1
|
Agnoletto C, Volinia S. Mitochondria dysfunction in circulating tumor cells. Front Oncol 2022; 12:947479. [PMID: 35992829 PMCID: PMC9386562 DOI: 10.3389/fonc.2022.947479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/11/2022] [Indexed: 12/16/2022] Open
Abstract
Circulating tumor cells (CTCs) represent a subset of heterogeneous cells, which, once released from a tumor site, have the potential to give rise to metastasis in secondary sites. Recent research focused on the attempt to detect and characterize these rare cells in the circulation, and advancements in defining their molecular profile have been reported in diverse tumor species, with potential implications for clinical applications. Of note, metabolic alterations, involving mitochondria, have been implicated in the metastatic process, as key determinants in the transition of tumor cells to a mesenchymal or stemness-like phenotype, in drug resistance, and in induction of apoptosis. This review aimed to briefly analyse the most recent knowledge relative to mitochondria dysfunction in CTCs, and to envision implications of altered mitochondria in CTCs for a potential utility in clinics.
Collapse
Affiliation(s)
- Chiara Agnoletto
- Rete Oncologica Veneta (ROV), Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Stefano Volinia
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Biological and Chemical Research Centre (CNBCh UW), University of Warsaw, Warsaw, Poland
- Center of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Campo DS, Nayak V, Srinivasamoorthy G, Khudyakov Y. Entropy of mitochondrial DNA circulating in blood is associated with hepatocellular carcinoma. BMC Med Genomics 2019; 12:74. [PMID: 31167647 PMCID: PMC6551242 DOI: 10.1186/s12920-019-0506-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Ultra-Deep Sequencing (UDS) enabled identification of specific changes in human genome occurring in malignant tumors, with current approaches calling for the detection of specific mutations associated with certain cancers. However, such associations are frequently idiosyncratic and cannot be generalized for diagnostics. Mitochondrial DNA (mtDNA) has been shown to be functionally associated with several cancer types. Here, we study the association of intra-host mtDNA diversity with Hepatocellular Carcinoma (HCC). Results UDS mtDNA exome data from blood of patients with HCC (n = 293) and non-cancer controls (NC, n = 391) were used to: (i) measure the genetic heterogeneity of nucleotide sites from the entire population of intra-host mtDNA variants rather than to detect specific mutations, and (ii) apply machine learning algorithms to develop a classifier for HCC detection. Average total entropy of HCC mtDNA is 1.24-times lower than of NC mtDNA (p = 2.84E-47). Among all polymorphic sites, 2.09% had a significantly different mean entropy between HCC and NC, with 0.32% of the HCC mtDNA sites having greater (p < 0.05) and 1.77% of the sites having lower mean entropy (p < 0.05) as compared to NC. The entropy profile of each sample was used to further explore the association between mtDNA heterogeneity and HCC by means of a Random Forest (RF) classifier The RF-classifier separated 232 HCC and 232 NC patients with accuracy of up to 99.78% and average accuracy of 92.23% in the 10-fold cross-validation. The classifier accurately separated 93.08% of HCC (n = 61) and NC (n = 159) patients in a validation dataset that was not used for the RF parameter optimization. Conclusions Polymorphic sites contributing most to the mtDNA association with HCC are scattered along the mitochondrial genome, affecting all mitochondrial genes. The findings suggest that application of heterogeneity profiles of intra-host mtDNA variants from blood may help overcome barriers associated with the complex association of specific mutations with cancer, enabling the development of accurate, rapid, inexpensive and minimally invasive diagnostic detection of cancer.
Collapse
Affiliation(s)
- David S Campo
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Vishal Nayak
- Office of Advanced Molecular Detection, Centers for Disease Control and Prevention, Atlanta, GA, USA.,CSRA, Inc, Corporate Blvd NE, Atlanta, GA, USA
| | - Ganesh Srinivasamoorthy
- Office of Advanced Molecular Detection, Centers for Disease Control and Prevention, Atlanta, GA, USA.,CSRA, Inc, Corporate Blvd NE, Atlanta, GA, USA
| | - Yury Khudyakov
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
3
|
De Luise M, Girolimetti G, Okere B, Porcelli AM, Kurelac I, Gasparre G. Molecular and metabolic features of oncocytomas: Seeking the blueprints of indolent cancers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:591-601. [DOI: 10.1016/j.bbabio.2017.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/28/2016] [Accepted: 01/17/2017] [Indexed: 02/07/2023]
|
4
|
Mitochondrial energy metabolism and apoptosis regulation in glioblastoma. Brain Res 2015; 1595:127-42. [DOI: 10.1016/j.brainres.2014.10.062] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 10/17/2014] [Accepted: 10/26/2014] [Indexed: 12/25/2022]
|
5
|
Popadin K, Gunbin KV, Khrapko K. Mitochondrial DNA mutations and cancer: lessons from the parathyroid. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2852-4. [PMID: 25242389 DOI: 10.1016/j.ajpath.2014.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 09/08/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
Affiliation(s)
| | | | - Konstantin Khrapko
- Department of Biology, Northeastern University, Boston, Massachusetts; Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
6
|
Yeung KY, Dickinson A, Donoghue JF, Polekhina G, White SJ, Grammatopoulos DK, McKenzie M, Johns TG, John JCS. The identification of mitochondrial DNA variants in glioblastoma multiforme. Acta Neuropathol Commun 2014; 2:1. [PMID: 24383468 PMCID: PMC3912901 DOI: 10.1186/2051-5960-2-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/07/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) encodes key proteins of the electron transfer chain (ETC), which produces ATP through oxidative phosphorylation (OXPHOS) and is essential for cells to perform specialised functions. Tumor-initiating cells use aerobic glycolysis, a combination of glycolysis and low levels of OXPHOS, to promote rapid cell proliferation and tumor growth. Glioblastoma multiforme (GBM) is an aggressively malignant brain tumor and mitochondria have been proposed to play a vital role in GBM tumorigenesis. RESULTS Using next generation sequencing and high resolution melt analysis, we identified a large number of mtDNA variants within coding and non-coding regions of GBM cell lines and predicted their disease-causing potential through in silico modeling. The frequency of variants was greatest in the D-loop and origin of light strand replication in non-coding regions. ND6 was the most susceptible coding gene to mutation whilst ND4 had the highest frequency of mutation. Both genes encode subunits of complex I of the ETC. These variants were not detected in unaffected brain samples and many have not been previously reported. Depletion of HSR-GBM1 cells to varying degrees of their mtDNA followed by transplantation into immunedeficient mice resulted in the repopulation of the same variants during tumorigenesis. Likewise, de novo variants identified in other GBM cell lines were also incorporated. Nevertheless, ND4 and ND6 were still the most affected genes. We confirmed the presence of these variants in high grade gliomas. CONCLUSIONS These novel variants contribute to GBM by rendering the ETC. partially dysfunctional. This restricts metabolism to anaerobic glycolysis and promotes cell proliferation.
Collapse
|
7
|
Adams G, Mehrabi S, Vatcharapijarn Y, Iyamu OI, Akwe JA, Grizzle WE, Yao X, Aikhionbare FO. Frequencies of mtDNA mutations in primary tissues of colorectal adenopolyps. Front Biosci (Elite Ed) 2013; 5:809-13. [PMID: 23747897 DOI: 10.2741/e661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To investigate the potential role of mtDNA alterations during the onset of colorectal cancer, the occurrence of mtDNA variants in colorectal adenomatous (Tubular, Tubulovillous, and Villous) polyps, were studied. High resolution endonucleases and PCR-based sequence were applied to examine mtDNA variants in the ND and ATPase genes of 64 primary tissues of colorectal adeno-polyps and their matched normal controls. Forty-two variants were observed and 57% (24/42) were not previously reported in the MITODAT reference. Fifty-eight percent of these variants were germline and homoplasmic transitions. The distribution of observed mtDNA variants includes: 31% (13/42) tubular, 52% (22/42) tubulovillous, 45% (19/42) villous, and 45% (19/42) cancer (including FAP and JVP). Notably, an unreported germline variant in the ATPase 8 gene at nucleotide position (np) G8573A was observed in tubulovillous adenomas tissues. The results suggest that some specific mtDNA variants may serve as a potential biomarker for colorectal adenomatous polyps.
Collapse
Affiliation(s)
- Gregory Adams
- Department of Medicine, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Pereira L, Soares P, Máximo V, Samuels DC. Somatic mitochondrial DNA mutations in cancer escape purifying selection and high pathogenicity mutations lead to the oncocytic phenotype: pathogenicity analysis of reported somatic mtDNA mutations in tumors. BMC Cancer 2012; 12:53. [PMID: 22299657 PMCID: PMC3342922 DOI: 10.1186/1471-2407-12-53] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 02/02/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The presence of somatic mitochondrial DNA (mtDNA) mutations in cancer cells has been interpreted in controversial ways, ranging from random neutral accumulation of mutations, to positive selection for high pathogenicity, or conversely to purifying selection against high pathogenicity variants as occurs at the population level. METHODS Here we evaluated the predicted pathogenicity of somatic mtDNA mutations described in cancer and compare these to the distribution of variations observed in the global human population and all possible protein variations that could occur in human mtDNA. We focus on oncocytic tumors, which are clearly associated with mitochondrial dysfunction. The protein variant pathogenicity was predicted using two computational methods, MutPred and SNPs&GO. RESULTS The pathogenicity score of the somatic mtDNA variants were significantly higher in oncocytic tumors compared to non-oncocytic tumors. Variations in subunits of Complex I of the electron transfer chain were significantly more common in tumors with the oncocytic phenotype, while variations in Complex V subunits were significantly more common in non-oncocytic tumors. CONCLUSIONS Our results show that the somatic mtDNA mutations reported over all tumors are indistinguishable from a random selection from the set of all possible amino acid variations, and have therefore escaped the effects of purifying selection that act strongly at the population level. We show that the pathogenicity of somatic mtDNA mutations is a determining factor for the oncocytic phenotype. The opposite associations of the Complex I and Complex V variants with the oncocytic and non-oncocytic tumors implies that low mitochondrial membrane potential may play an important role in determining the oncocytic phenotype.
Collapse
Affiliation(s)
- Luísa Pereira
- Center for Human Genetics Research, Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | |
Collapse
|
9
|
Park JS, Sharma LK, Li H, Xiang R, Holstein D, Wu J, Lechleiter J, Naylor SL, Deng JJ, Lu J, Bai Y. A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis. Hum Mol Genet 2009; 18:1578-89. [PMID: 19208652 DOI: 10.1093/hmg/ddp069] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial alteration has been long proposed to play a major role in tumorigenesis. Recently, mitochondrial DNA (mtDNA) mutations have been found in a variety of cancer cells. In this study, we examined the contribution of mtDNA mutation and mitochondrial dysfunction in tumorigenesis first using human cell lines carrying a frame-shift at NADH dehydrogenase (respiratory complex I) subunit 5 gene (ND5); the same homoplasmic mutation was also identified in a human colorectal cancer cell line earlier. With increasing mutant ND5 mtDNA content, respiratory function including oxygen consumption and ATP generation through oxidative phosphorylation declined progressively, while lactate production and dependence on glucose increased. Interestingly, the reactive oxygen species (ROS) levels and apoptosis exhibited antagonistic pleiotropy associated with mitochondrial defects. Furthermore, the anchorage-dependence phenotype and tumor-forming capacity of cells carrying wild-type and mutant mtDNA were tested by growth assay in soft agar and subcutaneous implantation of the cells in nude mice. Surprisingly, the cell line carrying the heteroplasmic ND5 mtDNA mutation showed significantly enhanced tumor growth, while cells with homoplasmic form of the same mutation inhibited tumor formation. Similar results were obtained from the analysis of a series of mouse cell lines carrying a nonsense mutation at ND5 gene. Our results indicate that the mtDNA mutations might play an important role in the early stage of cancer development, possibly through alteration of ROS generation and apoptosis.
Collapse
Affiliation(s)
- Jeong Soon Park
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 78229, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zimniak P. Detoxification reactions: relevance to aging. Ageing Res Rev 2008; 7:281-300. [PMID: 18547875 DOI: 10.1016/j.arr.2008.04.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 04/23/2008] [Indexed: 12/23/2022]
Abstract
It is widely (although not universally) accepted that organismal aging is the result of two opposing forces: (i) processes that destabilize the organism and increase the probability of death, and (ii) longevity assurance mechanisms that prevent, repair, or contain damage. Processes of the first group are often chemical and physico-chemical in nature, and are either inevitable or only under marginal biological control. In contrast, protective mechanisms are genetically determined and are subject to natural selection. Life span is therefore largely dependent on the investment into protective mechanisms which evolve to optimize reproductive fitness. Recent data indicate that toxicants, both environmental and generated endogenously by metabolism, are major contributors to macromolecular damage and physiological dysregulation that contribute to aging; electrophilic carbonyl compounds derived from lipid peroxidation appear to be particularly important. As a consequence, detoxification mechanisms, including the removal of electrophiles by glutathione transferase-catalyzed conjugation, are major longevity assurance mechanisms. The expression of multiple detoxification enzymes, each with a significant but relatively modest effect on longevity, is coordinately regulated by signaling pathways such as insulin/insulin-like signaling, explaining the large effect of such pathways on life span. The major aging-related toxicants and their cognate detoxification systems are discussed in this review.
Collapse
Affiliation(s)
- Piotr Zimniak
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, United States.
| |
Collapse
|
11
|
Jin X, Zhang J, Gao Y, Ding K, Wang N, Zhou D, Jen J, Cheng S. Relationship between mitochondrial DNA mutations and clinical characteristics in human lung cancer. Mitochondrion 2007; 7:347-53. [PMID: 17707697 DOI: 10.1016/j.mito.2007.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2006] [Revised: 05/12/2007] [Accepted: 06/26/2007] [Indexed: 01/02/2023]
Abstract
Mitochondrial DNA (mtDNA) is known for its high frequencies of polymorphisms and mutations, some of which are related to various diseases, including cancers. However, roles of mutations and polymorphisms in some diseases are among heated debate, especially for cancer. To investigate the possible role of mtDNA mutations in lung cancer, we sequenced complete mtDNA of lung cancer tissues, corresponding normal (i.e., non-cancerous) lung tissues, and peripheral blood samples from 55 lung cancer patients and examined the relationship between mtDNA mutations or polymorphisms and clinical parameters. We identified 56 mutations in 33 (60%) of the 55 patients, including 48 point mutations, four single-nucleotide insertions, and four single-nucleotide deletions. Nineteen of these mutations resulted in amino acid substitution. These missense mtDNA mutations were distributed in 9 of 13 mitochondrial DNA coding genes. Three hundred eighty eight polymorphisms were identified among the 55 patients. Seventy-three polymorphisms resulted in amino acid substitution. There was no association of incidence of specific mtDNA mutation or polymorphism with patients' gender, age at diagnosis, smoking history, tumor type or tumor stage (P>0.05). This study revealed a variety of mtDNA mutations and mtDNA polymorphisms in human lung cancer, some of which might be involved in human lung carcinogenesis.
Collapse
Affiliation(s)
- Xiongjie Jin
- Department of Etiology and Carcinogenesis, Cancer Institute (Hospital), Peking Union Medical College & Chinese Academy of Medical Sciences, P.O. Box 2258, Beijing 100021, PR China
| | | | | | | | | | | | | | | |
Collapse
|