1
|
Challagundla N, Chrisophe-Bourdon J, Agrawal-Rajput R. Chlamydia trachomatis infection co-operatively enhances HPV E6-E7 oncogenes mediated tumorigenesis and immunosuppression. Microb Pathog 2023; 175:105929. [PMID: 36565970 DOI: 10.1016/j.micpath.2022.105929] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
Chlamydia trachomatis and human papilloma virus (HPV) are the two most common sexually transmitted infections among women. HPV infection can increase the risk of cervical cancer and infertility while C. trachomatis induces pelvic inflammatory disease. Here, we elucidate the molecular conundrum of the co-infection of HPV and C. trachomatis infection and their outcome with respect to cervical cancer. HPV infection was mimicked by overexpression of HPV 16 E6-E7 or using human cervical cell lines SiHa and C33a (with and without HPV 16 respectively). HPV transfected co-infection increased cell proliferation and resistance to H202 and TNFα-induced cell death compared to individual infections. These changes are brought by alteration in the cell cycle proteins (CDK2, CDK6 and Bcl2) and thus increasing the stemness of the epithelial cells as observed by increased colony forming units and CD133 expression. The co-infection also induces change in the mRNA levels of cells which are involved in mesenchymal phenotype. C. trachomatis in presence of E6-E7 overexpression caused cervical epithelial neoplasm in mice with increased Ki67 expression and decreased P53 levels. Stem cell marker, CD133 expression also increased in the cervical tissues of both infected and co-infected group of mice. The cells obtained from the cervix were able to grow continuously in ex vivo cultures. All these results indicate the co-existence of the C. trachomatis and HPV 16 might increase the risk of cervical cancer.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology Lab, Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Jean Chrisophe-Bourdon
- Department of Surgery and Molecular Oncology, University of Dundee/Inserm U858, European Associated Laboratory, Dundee, DD1 9SY, United Kingdom
| | - Reena Agrawal-Rajput
- Immunology Lab, Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
2
|
Affiliation(s)
- Emanuela Guerra
- Emanuela Guerra, PhD, Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy, Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; and Saverio Alberti, MD, PhD, Unit of Medical Genetics, Department of Biomedical Sciences-BIOMORF, University of Messina, Messina, Italy
| | - Saverio Alberti
- Emanuela Guerra, PhD, Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy, Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; and Saverio Alberti, MD, PhD, Unit of Medical Genetics, Department of Biomedical Sciences-BIOMORF, University of Messina, Messina, Italy
| |
Collapse
|
3
|
Sadia H, Ahmad Bhinder M, Irshad A, Zahid B, Ahmed R, Ashiq S, Malik K, Riaz M, Nadeem T, Ashiq K, Akbar A. Determination of expression profile of p53 gene in different grades of breast cancer tissues by real time PCR. Afr Health Sci 2020; 20:1273-1282. [PMID: 33402975 PMCID: PMC7751535 DOI: 10.4314/ahs.v20i3.32] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background Pakistan has a high incidence of breast cancer in Asia, where annually 16,232 deaths are reported. There are many exogenous and endogenous risk factors that affect the tumor suppressor genes and oncogenes. The p53 gene is a tumor suppressor gene and it has a role to protect the whole genome from external and internal stresses, which causes damages to the genome. Objective The aim of the current study was to investigate the p53 gene expression by using the real-time PCR technique in different grades of breast cancer as compared to the normal tissue. Methods Fresh Modified Radical Mastectomy (MRM) samples (grade1-grade3) were collected from different hospitals of the Lahore. The project was approved by an ethical review committee of Jinnah Hospital, Lahore. And before sampling an informed consent was obtained from patients and clinicians. RNA from fresh biopsies was extracted by Qiagen extraction kit and cDNA was formed. Real time PCR performed by using SYBR green master mix (ABI) and the data was evaluated by using Livak method. Statistical analysis was done by using Microsoft Excel. Results There was an abnormal gene expression of p53 in all grades of the breast tumors. Non-significant (p>0.05) difference of down and up regulation of p53 in different grades of breast tumor was found. However, as a whole up-regulation was more than down-regulation with significant difference (p<0.0011). Conclusion The abnormal expression of p53 shows that there are some genetic and epigenetic factors which are the primal cause of an abnormal gene expression. It is recommended that perform next generation sequencing (NGS) of the gene to find out the mutations causing the abnormal behavior of p53 gene.
Collapse
|
4
|
Manueldas S, Benterud T, Rueegg CS, Garberg HT, Huun MU, Pankratov L, Åsegg-Atneosen M, Solberg R, Escobar J, Saugstad OD, Baumbusch LO. Temporal patterns of circulating cell-free DNA (cfDNA) in a newborn piglet model of perinatal asphyxia. PLoS One 2018; 13:e0206601. [PMID: 30475817 PMCID: PMC6261042 DOI: 10.1371/journal.pone.0206601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 10/16/2018] [Indexed: 12/18/2022] Open
Abstract
Perinatal asphyxia is a severe medical condition resulting from oxygen deficiency (hypoxia) at the time of birth, causing worldwide approximately 680,000 newborn deaths every year. Better prediction of severity of damages including early biomarkers is highly demanded. Elevated levels of circulating cell-free DNA (cfDNA) in blood have been reported for a range of different diseases and conditions, including cancer and prematurity. The objective of this study was to validate methods for assessing cfDNA in blood and cerebrospinal fluid (CSF) and to explore temporal variations in a piglet model of neonatal hypoxia-reoxygenation. Different cfDNA extraction methods in combination with cfDNA detection systems were tested, including a fluorescent assay using SYBR Gold and a qRT-PCR-based technique. Newborn piglets (n = 55) were exposed to hypoxia-reoxygenation, hypoxia-reoxygenation and hypothermia, or were part of the sham-operated control group. Blood was sampled at baseline and at post-intervention, further at 30, 270, and 570 minutes after the end of hypoxia. Applying the fluorescent method, cfDNA concentration in piglets exposed to hypoxia (n = 32) increased from 36.8±27.6 ng/ml prior to hypoxia to a peak level of 61.5±54.9 ng/ml after the intervention and deceased to 32.3±19.1 ng/ml at 570 minutes of reoxygenation, whereas the group of sham-operated control animals (n = 11) revealed a balanced cfDNA profile. Animals exposed to hypoxia and additionally treated with hypothermia (n = 12) expressed a cfDNA concentration of 54.4±16.9 ng/ml at baseline, 39.2±26.9 ng/ml at the end of hypoxia, and of 41.1±34.2 ng/ml at 570 minutes post-intervention. Concentrations of cfDNA in the CSF of piglets exposed to hypoxia revealed at post-intervention higher levels in comparison to the controls. However, these observations were only tendencies and not significant. In a first methodological proof-of-principle study exploring cfDNA using a piglet model of hypoxia-reoxygenation variations in the temporal patterns suggest that cfDNA might be an early indicator for damages caused by perinatal asphyxia.
Collapse
Affiliation(s)
- Sophia Manueldas
- Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Torkil Benterud
- Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,University of Oslo, Oslo, Norway
| | - Corina Silvia Rueegg
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Håvard Tetlie Garberg
- Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,University of Oslo, Oslo, Norway
| | - Marianne Ullestad Huun
- Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,University of Oslo, Oslo, Norway
| | - Leonid Pankratov
- Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,University of Oslo, Oslo, Norway
| | - Monica Åsegg-Atneosen
- Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,University of Oslo, Oslo, Norway
| | - Rønnaug Solberg
- Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Pediatrics, Vestfold Hospital Trust, Tønsberg, Norway
| | - Javier Escobar
- Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Ola Didrik Saugstad
- Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,University of Oslo, Oslo, Norway
| | - Lars Oliver Baumbusch
- Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
5
|
Wagner T, Kiweler N, Wolff K, Knauer SK, Brandl A, Hemmerich P, Dannenberg JH, Heinzel T, Schneider G, Krämer OH. Sumoylation of HDAC2 promotes NF-κB-dependent gene expression. Oncotarget 2016; 6:7123-35. [PMID: 25704882 PMCID: PMC4466673 DOI: 10.18632/oncotarget.3344] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 01/04/2015] [Indexed: 01/15/2023] Open
Abstract
The transcription factor nuclear factor-κB (NF-κB) is crucial for the maintenance of homeostasis. It is incompletely understood how nuclear NF-κB and the crosstalk of NF-κB with other transcription factors are controlled. Here, we demonstrate that the epigenetic regulator histone deacetylase 2 (HDAC2) activates NF-κB in transformed and primary cells. This function depends on both, the catalytic activity and an intact HDAC2 sumoylation motif. Several mechanisms account for the induction of NF-κB through HDAC2. The expression of wild-type HDAC2 can increase the nuclear presence of NF-κB. In addition, the ribosomal S6 kinase 1 (RSK1) and the tumor suppressor p53 contribute to the regulation of NF-κB by HDAC2. Moreover, TP53 mRNA expression is positively regulated by wild-type HDAC2 but not by sumoylation-deficient HDAC2. Thus, sumoylation of HDAC2 integrates NF-κB signaling involving p53 and RSK1. Since HDAC2-dependent NF-κB activity protects colon cancer cells from genotoxic stress, our data also suggest that high HDAC2 levels, which are frequently found in tumors, are linked to chemoresistance. Accordingly, inhibitors of NF-κB and of the NF-κB/p53-regulated anti-apoptotic protein survivin significantly sensitize colon carcinoma cells expressing wild-type HDAC2 to apoptosis induced by the genotoxin doxorubicin. Hence, the HDAC2-dependent signaling node we describe here may offer an interesting therapeutic option.
Collapse
Affiliation(s)
- Tobias Wagner
- Centre for Molecular Biomedicine, Institute of Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Jena, Germany
| | - Nicole Kiweler
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Katharina Wolff
- Centre for Molecular Biomedicine, Institute of Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Jena, Germany
| | - Shirley K Knauer
- Centre for Medical Biotechnology, Molecular Biology II, University of Duisburg-Essen, Essen, Germany
| | - André Brandl
- Centre for Molecular Biomedicine, Institute of Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Jena, Germany
| | - Peter Hemmerich
- Leibniz-Institute for Age Research, Fritz-Lipmann-Institute, Jena, Germany
| | - Jan-Hermen Dannenberg
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Thorsten Heinzel
- Centre for Molecular Biomedicine, Institute of Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Jena, Germany
| | - Günter Schneider
- Klinikum rechts der Isar, II. Medizinische Klinik, Technische Universität München, München, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Mainz, Germany
| |
Collapse
|
6
|
Ji W, Zhang N, Zhang H, Ma J, Zhong H, Jiao J, Gao Z. Expression of p53β and Δ133p53 isoforms in different gastric tissues. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:10468-10474. [PMID: 26617756 PMCID: PMC4637571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 08/25/2015] [Indexed: 06/05/2023]
Abstract
This study aims to detect the mRNA of p53β and Δ133p53 isoforms in three gastric carcinoma cell lines and tissues of superficial gastritis, atrophic gastritis, gastric carcinoma, or paracancerous area. Nested reverse transcription PCR was used to detect the mRNA of p53β and Δ133p53 isoforms in tissues of superficial gastritis, chronic atrophic gastritis, gastric cancer cell lines (SGC-7901, MKN45, KATO III), gastric adenocarcinoma, and paracancerous lesion. The amplified products were shown by agarose gel electrophoresis. The expression difference among various tissues was analyzed by x(2) tests. The positive rates of ∆133p53 mRNA were 73.3% (11/15) in gastric adenocarcinoma and 20% (3/15) in paracancerous tissue, whereas the positive rates of p53β mRNA were 20% (3/15) in gastric adenocarcinoma and 66.7% (10/15) in paracancerous tissue. The difference between adenocarcinoma and paracancerous tissues was significant (P<0.05). The positive rates of ∆133p53 mRNA were 25% (5/20), 50% (15/30), and 75% (15/20), respectively, in superficial gastritis, atrophic gastritis, and gastric adenocarcinoma; the positive rates of p53β mRNA were 65% (13/20), 33.3% (10/30), and 25% (5/20), respectively, in superficial gastritis, atrophic gastritis, and gastric adenocarcinoma. The difference between adenocarcinoma and superficial gastritis samples was significant (P<0.05). Both p53β and ∆133p53 mRNAs were positive in MKN45; only p53β mRNA was detected in SGC7901; neither p53β nor ∆133p53 mRNA was detected in KATO III. ∆133p53 and p53β, which are possible indicators for the diagnosis and biological therapy of gastric carcinoma, were expressed differentially in different gastric tissues.
Collapse
Affiliation(s)
- Wansheng Ji
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical UniversityWeifang 261031, China
| | - Na Zhang
- Graduate School of Weifang Medical UniversityWeifang 261042, China
| | - Hongmei Zhang
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical UniversityWeifang 261031, China
| | - Jingrong Ma
- Graduate School of Weifang Medical UniversityWeifang 261042, China
| | - Hua Zhong
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical UniversityWeifang 261031, China
| | - Jianxin Jiao
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical UniversityWeifang 261031, China
| | - Zhixing Gao
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical UniversityWeifang 261031, China
| |
Collapse
|
7
|
Milicevic Z, Kasapovic J, Gavrilovic L, Milovanovic Z, Bajic V, Spremo-Potparevic B. Mutant p53 protein expression and antioxidant status deficiency in breast cancer. EXCLI JOURNAL 2014; 13:691-708. [PMID: 26417293 PMCID: PMC4464499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/12/2014] [Indexed: 10/30/2022]
Abstract
It is well recognized that cancers develop and grow as a result of disordered function of tumor suppressor genes and oncogenes, which may be exploited for screening purposes. Extensive evidence indicated tumor suppressor protein p53 as candidate marker for mutation identification. We have investigated mutant p53 protein expression in human breast tumors in relation to antioxidant status deficiency. The study included 100 breast cancer patients. p53 protein expression was evaluated by Western blot assay and immunostaining using a CM-1, DO-7 and Pab240 antibodies. Antioxidant parameters and lipid peroxidation were estimated by biochemical analyses. Western blotting with epitopespecific monoclonal antibody Pab240 strongly suggests that nuclear extracts from breast cancer cells express mutant forms of p53. It is of interest that the mutant forms of p53 overexpression in conjunction with the appearance of nuclear bodies are observed in highly aggressive carcinomas. Expression of isoform Δp53 (45 kDa) and isoform of ~ 29 kDa were more common in cases with LN metastasis. These studies point out the molecular consequences of oxidative stress (lipid peroxides, LP, p<0.001) and antioxidant status deficiency (copper, zinc superoxid dismutase, SOD, p<0.001; catalase, CAT, p<0.01; glutathione reductase, GR, p<0.001; glutathione, GSH, p<0.05) and indicate the importance of p53 mutation as the commonest genetic alteration detected in breast cancer cells. The expression of mutant p53 is correlated to increased lipid peroxides (0.346, p<0.05 ) and lowered antioxidant activity of CAT (- 0.437, p<0.01) in the breast cancer patients.
Collapse
Affiliation(s)
- Zorka Milicevic
- Laboratory of Molecular Biology and Endocrinology, "Vinca" Institute of Nuclear Sciences, Mihaila Petrovica Alasa 12-14, University of Belgrade, 11 001 Belgrade, Serbia
| | - Jelena Kasapovic
- Laboratory of Molecular Biology and Endocrinology, "Vinca" Institute of Nuclear Sciences, Mihaila Petrovica Alasa 12-14, University of Belgrade, 11 001 Belgrade, Serbia
| | - Ljubica Gavrilovic
- Laboratory of Molecular Biology and Endocrinology, "Vinca" Institute of Nuclear Sciences, Mihaila Petrovica Alasa 12-14, University of Belgrade, 11 001 Belgrade, Serbia
| | - Zorka Milovanovic
- National Center of Cancer Research (NCRC), Institute for Oncology and Radiology of Serbia, Pasterova 14, 11 000 Belgrade, Serbia
| | - Vladan Bajic
- Department for Radiobiology and Molecular Genetics, "Vinca" Institute of Nuclear Sciences, Mihaila Petrovica Alasa 12-14, University of Belgrade, 11 001 Belgrade, Serbia
| | - Biljana Spremo-Potparevic
- Department of Biology and Human Genetics, Institute of Physiology, Faculty of Pharmacy, Vojvode Stepe 450, University of Belgrade, 11 000 Belgrade, Serbia
| |
Collapse
|
8
|
Lui K, An J, Montalbano J, Shi J, Corcoran C, He Q, Sun H, Sheikh MS, Huang Y. Negative regulation of p53 by Ras superfamily protein RBEL1A. J Cell Sci 2013; 126:2436-45. [PMID: 23572512 DOI: 10.1242/jcs.118117] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We had previously reported that RBEL1A, a novel Ras-like GTPase, was overexpressed in multiple human malignancies and that its depletion suppressed cell growth. However, the underlying molecular mechanism remained to be elucidated. Here we report that depletion of endogenous RBEL1A results in p53 accumulation due to increased p53 half-life whereas increased expression of RBEL1A reduces p53 levels under unstressed and genotoxic stress conditions. RBEL1A directly interacts with p53 and MDM2, and strongly enhances MDM2-dependent p53 ubiquitylation and degradation. We also found that RBEL1A modulation of p53 ubiquitylation by MDM2 does not depend on its GTPase activity. We have also defined the p53 oligomeric domain and RBEL1A GTPase domain to be the crucial regions for p53-RBEL1A interactions. Importantly, we have found that RBEL1A strongly interferes with p53 transactivation function; thus our results indicate that RBEL1A appears to function as a novel p53 negative regulator that facilitates MDM2-dependent p53 ubiquitylation and degradation.
Collapse
Affiliation(s)
- Ki Lui
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mapping genetic alterations causing chemoresistance in cancer: identifying the roads by tracking the drivers. Oncogene 2013; 32:5315-30. [PMID: 23474753 DOI: 10.1038/onc.2013.48] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/16/2013] [Accepted: 01/16/2013] [Indexed: 12/12/2022]
Abstract
Although new agents are implemented to cancer therapy, we lack fundamental understandings of the mechanisms of chemoresistance, the main obstacle to cure in cancer. Here we review clinical evidence linking molecular defects to drug resistance across different tumour forms and discuss contemporary experimental evidence exploring these mechanisms. Although evidence, in general, is sparse and fragmentary, merging knowledge links drug resistance, and also sensitivity, to defects in functional pathways having a key role in cell growth arrest or death and DNA repair. As these pathways may act in concert, there is a need to explore multiple mechanisms in parallel. Taking advantage of massive parallel sequencing and other novel high-throughput technologies and base research on biological hypotheses, we now have the possibility to characterize functional defects related to these key pathways and to design a new generation of studies identifying the mechanisms controlling resistance to different treatment regimens in different tumour forms.
Collapse
|
10
|
Zasukhina GD, Odintsova TI, Shulenina LV, Ushenkova LN, Mikhailov VF, Shagirova ZM, Vedernikov AN, Gromov SP, Alfimov MV. Antimutagens (β-purothionin and crown compound) as modulators of expression of genes involved in carcinogenesis in human cells. DOKL BIOCHEM BIOPHYS 2012; 446:254-6. [PMID: 23132722 DOI: 10.1134/s1607672912050110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Indexed: 11/22/2022]
Affiliation(s)
- G D Zasukhina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Splicing of mouse p53 pre-mRNA does not always follow the "first come, first served" principle and may be influenced by cisplatin treatment and serum starvation. Mol Biol Rep 2012; 39:9247-56. [PMID: 22740133 DOI: 10.1007/s11033-012-1798-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 06/09/2012] [Indexed: 10/28/2022]
Abstract
Transcription of a pre-mRNA in eukaryotic cells elongates from the 5' to the 3' end, but intron removal during a pre-mRNA splicing does not always proceed in this orientation. In this study, we identified eight mouse p53 transcripts that retained one or more of introns 6, 7 and 8. The 5' part of intron 9 was also retained while the 3' part was not studied. These intron-containing transcripts, abbreviated as p53-ICTs, were detected at low abundance in many mouse embryonic fibroblasts (MEF) as well as cancer cell lines and tissues, and the highest ratio of these p53-ICTs to the mature p53 mRNA was seen in the normal pancreas. Serum starvation decreased those p53-ICTs that retained introns 6 and 7 but increased the levels of those lacking these introns while the level of the mature p53 mRNA was unaffected. Treatment of several cancer cell lines with cisplatin increased the mature p53 mRNA level but decreased these p53-ICTs. Transfection of p53(-/-) MEF with the p53 cDNA or several p53-ICT mini-genes slightly increased the cell viability and rendered the cells resistant to cisplatin. These data also suggest that p53 pre-mRNA splicing may have multiple orders of intron removal, some of which may not follow the "first come, first served" principle. It remains possible that these p53-ICTs are splicing intermediates existing as a mechanism for the cell to respond more promptly to a demand for more p53 and that p53 protein may be required for a normal life of MEF.
Collapse
|
12
|
Rybárová S, Vecanová J, Hodorová I, Mihalik J, Čižmáriková M, Mojžiš J, Solár P, Benický M, Adamkov M, Mirossay L. Association between polymorphisms of XRCC1, p53 and MDR1 genes, the expression of their protein products and prognostic significance in human breast cancer. Med Sci Monit 2012; 17:BR354-63. [PMID: 22129893 PMCID: PMC3628133 DOI: 10.12659/msm.882121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND This study aimed to examine the relationship between XRCC1, p53 and MDR1 protein, along with polymorphisms of their genes and their prognostic values in breast cancer. The following clinical and pathological parameters were evaluated: histopathological type of tumor, grade, stage, Her2/neu expression, ER, PR positivity and involvement of regional lymph nodes. MATERIAL/METHODS Expression of proteins was determined in 39 samples of breast cancer by immunohistochemistry. Nucleotide polymorphisms were analyzed by PCR-RFLP. For statistical analysis, chi-square test (Yates), Fisher's exact test, and correlation test were used to analyze the data. RESULTS The highest protein expression was immunohistochemically found in MDR1 protein, with 54% of samples testing positive. In addition, the evaluation of MDR1 expression revealed higher positive immunoreactivity in lobular (LIC) and other types of tumor in comparison to ductal (DIC) type. The expression of p53 and XRCC1 protein was equal, but lower compared to MDR1, both testing positive in 36% of all tissue samples. Comparison of XRCC1 protein and histopathological type of tumor revealed that DIC and LIC types were mostly XRCC1-negative, while other types, papillary and mucinous were more likely to be XRCC1-positive. Interestingly, when evaluating LIC samples separately, a negative correlation between the Her2/neu and expression of XRCC1 was detected. Apparently, all Her2/neu-positive samples were XRCC1-negative (6/86%). The correlation test indicated a negative correlation between Her2/neu-positive samples and XRCC1-negative specimens (r = 1, p < 0.05). Statistical analysis did not reveal a correlation of p53 expression with clinical and pathological parameters. Similarly, no statistically significant difference was found between the tested polymorphisms and protein expression. CONCLUSIONS We did not find statistically significant correlation between tested polymorphisms and their protein expression.
Collapse
Affiliation(s)
- Silvia Rybárová
- Department of Anatomy, Faculty of Medicine, PJ Safarik University, Kosice, Slovak Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mutation Analysis of TP53 Tumor Suppressor Gene in Colorectal Cancer in Patients from Iran (Kerman Province). IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2012; 15:683-90. [PMID: 23492839 PMCID: PMC3586867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 03/19/2011] [Indexed: 11/06/2022]
Abstract
OBJECTIVES P53 is an important tumor suppressor, which is mutated in later stages of many cancers and leads to resistance to chemotherapy. The aim of this study was to reveal mutations of TP53 in colorectal cancer in Kerman province. MATERIALS AND METHODS A total of Forty-three colon cancer specimens as paraffin block or fresh tissues, which passed stage IIIA, were selected. Three exons 5, 7 and 8 of P53 were amplified by PCR technique and sequenced directly. RESULTS The results showed two deletions at codon 140 and 142 in one tumor sample. GAT→AAT mutation at codon 184, and CGG→TGG mutation at codon 248 were seen in some tumor samples. Some mutations were also observed in middle of intron 7 in some tumor or normal tissues. CONCLUSION Some of those patients with mutation in P53 gene had metastasis in other organs. Therefore, genetic test before chemotherapy is helpful for successful treatment.
Collapse
|
14
|
Ding J, Polier G, Köhler R, Giaisi M, Krammer PH, Li-Weber M. Wogonin and related natural flavones overcome tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein resistance of tumors by down-regulation of c-FLIP protein and up-regulation of TRAIL receptor 2 expression. J Biol Chem 2011; 287:641-649. [PMID: 22086925 DOI: 10.1074/jbc.m111.286526] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent that kills various tumor cells without damaging normal tissues. However, many cancers remain resistant to TRAIL. To overcome TRAIL resistance, combination therapies using sensitizers of the TRAIL pathway would be an efficacious approach. To investigate potential sensitizers of TRAIL-induced apoptosis, we used TRAIL-resistant human T cell leukemia virus type 1 (HTLV-1)-associated adult T cell leukemia/lymphoma (ATL) cells as a model system. So far, HTLV-1-associated ATL is incurable by presently known therapies. Here, we show that wogonin and the structurally related natural flavones apigenin and chrysin break TRAIL resistance in HTLV-1-associated ATL by transcriptional down-regulation of c-FLIP, a key inhibitor of death receptor signaling, and by up-regulation of TRAIL receptor 2 (TRAIL-R2). This effect is mediated through transcriptional inhibition of the p53 antagonist murine double minute 2 (Mdm2), leading to an increase in p53 levels and, consequently, to up-regulation of the p53 target gene TRAIL-R2. We also show that these flavones can sensitize to TNFα- and CD95-mediated cell death. Furthermore, we show that wogonin, apigenin, and chrysin also enhance TRAIL-mediated apoptosis in other human cancer cell lines including breast cancer cell line MDA-MB-231, colon cancer cell line HT-29, hepatocellular carcinoma cell line HepG2, melanoma cell line SK-MEL-37, and pancreatic carcinoma cell line Capan-1 by the same mechanism. Thus, our study suggests the potential use of these flavones as an adjuvant for TRAIL-mediated anticancer therapy.
Collapse
Affiliation(s)
- Jie Ding
- Tumor Immunology Program (D030), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Gernot Polier
- Tumor Immunology Program (D030), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Rebecca Köhler
- Tumor Immunology Program (D030), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Marco Giaisi
- Tumor Immunology Program (D030), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Peter H Krammer
- Tumor Immunology Program (D030), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Min Li-Weber
- Tumor Immunology Program (D030), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany.
| |
Collapse
|
15
|
Kapustin Y, Chan E, Sarkar R, Wong F, Vorechovsky I, Winston RM, Tatusova T, Dibb NJ. Cryptic splice sites and split genes. Nucleic Acids Res 2011; 39:5837-44. [PMID: 21470962 PMCID: PMC3152350 DOI: 10.1093/nar/gkr203] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We describe a new program called cryptic splice finder (CSF) that can reliably identify cryptic splice sites (css), so providing a useful tool to help investigate splicing mutations in genetic disease. We report that many css are not entirely dormant and are often already active at low levels in normal genes prior to their enhancement in genetic disease. We also report a fascinating correlation between the positions of css and introns, whereby css within the exons of one species frequently match the exact position of introns in equivalent genes from another species. These results strongly indicate that many introns were inserted into css during evolution and they also imply that the splicing information that lies outside some introns can be independently recognized by the splicing machinery and was in place prior to intron insertion. This indicates that non-intronic splicing information had a key role in shaping the split structure of eukaryote genes.
Collapse
Affiliation(s)
- Yuri Kapustin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20814, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Simian virus 40 activates ATR-Delta p53 signaling to override cell cycle and DNA replication control. J Virol 2010; 84:10727-47. [PMID: 20686026 DOI: 10.1128/jvi.00122-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During infection, simian virus 40 (SV40) attempts to take hold of the cell, while the host responds with various defense systems, including the ataxia-telangiectasia mutated/ATM-Rad3 related (ATM/ATR)-mediated DNA damage response pathways. Here we show that upon viral infection, ATR directly activates the p53 isoform Δp53, leading to upregulation of the Cdk inhibitor p21 and downregulation of cyclin A-Cdk2/1 (AK) activity, which force the host to stay in the replicative S phase. Moreover, downregulation of AK activity is a prerequisite for the generation of hypophosphorylated, origin-competent DNA polymerase α-primase (hypo-Polα), which is, unlike AK-phosphorylated Polα (P-Polα), recruited by SV40 large T antigen (T-Ag) to initiate viral DNA replication. Prevention of the downregulation of AK activity by inactivation of ATR-Δp53-p21 signaling significantly reduced the T-Ag-interacting hypo-Polα population and, accordingly, SV40 replication efficiency. Moreover, the ATR-Δp53 pathway facilitates the proteasomal degradation of the 180-kDa catalytic subunit of the non-T-Ag-interacting P-Polα, giving rise to T-Ag-interacting hypo-Polα. Thus, the purpose of activating the ATR-Δp53-p21-mediated intra-S checkpoint is to maintain the host in S phase, an optimal environment for SV40 replication, and to modulate the host DNA replicase, which is indispensable for viral amplification.
Collapse
|
17
|
Kouidou S, Malousi A, Maglaveras N. Li-Fraumeni and Li-Fraumeni-like syndrome mutations in p53
are associated with exonic methylation and splicing regulatory elements. Mol Carcinog 2009; 48:895-902. [DOI: 10.1002/mc.20537] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Zhang F, Sriram S. Identification and characterization of the interferon-beta-mediated p53 signal pathway in human peripheral blood mononuclear cells. Immunology 2009; 128:e905-18. [PMID: 19740351 DOI: 10.1111/j.1365-2567.2009.03104.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The relationship between the p53 signal pathway and the response of human peripheral blood mononuclear cells (PBMC) to interferon (IFN)-beta has hitherto not been examined. Using an oligonucleotide microarray, we found differential expression of at least 70 genes involved in the p53 signal pathway, including p53, which regulate cell proliferation and cell death following stimulation with IFN-beta. We verified our observations on a limited set of p53-regulated genes at the transcriptional and translational levels. We also examined the consequences of the activation of the p53 signal pathway by IFN-beta in PBMC. When cultured in the presence of T-cell mitogens, IFN-beta restricted the entry of lymphocytes from the G0/G1 phase to the S phase and reduced the number of cells in the G2 phase. The addition of IFN-beta alone did not increase apoptosis. However, in the presence of actinomycin D, a DNA-damaging agent, addition of IFN-beta enhanced the susceptibility of PBMC to apoptosis. These observations suggest that, in spite of the activation of a number of mutually overlapping pathways mediating cell death, cell cycle arrest was the most evident consequence of IFN-beta signalling in PBMC.
Collapse
Affiliation(s)
- Fanglin Zhang
- Department of Neurology, Multiple Sclerosis Research Center, Vanderbilt University Medical Center, Nashville, TN 37212, USA.
| | | |
Collapse
|
19
|
García-Alai MM, Tidow H, Natan E, Townsley FM, Veprintsev DB, Fersht AR. The novel p53 isoform "delta p53" is a misfolded protein and does not bind the p21 promoter site. Protein Sci 2008; 17:1671-8. [PMID: 18621913 DOI: 10.1110/ps.036996.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The tumor suppressor p53 can be expressed as different isoforms because of promoter selection and mRNA editing. One isoform, "delta p53" (Delta p53), results from what would be an unusual alternative splicing of exons 7/8 of the p53 gene, conserving the reading frame and generating a novel protein with proposed transcriptional activity essential for the intra S-phase checkpoint. Here, we show that the deletion of the 66 residues that correspond to strand beta10 and the C-terminal helix of the core domain and the interconnecting linker to the tetramerization domain occurring in the Delta p53 isoform leads to a misfolded and unstable protein, prone to form soluble aggregates, which does not bind the p21 promoter site. The complex of coexpressed Delta p53 and flp53 is soluble in vitro and binds poorly to DNA. Our results provide a structural explanation for the dominant-negative effect of Delta p53 and its lack of transcriptional activity.
Collapse
Affiliation(s)
- Maria M García-Alai
- Medical Research Council Centre for Protein Engineering, Cambridge CB2 0QH, United Kingdom
| | | | | | | | | | | |
Collapse
|
20
|
Kamihira S, Terada C, Sasaki D, Yanagihara K, Tsukasaki K, Hasegawa H, Yamada Y. Aberrant p53 protein expression and function in a panel of hematopoietic cell lines with different p53 mutations. Eur J Haematol 2008; 82:301-7. [PMID: 19220422 DOI: 10.1111/j.1600-0609.2009.01211.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The p53 gene is one of the most important genes involved in carcinogenesis and its role in part has been clarified by research using cell lines. To know the comprehensive characteristics of 22 hematopoietic cell lines (T, 13 and non-T, nine lines), the relationship between p53 mutational status, its altered functioning, and its mRNA and protein levels were examined. p53 mutations were less frequent in T-cell lines (38% vs. 78%) with mainly single nucleotide substitutions generating missense codons. Of 22 different p53 mutations, 12 (54.5%) resulted in mutated proteins, with the mutations clustering mainly in the sequence-specific DNA-binding site region located from amino acid residues 102 to 292. p53 mRNA and protein assays determined that wild-type cell lines expressed constant levels of both mRNA and protein, but mutated cell lines demonstrated two expression patterns: protein over-expression with reduced mRNA levels, because of missense mutations; and protein under-expression with little mRNA expression, because of other mutations. The resistance to Nutlin (MDM2 inhibitor)-induced apoptosis was associated with p53 mutations independently of MDM2 expression levels. This clarification of the unique associations in cell lines useful for bio-medical studies will contribute to a better understanding of p53-associated carcinogenesis.
Collapse
Affiliation(s)
- Shimeru Kamihira
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | | | | | | | | | | | | |
Collapse
|