1
|
Mehdi SH, Xu YZ, Shultz LD, Kim E, Lee YG, Kendrick S, Yoon D. Development of New Diffuse Large B Cell Lymphoma Mouse Models. Cancers (Basel) 2024; 16:3006. [PMID: 39272864 PMCID: PMC11394112 DOI: 10.3390/cancers16173006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/09/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is the most diagnosed, aggressive non-Hodgkin lymphoma, with ~40% of patients experiencing refractory or relapsed disease. Given the low response rates to current therapy, alternative treatment strategies are necessary to improve patient outcomes. Here, we sought to develop an easily accessible new xenograft mouse model that better recapitulates the human disease for preclinical studies. We generated two Luciferase (Luc)-EGFP-expressing human DLBCL cell lines representing the different DLBCL cell-of-origin subtypes. After intravenous injection of these cells into humanized NSG mice, we monitored the tumor growth and evaluated the organ-specific engraftment/progression period. Our results showed that human IL6-expressing NSG (NSG-IL6) mice were highly permissive for DLBCL cell growth. In NSG-IL6 mice, systemic engraftments of both U2932 activated B cell-like- and VAL germinal B cell-like-DLBCL (engraftment rate; 75% and 82%, respectively) were detected within 2nd-week post-injection. In the organ-specific ex vivo evaluation, both U2932-Luc and VAL-Luc cells were initially engrafted and expanded in the spleen, liver, and lung and subsequently in the skeleton, ovary, and brain. Consistent with the dual BCL2/MYC translocation association with poor patient outcomes, VAL cells showed heightened proliferation in human IL6-conditioned media and caused rapid tumor expansion and early death in the engrafted mice. We concluded that the U2932 and VAL cell-derived human IL6-expressing mouse models reproduced the clinical features of an aggressive DLBCL with a highly consistent pattern of tumor development. Based on these findings, NSG mice expressing human IL6 have the potential to serve as a new tool to develop DLBCL xenograft models to overcome the limitations of standard subcutaneous DLBCL xenografts.
Collapse
Affiliation(s)
- Syed Hassan Mehdi
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ying-Zhi Xu
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | - Eunkyung Kim
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Yong Gu Lee
- College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Samantha Kendrick
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Donghoon Yoon
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
2
|
Xu S, Dolff S, Mülling N, Bachmann HS, Dai Y, Lindemann M, Sun M, Witzke O, Kribben A, Wilde B. Farnesyltransferase-inhibitors exert in vitro immunosuppressive capacity by inhibiting human B-cells. FRONTIERS IN TRANSPLANTATION 2023; 2:1233322. [PMID: 38993912 PMCID: PMC11235315 DOI: 10.3389/frtra.2023.1233322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/13/2023] [Indexed: 07/13/2024]
Abstract
Objectives Farnesyltransferase inhibitors (FTI), which inhibit the prenylation of Ras GTPases, were developed as anti-cancer drugs. As additional target proteins for prenylation were identified in the past, it is likely that FTI have potential value for therapeutic purposes beyond cancer. The effect of FTI on B-cells remains unclear. To address this issue, we investigated the effects of in vitro FTI treatment on effector and regulatory B-cells in healthy controls and renal transplant patients. Methods For this purpose, B-cells were isolated from the peripheral blood of healthy controls and renal transplant patients. Purified B-cells were stimulated via Toll-like-receptor 9 (TLR-9) in the presence or absence of FTI. Regulatory functions, such as IL-10 and Granzyme B (GrB) secretion, were assessed by flow cytometry. In addition, effector B-cell functions, such as plasma cell formation and IgG secretion, were studied. Results The two FTI Lonafarnib and tipifarnib both suppressed TLR-9-induced B-cell proliferation. Maturation of IL-10 producing B-cells was suppressed by FTI at high concentrations as well as induction of GrB-secreting B-cells. Plasma blast formation and IgG secretion were potently suppressed by FTI. Moreover, purified B-cells from immunosuppressed renal transplant patients were also susceptible to FTI-induced suppression of effector functions, evidenced by diminished IgG secretion. Conclusion FTI suppress in vitro B-cell proliferation and plasma cell formation while partially preserving IL-10 as well as GrB production of B-cells. Thus, FTI may have immunosuppressive capacity encouraging further studies to investigate the potential immunomodulatory value of this agent.
Collapse
Affiliation(s)
- Shilei Xu
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Sebastian Dolff
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Nils Mülling
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hagen S. Bachmann
- Institute of Pharmacology and Toxicology, Centre for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Yang Dai
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Monika Lindemann
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ming Sun
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas Kribben
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Benjamin Wilde
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
3
|
Abstract
New drugs targeting the mitogen-activated protein kinase (MAPK) pathway have generated striking clinical response in melanoma therapy. From the discovery of BRAF mutation in melanoma in 2002, to the approval of first BRAF inhibitor vemurafenib for melanoma treatment by the US Food and Drug Administration in 2011, therapies targeting the MAPK pathway have been proven effective in less than a decade. The success of vemurafenib stimulated more intensive investigation of the molecular mechanisms of melanoma pathogenesis and development of new treatment strategies targeting specific molecules in MAPK pathway. Although selective BRAF inhibitors and MEK inhibitors demonstrated improved overall survival of metastatic melanoma patients, limited duration or development of resistance to BRAF inhibitors have been reported. Patients with metastatic melanoma still face very poor prognosis and lack of clarified therapies. Studies and multiple clinical trials on more potent and selective small molecule inhibitory compounds to further improve the clinical effects and overcome drug resistance are underway. In this review, we analyzed the therapeutic potentials of each member of the MAPK signaling pathway, summarized important MAPK-inhibiting drugs, and discussed the promising combination treatment targeting multiple targets in melanoma therapy, which may overcome the drawbacks of current drugs treatment.
Collapse
Affiliation(s)
- Yabin Cheng
- Department of Dermatology and Skin Science, Research Pavilion, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
4
|
Murine models of B-cell lymphomas: promising tools for designing cancer therapies. Adv Hematol 2012; 2012:701704. [PMID: 22400032 PMCID: PMC3287022 DOI: 10.1155/2012/701704] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 10/21/2011] [Indexed: 12/21/2022] Open
Abstract
Human B-cell lymphomas, the fourth most common hematologic malignancy, are currently the subject of extensive research. The limited accessibility of biopsies, the heterogeneity among patients, and the subtypes of lymphomas have necessitated the development of animal models to decipher immune escape mechanisms and design new therapies. Here, we summarize the cell lines and murine models used to study lymphomagenesis, the lymphoma microenvironment, and the efficacy of new therapies. These data allow us to understand the role of the immune system in the fight against tumors. Exploring the advantages and limitations of immunocompetent versus immunodeficient models improves our understanding of the molecular and cellular mechanisms of tumor genesis and development as well as the fundamental processes governing the interaction of tumors and their host tissues. We posit that these basic preclinical investigations will open up new and promising approaches to designing better therapies.
Collapse
|
5
|
Multi-institutional phase 2 study of the farnesyltransferase inhibitor tipifarnib (R115777) in patients with relapsed and refractory lymphomas. Blood 2011; 118:4882-9. [PMID: 21725056 DOI: 10.1182/blood-2011-02-334904] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A phase 2 study of the oral farnesyltransferase inhibitor tipifarnib was conducted in 93 adult patients with relapsed or refractory lymphoma. Patients received tipifarnib 300 mg twice daily on days 1-21 of each 28-day cycle. The median number of prior therapies was 5 (range, 1-17). For the aggressive B-cell, indolent B-cell, and T-cell and Hodgkin lymphoma (HL/T) groups, the response rates were 17% (7/42), 7% (1/15), and 31% (11/36), respectively. Of the 19 responders, 7 were diffuse large B-cell non-Hodgkin lymphoma (NHL), 7 T-cell NHL, 1 follicular grade 2, and 4 HL. The median response duration for the 19 responders was 7.2 months (mean, 15.8 months; range, 1.8-62), and 5 patients in the HL/T group are still receiving treatment at 29-64+ months. The grade 3/4 toxicities observed were fatigue and reversible myelosuppression. Correlative studies suggest that Bim and Bcl-2 should be examined as potential predictors of response in future studies. These results indicate that tipifarnib has activity in lymphoma, particularly in heavily pretreated HL/T types, with little activity in follicular NHL. In view of its excellent toxicity profile and novel mechanism of action, further studies in combination with other agents appear warranted. This trial is registered at www.clinicaltrials.gov as #NCT00082888.
Collapse
|
6
|
Gaylo AE, Laux KS, Batzel EJ, Berg ME, Field KA. Delayed rejection of MHC class II-disparate skin allografts in mice treated with farnesyltransferase inhibitors. Transpl Immunol 2008; 20:163-70. [PMID: 18930822 DOI: 10.1016/j.trim.2008.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 09/11/2008] [Accepted: 09/18/2008] [Indexed: 01/07/2023]
Abstract
Farnesyltransferase inhibitors (FTIs), developed as anti-cancer drugs, have the potential to modulate immune responses without causing nonspecific immune suppression. We have investigated the possibility that FTIs, by affecting T cell cytokine secretion, can attenuate alloreactive immune responses. The effects of FTIs on murine alloreactive T cells were determined both in vitro, by measuring cytokine secretion or cell proliferation in mixed lymphocyte cultures, and in vivo, by performing skin allografts from H-2(bm12) mice to MHC class II-disparate B6 mice. We found that two different FTIs, ABT-100 and L-744,832, blocked secretion of IFN-gamma, IL-2, IL-4, and TNF-alpha from naïve T cells in vitro. ABT-100 and L-744,832 blocked cytokine production from both CD4(+) and CD8(+) naïve T cells stimulated with CD3 and CD28 antibodies, but only if the cells were pretreated with the FTIs for 48 h. Proliferation of alloreactive T cells in mixed lymphocyte cultures was blocked by either FTI. We also found that the proliferation of enriched T cells stimulated with IL-2 was blocked by ABT-100 treatment. In mice with an MHC class II-disparate skin graft, rejection of primary allografts was significantly delayed by treatment with either ABT-100 or L-744,832. Secondary rejection in mice previously primed to the alloantigen was found to be unaffected by L-744,832 treatment. We have shown that FTIs can block T cell cytokine secretion and attenuate alloreactive immune responses. The ability of FTIs to block secretion of cytokines, including IFN-gamma and IL-4, from naïve T cells provides a likely biological mechanism for the specific suppression of class II MHC-mediated allorejection. These results demonstrate that FTIs may have useful immunomodulatory activity due to their ability to delay priming to alloantigens.
Collapse
Affiliation(s)
- Alison E Gaylo
- Cell Biology/Biochemistry Program, Biology Department, Bucknell University, Lewisburg, PA 17837, United States
| | | | | | | | | |
Collapse
|