978. [PMID: 29765513 PMCID: PMC5940378 DOI: 10.18632/oncotarget.24695] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 02/24/2018] [Indexed: 01/21/2023] Open
Abstract
We have explored the effects of 20(S)-protopanaxadiol (aPPD), a naturally derived ginsenoside, against androgen receptor (AR) positive castration resistant prostate cancer (CRPC) xenograft tumors and have examined its interactions with AR. In silico docking studies for aPPD binding to AR, alongside transactivation bioassays and in vivo efficacy studies were carried out in the castration-resistant C4-2 xenograft model. Immunohistochemical (IHC) and Western blot analyses followed by evaluation of AR, apoptotic, cell cycle and proliferative markers in excised tumors was performed. The growth of established CRPC tumors was inhibited by 53% with aPPD and a corresponding decrease in serum PSA was seen compared to controls. The IHC data revealed that Ki-67 was significantly lower for aPPD treated tumors and was associated with elevated p21 and cleaved caspase-3 expression, compared to vehicle treatment. Furthermore, aPPD decreased AR protein expression in xenograft tumors, while significantly upregulating p27 and Bax protein levels. In vitro data supporting this suggests that aPPD binds to and significantly inhibits the N-terminal or the DNA binding domains of AR. The AR androgen binding site docking score for androgen (dihydrotestosterone) was −11.1, while that of aPPD was −7.1. The novel findings described herein indicate aPPD potently inhibits PCa in vivo partly via inhibition of a site on the AR N-terminal domain. This manifested as cell cycle arrest and concurrent induction of apoptosis via an increase in Bax, cleaved-caspase-3, p27 and p21 expression.
Collapse
|
15
|
Logan IR, McClurg UL, Jones DL, O'Neill DJ, Shaheen FS, Lunec J, Gaughan L, Robson CN. Nutlin-3 inhibits androgen receptor-driven c-FLIP expression, resulting in apoptosis of prostate cancer cells. Oncotarget 2018; 7:74724-74733. [PMID: 27729622 PMCID: PMC5342697 DOI: 10.18632/oncotarget.12542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 09/26/2016] [Indexed: 01/10/2023] Open
Abstract
Inhibition of androgen receptor (AR) signalling represents the conventional medical management of prostate cancer. Ultimately this treatment fails because tumors develop an incurable, castrate resistant phenotype, resulting in an unmet need for new treatments in prostate cancer. The AR remains a viable therapeutic target in castrate resistant disease, such that novel ways of downregulating AR activities are attractive as potential treatments. Here we describe a mechanism by which the AR can be downregulated by the MDM2 antagonist Nutlin-3, resulting in loss of pro-survival c-FLIP gene expression and apoptosis. We additionally show that loss of c-FLIP sensitises prostate cancer cells to Nutlin-3. Finally, we demonstrate that the unrelated MDM2 antagonist Mi-63 also impinges upon AR signalling, supporting the concept of future treatment of prostate cancer with MDM2 antagonists.
Collapse
Affiliation(s)
- Ian R Logan
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Urszula L McClurg
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Dominic L Jones
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Daniel J O'Neill
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Fadhel S Shaheen
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - John Lunec
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Luke Gaughan
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Craig N Robson
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| |
Collapse
|
16
|
Abstract
Neuroblastoma (NB) is the most common solid childhood tumor outside the brain and causes 15% of childhood cancer-related mortality. The main drivers of NB formation are neural crest cell-derived sympathoadrenal cells that undergo abnormal genetic arrangements. Moreover, NB is a complex disease that has high heterogeneity and is therefore difficult to target for successful therapy. Thus, a better understanding of NB development helps to improve treatment and increase the survival rate. One of the major causes of sporadic NB is known to be MYCN amplification and mutations in ALK (anaplastic lymphoma kinase) are responsible for familial NB. Many other genetic abnormalities can be found; however, they are not considered as driver mutations, rather they support tumor aggressiveness. Tumor cell elimination via cell death is widely accepted as a successful technique. Therefore, in this review, we provide a thorough overview of how different modes of cell death and treatment strategies, such as immunotherapy or spontaneous regression, are or can be applied for NB elimination. In addition, several currently used and innovative approaches and their suitability for clinical testing and usage will be discussed. Moreover, significant attention will be given to combined therapies that show more effective results with fewer side effects than drugs targeting only one specific protein or pathway.
Collapse
|
17
|
Chopra H, Khan Z, Contreras J, Wang H, Sedrak A, Zhu Y. Activation of p53 and destabilization of androgen receptor by combinatorial inhibition of MDM2 and MDMX in prostate cancer cells. Oncotarget 2017; 9:6270-6281. [PMID: 29464071 PMCID: PMC5814211 DOI: 10.18632/oncotarget.23569] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 10/13/2017] [Indexed: 01/22/2023] Open
Abstract
Castration-resistant prostate cancer (CRPC) frequently develops after initial standard radiation and androgen deprivation therapy, leaving patients with limited further treatment options. Androgen receptor (AR) is a transcription factor that plays a key role in the initiation and progression of prostate cancer. p53, a major tumor suppressor that is rarely mutated in early-stages of prostate cancer, is often deregulated during prostate cancer progression. Here, we report an unusual co-amplification of MDM2 and MDMX, two crucial negative regulators of p53, in CRPC datasets. We demonstrate that combinatorial inhibition of MDM2 and MDMX, with nutlin-3 and NSC207895 respectively, has a profound inhibitory effect on cell proliferation of androgen-responsive, wild-type TP53 gene carrying prostate cancer cells LNCaP and 22Rv1. We further show that the combinatorial inhibition of MDM2 and MDMX not only activates p53, but also decreases cellular levels of AR and represses its function. Additionally, co-expression of MDM2 and MDMX stabilizes AR. Together, our results indicate that combinatorial inhibition of MDM2 and MDMX may offer a novel compelling strategy for prostate cancer therapy.
Collapse
Affiliation(s)
- Harman Chopra
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Zara Khan
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Jamie Contreras
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Herui Wang
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Abanob Sedrak
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Yan Zhu
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| |
Collapse
|
18
|
Feng FY, Zhang Y, Kothari V, Evans JR, Jackson WC, Chen W, Johnson SB, Luczak C, Wang S, Hamstra DA. MDM2 Inhibition Sensitizes Prostate Cancer Cells to Androgen Ablation and Radiotherapy in a p53-Dependent Manner. Neoplasia 2017; 18:213-22. [PMID: 27108384 PMCID: PMC4840291 DOI: 10.1016/j.neo.2016.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 01/27/2016] [Indexed: 11/23/2022]
Abstract
PURPOSE: Increased murine double minute 2 (MDM2) expression, independent of p53 status, is associated with increased cancer-specific mortality for men with prostate cancer treated with radiotherapy. We assessed MI-219, a small molecule inhibitor of MDM2 with improved pharmacokinetics over nutlin-3, for sensitization of prostate cancer cells to radiotherapy and androgen deprivation therapy, a standard treatment option for men with high-risk prostate cancer. EXPERIMENTAL DESIGN: The effect of MDM2 inhibition by MI-219 was assessed in vitro and in vivo with mouse xenograft models across multiple prostate cancer cell lines containing varying p53 functional status. RESULTS: MDM2 inhibition by MI-219 resulted in dose- and time-dependent p53 activation and decreased clonogenic cell survival after radiation in a p53-dependent manner. Mechanistically, radiosensitization following inhibition of MDM2 was largely the result of p53-dependent increases in apoptosis and DNA damage as evidenced by Annexin V flow cytometry and γ-H2AX foci immunofluorescence. Similarly, treatment with MI-219 enhanced response to antiandrogen therapy via a p53-dependent increase in apoptotic cell death. Lastly, triple therapy with radiation, androgen deprivation therapy, and MI-219 decreased xenograft tumor growth compared with any single- or double-agent treatment. CONCLUSION: MDM2 inhibition with MI-219 results in p53-dependent sensitization of prostate cancer cells to radiation, antiandrogen therapy, and the combination. These findings support MDM2 small molecule inhibitor therapy as a therapy intensification strategy to improve clinical outcomes in high-risk localized prostate cancer. TRANSLATIONAL RELEVANCE: The combination of radiotherapy and androgen deprivation therapy is a standard treatment option for men with high-risk prostate cancer. Despite improvements in outcomes when androgen deprivation therapy is added to radiation, men with high-risk prostate cancer have significant risk for disease recurrence, progression, and even death within the first 10 years following treatment. We demonstrate that treatment with MI-219 (an inhibitor of MDM2) results in prostate cancer cell sensitization to radiation and androgen deprivation therapy in vitro and in vivo. Triple therapy with MI-219, radiation, and androgen deprivation therapy dramatically decreased tumor growth compared with any single- or double-agent therapy. These findings provide evidence that inhibition of MDM2 is a viable means by which to enhance the efficacy of both radiation and androgen deprivation therapy and thereby improve outcomes in the treatment of prostate cancer. As such, further investigation is warranted to translate these findings to the clinical setting.
Collapse
Affiliation(s)
- Felix Y Feng
- Departments of Radiation Oncology, Urology, and Medicine, University of California at San Francisco, San Francisco, CA; Helen Diller Family Comprehensive Cancer Center; Department of Radiation Oncology, University of Michigan, Ann Arbor, MI.
| | - Yu Zhang
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Vishal Kothari
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Joseph R Evans
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - William C Jackson
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Wei Chen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Skyler B Johnson
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Connor Luczak
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Shaomeng Wang
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Daniel A Hamstra
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
19
|
Mohan K, Weiss GA. Engineering chemically modified viruses for prostate cancer cell recognition. MOLECULAR BIOSYSTEMS 2016; 11:3264-72. [PMID: 26463253 DOI: 10.1039/c5mb00511f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Specific detection of circulating tumor cells and characterization of their aggressiveness could improve cancer diagnostics and treatment. Metastasis results from such tumor cells, and causes the majority of cancer deaths. Chemically modified viruses could provide an inexpensive and efficient approach to detect tumor cells and quantitate their cell surface biomarkers. However, non-specific adhesion between the cell surface receptors and the virus surface presents a challenge. This report describes wrapping the virus surface with different PEG architectures, including as fusions to oligolysine, linkers, spacers and scaffolded ligands. The reported PEG wrappers can reduce by >75% the non-specific adhesion of phage to cell surfaces. Dynamic light scattering verified the non-covalent attachment by the reported wrappers as increased sizes of the virus particles. Further modifications resulted in specific detection of prostate cancer cells expressing PSMA, a key prostate cancer biomarker. The approach allowed quantification of PSMA levels on the cell surface, and could distinguish more aggressive forms of the disease.
Collapse
Affiliation(s)
- K Mohan
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, USA
| | - G A Weiss
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, USA and Department of Molecular Biology and Biochemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, USA.
| |
Collapse
|
20
|
Zhang X, Wang L, Wang Y, Shi S, Zhu H, Xiao F, Yang J, Yang A, Hao X. Inhibition of FOXQ1 induces apoptosis and suppresses proliferation in prostate cancer cells by controlling BCL11A/MDM2 expression. Oncol Rep 2016; 36:2349-56. [DOI: 10.3892/or.2016.5018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/15/2016] [Indexed: 11/05/2022] Open
|
21
|
Lakoma A, Barbieri E, Agarwal S, Jackson J, Chen Z, Kim Y, McVay M, Shohet JM, Kim ES. The MDM2 small-molecule inhibitor RG7388 leads to potent tumor inhibition in p53 wild-type neuroblastoma. Cell Death Discov 2015; 1. [PMID: 26998348 PMCID: PMC4794278 DOI: 10.1038/cddiscovery.2015.26] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuroblastoma is an aggressive pediatric malignancy which is >98% p53 wild-type at diagnosis. As a primary repressor of p53 activity and part of a p53-activated negative feedback loop, targeting of mouse double minute 2 homolog (MDM2) is an attractive therapeutic approach to reactivation of p53. Since development of the first selective MDM2 inhibitor, Nutlin-3a, newer compounds have been developed for increased potency and improved bioavailability. Herein, we sought to determine the efficacy and specificity of a second-generation MDM2 inhibitor, RG7388, in neuroblastoma cell lines and xenografts and examine its effect on the p53-independent pathway of hypoxia-inducible factor-1 alpha (HIF-1α)/vascular endothelial growth factor (VEGF). Cell viability and apoptosis studies were performed on the neuroblastoma cell lines, NGP, SH-SY5Y, LAN-5, LAN-5 si-p53 (p53 silenced), and SK-N-AS (p53 null). RG7388 potently decreased cell proliferation and activated p53-dependent apoptosis. Tumor-bearing mice treated with RG7388 demonstrated significant tumor inhibition by 59% in NGP (P=0.003), 67% in SH-SY5Y (P=0.006), and 75% in LAN-5 (P=0.0019) p53 wild-type xenograft tumors, but no inhibitory effect on LAN-5 si-p53 or SK-N-AS p53-silenced/null xenograft tumors. Moreover, RG7388 was found to inhibit the p53-independent pathway of HIF-1α/VEGF with decreased gene expression and alteration of angiogenesis. Our study supports the further evaluation of RG7388 as a novel treatment option in p53 wild-type neuroblastoma at diagnosis and relapse.
Collapse
Affiliation(s)
- A Lakoma
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - E Barbieri
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - S Agarwal
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - J Jackson
- Division of Pediatric Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Z Chen
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Y Kim
- Division of Pediatric Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - M McVay
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - J M Shohet
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - E S Kim
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; Division of Pediatric Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| |
Collapse
|
22
|
Wei X, Zhou P, Lin X, Lin Y, Wu S, Diao P, Xie H, Xie K, Tang P. MLN2238 synergizes BH3 mimetic ABT-263 in castration-resistant prostate cancer cells by induction of NOXA. Tumour Biol 2014; 35:10213-21. [PMID: 25027405 DOI: 10.1007/s13277-014-2333-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/08/2014] [Indexed: 12/18/2022] Open
Abstract
Patients undergoing androgen blockade therapy develop castration-resistant prostate cancer (CRPC), which is associated with Bcl-2 upregulation and results in disease progression and death. In recent years, promising therapeutic agents, such as the BH3-only mimetic ABT-263 and proteasome inhibitors, have been developed and widely evaluated against a broad spectrum of cancer types, including prostate cancer, alone or in combination with other chemotherapeutic agents. In this study, the antitumor efficacy of ABT-263 and MLN2238 were evaluated as single agents and in combination in four CRPC cell lines: PC3, C4-2B, C4-2, and DU145. The viability of the treated cells and markers of apoptosis were assayed. Protein-protein interactions were analyzed by co-immunoprecipitation in drug-treated cells. Lentivirus-mediated short hairpin RNA was used to knockdown Bax, Mcl-1, and NOXA expressions. We found that ABT-263 and MLN2238 alone exhibited a mild cytotoxicity, and in combination, they elicited a synergistic cytotoxic effect in CRPC cells. The cell apoptosis induced by the combination drug treatment was evidenced by enhanced caspase-3 and Poly (ADP-ribose) polymerase (PARP) cleavage, and annexin-V-positive staining was significantly depleted by Bax knockdown. MLN2238 treatment upregulated NOXA and Mcl-1 expression, leading NOXA/Mcl-1 complexes to disassociate Bak from its complexes with Mcl-1 and enhancing ABT263-triggered Bax activation. NOXA knockdown by short hairpin RNA significantly attenuated the cytotoxicity of ABT-263 and MLN2238 co-administration. In conclusion, MLN2238 and ABT-263 synergistically triggered apoptosis in CRPC cells by upregulating NOXA and activating Bax, indicating a promising therapeutic strategy for the treatment of CRPC.
Collapse
Affiliation(s)
- Xinghua Wei
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Khoo KH, Hoe KK, Verma CS, Lane DP. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov 2014; 13:217-36. [PMID: 24577402 DOI: 10.1038/nrd4236] [Citation(s) in RCA: 568] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The tumour suppressor p53 is the most frequently mutated gene in human cancer, with more than half of all human tumours carrying mutations in this particular gene. Intense efforts to develop drugs that could activate or restore the p53 pathway have now reached clinical trials. The first clinical results with inhibitors of MDM2, a negative regulator of p53, have shown efficacy but hint at on-target toxicities. Here, we describe the current state of the development of p53 pathway modulators and new pathway targets that have emerged. The challenge of targeting protein-protein interactions and a fragile mutant transcription factor has stimulated many exciting new approaches to drug discovery.
Collapse
Affiliation(s)
| | - Khoo Kian Hoe
- p53 Laboratory (p53Lab), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06, Immunos, 138648 Singapore
| | - Chandra S Verma
- 1] Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix, 138671 Singapore. [2] School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore. [3] Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore
| | - David P Lane
- p53 Laboratory (p53Lab), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06, Immunos, 138648 Singapore
| |
Collapse
|
24
|
Rodrigues DN, Butler LM, Estelles DL, de Bono JS. Molecular pathology and prostate cancer therapeutics: from biology to bedside. J Pathol 2014; 232:178-84. [PMID: 24108540 DOI: 10.1002/path.4272] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/13/2013] [Accepted: 09/18/2013] [Indexed: 12/29/2022]
Abstract
Prostate cancer (PCa) is the second most commonly diagnosed malignancy in men and has an extremely heterogeneous clinical behaviour. The vast majority of PCas are hormonally driven diseases in which androgen signalling plays a central role. The realization that castration-resistant prostate cancer (CRPC) continues to rely on androgen signalling prompted the development of new, effective androgen blocking agents. As the understanding of the molecular biology of PCas evolves, it is hoped that stratification of prostate tumours into distinct molecular entities, each with its own set of vulnerabilities, will be a feasible goal. Around half of PCas harbour rearrangements involving a member of the ETS transcription factor family. Tumours without this rearrangement include SPOP mutant as well as SPINK1-over-expressing subtypes. As the number of targeted therapy agents increases, it is crucial to determine which patients will benefit from these interventions and molecular pathology will be key in this respect. In addition to directly targeting cells, therapies that modify the tumour microenvironment have also been successful in prolonging the lives of PCa patients. Understanding the molecular aspects of PCa therapeutics will allow pathologists to provide core recommendations for patient management.
Collapse
Affiliation(s)
- Daniel Nava Rodrigues
- Prostate Cancer Targeted Therapy Group and Drug Development Unit, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Sutton, Surrey, UK
| | | | | | | |
Collapse
|
25
|
Nag S, Zhang X, Srivenugopal K, Wang MH, Wang W, Zhang R. Targeting MDM2-p53 interaction for cancer therapy: are we there yet? Curr Med Chem 2014; 21:553-74. [PMID: 24180275 PMCID: PMC6690199 DOI: 10.2174/09298673113206660325] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/02/2013] [Accepted: 10/22/2013] [Indexed: 11/22/2022]
Abstract
Inactivation of the tumor suppressor p53 and/or overexpression of the oncogene MDM2 frequently occur in human cancers, and are associated with poor prognosis, advanced forms of the disease, and chemoresistance. MDM2, the major negative regulator of p53, induces p53 degradation and inactivates its tumor suppressing activity. In turn, p53 regulates MDM2 expression. This MDM2-p53 negative feedback loop has been widely studied and presents an attractive target for cancer therapy, with a few of the inhibitors of this interaction already having advanced into clinical trials. Additionally, there is an increasing interest in understanding MDM2's p53-independent activities in carcinogenesis and cancer progression, which may also have implications for cancer therapy. This review aims to highlight the various roles that the MDM2-p53 interaction plays in cancer, the p53 independent oncogenic activities of MDM2 and the various strategies that may be used to target MDM2 and the MDM2-p53 interaction. We will summarize the major preclinical and clinical evidences of MDM2 inhibitors for human cancer treatment and make suggestions to further improve efficacy and safety of this interesting class of cancer therapeutics.
Collapse
Affiliation(s)
- S. Nag
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - X. Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - K.S. Srivenugopal
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - M.-H. Wang
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - W. Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - R. Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| |
Collapse
|
26
|
Abstract
This article summarizes data on translational studies to target the p53 pathway in cancer. It describes the functions of the p53 and Mdm-2 signaling pathways, and discusses current therapeutic approaches to target p53 pathways, including reactivation of p53. In addition, direct interaction and colocalization of the p53 and focal adhesion kinase proteins in cancer cells have been demonstrated, and different approaches to target this interaction are reviewed. This is a broad review of p53 function as it relates to the diagnosis and treatment of a wide range of cancers.
Collapse
|
27
|
Burton DGA, Giribaldi MG, Munoz A, Halvorsen K, Patel A, Jorda M, Perez-Stable C, Rai P. Androgen deprivation-induced senescence promotes outgrowth of androgen-refractory prostate cancer cells. PLoS One 2013; 8:e68003. [PMID: 23840802 PMCID: PMC3695935 DOI: 10.1371/journal.pone.0068003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 05/28/2013] [Indexed: 01/07/2023] Open
Abstract
Androgen deprivation (AD) is an effective method for initially suppressing prostate cancer (PC) progression. However, androgen-refractory PC cells inevitably emerge from the androgen-responsive tumor, leading to incurable disease. Recent studies have shown AD induces cellular senescence, a phenomenon that is cell-autonomously tumor-suppressive but which confers tumor-promoting adaptations that can facilitate the advent of senescence-resistant malignant cell populations. Because androgen-refractory PC cells emerge clonally from the originally androgen-responsive tumor, we sought to investigate whether AD-induced senescence (ADIS) affects acquisition of androgen-refractory behavior in androgen-responsive LNCaP and LAPC4 prostate cancer cells. We find that repeated exposure of these androgen-responsive cells to senescence-inducing stimuli via cyclic AD leads to the rapid emergence of ADIS-resistant, androgen-refractory cells from the bulk senescent cell population. Our results show that the ADIS phenotype is associated with tumor-promoting traits, notably chemoresistance and enhanced pro-survival mechanisms such as inhibition of p53-mediated cell death, which encourage persistence of the senescent cells. We further find that pharmacologic enforcement of p53/Bax activation via Nutlin-3 prior to establishment of ADIS is required to overcome the associated pro-survival response and preferentially trigger pervasive cell death instead of senescence during AD. Thus our study demonstrates that ADIS promotes outgrowth of androgen-refractory PC cells and is consequently a suboptimal tumor-suppressor response to AD.
Collapse
Affiliation(s)
- Dominick G. A. Burton
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Maria G. Giribaldi
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Biology Department, University of Miami, Coral Gables, Florida, United States of America
| | - Anisleidys Munoz
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Biology Department, University of Miami, Coral Gables, Florida, United States of America
| | - Katherine Halvorsen
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Asmita Patel
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Merce Jorda
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Carlos Perez-Stable
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Bruce W. Carter Veterans Affairs Medical Center, Miami, Florida, United States of America
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Florida, United States of America
| | - Priyamvada Rai
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Florida, United States of America
- * E-mail:
| |
Collapse
|
28
|
Voltan R, Secchiero P, Ruozi B, Forni F, Agostinis C, Caruso L, Vandelli MA, Zauli G. Nanoparticles Engineered with Rituximab and Loaded with Nutlin-3 Show Promising Therapeutic Activity in B-Leukemic Xenografts. Clin Cancer Res 2013; 19:3871-80. [DOI: 10.1158/1078-0432.ccr-13-0015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Tovar C, Graves B, Packman K, Filipovic Z, Xia BHM, Tardell C, Garrido R, Lee E, Kolinsky K, To KH, Linn M, Podlaski F, Wovkulich P, Vu B, Vassilev LT. MDM2 Small-Molecule Antagonist RG7112 Activates p53 Signaling and Regresses Human Tumors in Preclinical Cancer Models. Cancer Res 2013; 73:2587-97. [DOI: 10.1158/0008-5472.can-12-2807] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Al-Ubaidi FLT, Schultz N, Loseva O, Egevad L, Granfors T, Helleday T. Castration therapy results in decreased Ku70 levels in prostate cancer. Clin Cancer Res 2013; 19:1547-56. [PMID: 23349316 DOI: 10.1158/1078-0432.ccr-12-2795] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Neoadjuvant castration improves response to radiotherapy of prostate cancer. Here, we determine whether castration therapy impairs nonhomologous end-joining (NHEJ) repair of DNA double-strand breaks (DSB) by downregulating Ku70 protein expression. EXPERIMENTAL DESIGN Twenty patients with locally advanced prostate cancer were enrolled, and 6 to 12 needle core biopsy specimens were taken from the prostate of each patient before treatment. Bilateral orchidectomy was conducted in eight patients and 12 patients were treated with a GnRH agonist. After castration, two to four similar biopsies were obtained, and the levels of Ku70 and γ-H2AX foci were determined by immunofluorescence in verified cancer tissues. RESULTS We observed that the androgen receptor binds directly to Ku70 in prostate tissue. We also found a reduction of the Ku70 protein levels in the cell nuclei in 12 of 14 patients (P < 0.001) after castration. The reduction in Ku70 expression correlated significantly with decreased serum prostate-specific antigen (PSA) levels after castration, suggesting that androgen receptor activity regulates Ku70 protein levels in prostate cancer tissue. Furthermore, a significant correlation between the reductions of Ku70 after castration versus changes induced of castration of γ-H2AX foci could be seen implicating a functional linkage of decreased Ku70 levels and impaired DNA repair. CONCLUSIONS Castration therapy results in decreased levels of the Ku70 protein in prostate cancer cells. Because the Ku70 protein is essential for the NHEJ repair of DSBs and its downregulation impairs DNA repair, this offers a possible explanation for the increased radiosensitivity of prostate cancer cells following castration.
Collapse
Affiliation(s)
- Firas L T Al-Ubaidi
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
31
|
Rao V, Guan B, Mutton LN, Bieberich CJ. Proline-mediated proteasomal degradation of the prostate-specific tumor suppressor NKX3.1. J Biol Chem 2012; 287:36331-40. [PMID: 22910912 DOI: 10.1074/jbc.m112.352823] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Reduced expression of the homeodomain transcription factor NKX3.1 is associated with prostate cancer initiation and progression. NKX3.1 turnover requires post-translational modifications including phosphorylation and ubiquitination. Here, we demonstrate the existence of a non-canonical mechanism for NKX3.1 turnover that does not require ubiquitination. Using a structure-function approach, we have determined that the conserved, C-terminal 21-amino acid domain of NKX3.1 (C21) is required for this novel ubiquitin-independent degradation mechanism. Addition of C21 decreased half-life of enhanced green fluorescence protein (EGFP) by 5-fold, demonstrating that C21 constitutes a portable degron. Point mutational analyses of C21 revealed that a conserved proline residue (Pro-221) is central to degron activity, and mutation to alanine (P221A) increased NKX3.1 half-life >2-fold. Proteasome inhibition and in vivo ubiquitination analyses indicated that degron activity is ubiquitin-independent. Evaluating degron activity in the context of a ubiquitination-resistant, lysine-null NKX3.1 mutant (NKX3.1(KO)) confirmed that P221A mutation conferred additional stability to NKX3.1. Treatment of prostate cancer cell lines with a C21-based peptide specifically increased the level of NKX3.1, suggesting that treatment with degron mimetics may be a viable approach for NKX3.1 restoration.
Collapse
Affiliation(s)
- Varsha Rao
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA
| | | | | | | |
Collapse
|
32
|
Liu G, Jiang D, Shen S, Yu L. Murine double minute 2 promoter SNP309 polymorphism and prostate cancer risk: a meta-analysis. Int J Urol 2012; 19:914-20. [PMID: 22716509 DOI: 10.1111/j.1442-2042.2012.03067.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The murine double minute 2 gene encodes a negative regulator of the tumor protein p53. A single nucleotide polymorphism in murine double minute 2 promoter, SNP309 T>G, has been reported to alter murine double minute 2 protein expression and to accelerate tumor formation in humans. We carried out a meta-analysis to explore the association between this polymorphism and prostate cancer risk. METHODS All eligible studies were searched in PubMed. Crude odds ratios, with 95% confidence intervals, were assessed for the association using fixed- and random-effects models. RESULTS Overall, five case-control studies (872 cases, 1005 controls) were included in the meta-analysis. A significant association between murine double minute 2 SNP309 and prostate cancer risk was observed for homozygote genetic model GG versus TT (odds ratio 0.72, 95% confidence interval 0.55-0.95, P < 0.05, P = 0.130 for heterogeneity), and for dominant model TG + GG versus TT (odds ratio 0.79, 95% confidence interval 0.65-0.96, P < 0.05, P = 0.119 for heterogeneity). The stratified analysis based on ethnicity showed a significant effect of the polymorphism on prostate cancer risk in Caucasians for GG versus TT. CONCLUSIONS Findings of the present meta-analysis suggest that the murine double minute 2 309 G allele might be associated with a reduced risk of prostate cancer. The effect of murine double minute 2 309 G allele on tumorigenesis might be influenced by sex and hormonal status.
Collapse
Affiliation(s)
- Guoyuan Liu
- The State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
33
|
Lipkowitz S, Weissman AM. RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nat Rev Cancer 2011; 11:629-43. [PMID: 21863050 PMCID: PMC3542975 DOI: 10.1038/nrc3120] [Citation(s) in RCA: 311] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ubiquitin-proteasome system has numerous crucial roles in physiology and pathophysiology. Fundamental to the specificity of this system are ubiquitin-protein ligases (E3s). Of these, the majority are RING finger and RING finger-related E3s. Many RING finger E3s have roles in processes that are central to the maintenance of genomic integrity and cellular homeostasis, such as the anaphase promoting complex/cyclosome (APC/C), the SKP1-cullin 1-F-box protein (SCF) E3s, MDM2, BRCA1, Fanconi anaemia proteins, CBL proteins, von Hippel-Lindau tumour suppressor (VHL) and SIAH proteins. As a result, many RING finger E3s are implicated in either the suppression or the progression of cancer. This Review summarizes current knowledge in this area.
Collapse
Affiliation(s)
- Stanley Lipkowitz
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|