1
|
Bapat AS, O'Connor CH, Schwertfeger KL. Targeting the NF-κB pathway enhances responsiveness of mammary tumors to JAK inhibitors. Sci Rep 2023; 13:5349. [PMID: 37005447 PMCID: PMC10067805 DOI: 10.1038/s41598-023-32321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
Interactions between tumor cells and the tumor microenvironment are critical for tumor growth, progression, and response to therapy. Effective targeting of oncogenic signaling pathways in tumors requires an understanding of how these therapies impact both tumor cells and cells within the tumor microenvironment. One such pathway is the janus kinase (JAK)/signal transducer and activator or transcription (STAT) pathway, which is activated in both breast cancer cells and in tumor associated macrophages. This study demonstrates that exposure of macrophages to JAK inhibitors leads to activation of NF-κB signaling, which results in increased expression of genes known to be associated with therapeutic resistance. Furthermore, inhibition of the NF-κB pathway improves the ability of ruxolitinib to reduce mammary tumor growth in vivo. Thus, the impact of the tumor microenvironment is an important consideration in studying breast cancer and understanding such mechanisms of resistance is critical to development of effective targeted therapies.
Collapse
Affiliation(s)
- Aditi S Bapat
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA
| | - Christine H O'Connor
- University of Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Kathryn L Schwertfeger
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
2
|
Green barley mitigates cytotoxicity in human lymphocytes undergoing aggressive oxidative stress, via activation of both the Lyn/PI3K/Akt and MAPK/ERK pathways. Sci Rep 2019; 9:6005. [PMID: 30979953 PMCID: PMC6461650 DOI: 10.1038/s41598-019-42228-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress plays a critical role in numerous diseases. Therefore, the pursuit of compounds with antioxidant activity remains critical. Green barley young leaves aqueous extract (GB) was tested for its capacity to ameliorate cellular oxidative stress, and its potential cytoprotective mechanism was partially elucidated. Through Folin-Ciocalteau and 1,1-diphenyl-2-picrylhydrazyl (DPPH) colorimetric assays, GB total phenolic content and free radical scavenging activity were found to be 59.91 ± 2.17 mg/L and 110.75 µg/ml (IC50), respectively. Using a live cell-based propidium iodide dye exclusion assay and flow cytometry, GB was found to display significant cytoprotection activity on three human lymphocytic cell lines exposed to an aggressive H2O2-induced oxidative stress. The molecular mechanism for GB cytoprotection activity was assessed via bead-based xMAP technology on the Luminex platform and western blot analysis. GB treatment resulted in activation of Lyn, Akt, and ERK1/2, suggesting that GB is able to mitigate the H2O2-induced oxidative stress via activation of both the Lyn/PI3K/Akt and ERK/MAPK pathways. Our findings support the notion that GB extract has the potential to be a valuable therapeutic agent and may serve to establish a strategy to discover potential compound(s) or biological extracts/mixtures to be incorporated as a treatment to prevent oxidative stress-related diseases.
Collapse
|
3
|
Xu X, Zhang X, Liu Y, Yang L, Huang S, Lu L, Wang S, Guo Q, Zhao L. BM microenvironmental protection of CML cells from imatinib through Stat5/NF-κB signaling and reversal by Wogonin. Oncotarget 2017; 7:24436-54. [PMID: 27027438 PMCID: PMC5029713 DOI: 10.18632/oncotarget.8332] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/06/2016] [Indexed: 12/22/2022] Open
Abstract
Constitutive Stat5 activation enhanced cell survival and resistance to imatinib (IM) in chronic myelogenous leukemia (CML) cells. However, the mechanism of Stat5 activation in mediating resistance to IM in bone marrow (BM) microenvironment has not been evaluated precisely. In this study, we reported HS-5-derived conditioned medium (CM) significantly enhanced IM resistance in K562 and KU812. Interestingly, upregulation of the proportion of CD34+ subpopulation was found in CML cells. Subsequently, the BCR/ABL-independent activation of Stat5 increased P-glycoprotein (P-gp) activity in CM-mediated protection of CML stem cells (LSCs) from IM. Further research revealed Stat5 activation increased the DNA binding activity of NF-κB though binding of p-Stat5 and p-RelA in nucleus. Moreover, highly acetylated RelA was required for Stat5-mediated RelA nuclear binding. The study further confirmed that Wogonin potentiated the inhibitory effects of IM on leukemia development by suppressing Stat5 pathway both in CM model and the K562 xenograft model. In summary, results clearly demonstrated BCR/ABL-independent Stat5 survival pathway could contribute to resistance of CML LSCs to IM in BM microenvironment and suggested that natural durgs effectively inhibiting Stat5 may be an attractive approach to overcome resistance to BCR/ABL kinase inhibitors.
Collapse
Affiliation(s)
- Xuefen Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiaobo Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yicheng Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lin Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shaoliang Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lu Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shuhao Wang
- Middle School of The City, Mei County, Baoji, Shaanxi 721000, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Li Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
4
|
Zea AH, Stewart T, Ascani J, Tate DJ, Finkel-Jimenez B, Wilk A, Reiss K, Smoyer WE, Aviles DH. Activation of the IL-2 Receptor in Podocytes: A Potential Mechanism for Podocyte Injury in Idiopathic Nephrotic Syndrome? PLoS One 2016; 11:e0157907. [PMID: 27389192 PMCID: PMC4936730 DOI: 10.1371/journal.pone.0157907] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 06/07/2016] [Indexed: 12/16/2022] Open
Abstract
The renal podocyte plays an important role in maintaining the structural integrity of the glomerular basement membrane. We have previously reported that patients with idiopathic nephrotic syndrome (INS) have increased IL-2 production. We hypothesized that podocytes express an IL-2 receptor (IL-2R) and signaling through this receptor can result in podocyte injury. To confirm the presence of the IL-2R, we tested a conditionally immortalized murine podocyte cell line by flow cytometry, qPCR, and Western blot. To test for the presence of the IL-2R in vivo, immunohistochemical staining was performed on human renal biopsies in children with FSGS and control. Podocytes were stimulated with IL-2 in vitro, to study signaling events via the JAK/STAT pathway. The results showed that stimulation with IL-2 resulted in increased mRNA and protein expression of STAT 5a, phosphorylated STAT 5, JAK 3, and phosphorylated JAK 3. We then investigated for signs of cellular injury and the data showed that pro-apoptotic markers Bax and cFLIP were significantly increased following IL-2 exposure, whereas LC3 II was decreased. Furthermore, mitochondrial depolarization and apoptosis were both significantly increased following activation of the IL-2R. We used a paracellular permeability assay to monitor the structural integrity of a podocyte monolayer following IL-2 exposure. The results showed that podocytes exposed to IL-2 have increased albumin leakage across the monolayer. We conclude that murine podocytes express the IL-2R, and that activation through the IL-2R results in podocyte injury.
Collapse
Affiliation(s)
- Arnold H. Zea
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Tyrus Stewart
- Department of Pediatric Nephrology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Jeannine Ascani
- Department of Research Ochsner Biobank, Ochsner Health System, New Orleans, Louisiana, United States of America
| | - David J. Tate
- Eurofins Central Analytical Laboratories, New Orleans, Louisiana, United States of America
| | - Beatriz Finkel-Jimenez
- Department of Medical Microbiology and Immunology, American University of the Caribbean School of Medicine, Coral Gables, Florida, United States of America
| | - Anna Wilk
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Krzysztof Reiss
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - William E. Smoyer
- Department of Nephrology, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Diego H. Aviles
- Department of Pediatric Nephrology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| |
Collapse
|
5
|
Dibra D, Xia X, Mitra A, Cutrera JJ, Lozano G, Li S. Mutant p53 in concert with an interleukin-27 receptor alpha deficiency causes spontaneous liver inflammation, fibrosis, and steatosis in mice. Hepatology 2016; 63:1000-12. [PMID: 26637970 PMCID: PMC4764463 DOI: 10.1002/hep.28379] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/17/2015] [Indexed: 12/25/2022]
Abstract
UNLABELLED The cellular and molecular etiology of unresolved chronic liver inflammation remains obscure. Whereas mutant p53 has gain-of-function properties in tumors, the role of this protein in liver inflammation is unknown. Herein, mutant p53(R172H) is mechanistically linked to spontaneous and sustained liver inflammation and steatosis when combined with the absence of interleukin-27 (IL27) signaling (IL27RA), resembling the phenotype observed in nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) patients. Indeed, these mice develop, with age, hepatocyte necrosis, immune cell infiltration, fibrosis, and micro- and macrosteatosis; however, these phenotypes are absent in mutant p53(R172H) or IL27RA(-/-) mice. Mechanistically, endothelin A receptor (ETAR)-positive macrophages are highly accumulated in the inflamed liver, and chemical inhibition of ETAR signaling reverses the observed phenotype and negatively regulates mutant p53 levels in macrophages. CONCLUSION The combination of mutant p53 and IL27RA(-/-) causes spontaneous liver inflammation, steatosis, and fibrosis in vivo, whereas either gene alone in vivo has no effects on the liver.
Collapse
Affiliation(s)
- Denada Dibra
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Xueqing Xia
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Abhisek Mitra
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Jeffry J. Cutrera
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Guillermina Lozano
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Shulin Li
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030,Corresponding author: Shulin Li, PhD, The University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, ; Phone: 713-763-9608; Fax: 713-763-9607
| |
Collapse
|
6
|
Liu C, Wu XL, Wu XY, Zhang ZH, Liu XH. Effect of NF-κB p65 antisense oligodeoxynucleotide on transdifferentiation of normal human lens epithelial cells induced by transforming growth factor-β2. Int J Ophthalmol 2016; 9:29-32. [PMID: 26949606 DOI: 10.18240/ijo.2016.01.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/13/2015] [Indexed: 12/16/2022] Open
Abstract
AIM To study the inhibition of nuclear factor kappa-B p65 (NF-κB p65) antisense oligodeoxynucleotide (ASODN) on transdifferentiation of normal human lens epithelial cells induced by transforming growth factor-β2 (TGF-β2) in vitro. METHODS NF-κB p65 ASODN and NF-κB p65 missense oligodeoxynucleotide (MSODN) were designed and synthesized. Human lens epithelial cell line (HLE B-3) cells were prepared for study and divided into 7 groups. Control group was HLE B-3 cells cultured in vitro in dulbecco's modified eagle medium (DMEM). T1, T2, and T3 group were HLE B-3 cells cultured in vitro in DMEM with 10 ng/mL TGF-β2 for 6h, 12h, 24h respectively. A+T group was HLE B-3 cells cultured with 10 ng/mL TGF-β2 for 24h after transfected by NF-κB p65 ASODN for 24h. M+T group was HLE B-3 cells cultured with 10 ng/mL TGF-β2 for 24h after transfected by NF-κB p65 MSODN for 24h. The negative control group was HLE B-3 cells cultured with 10 ng/mL TGF-β2 for 24h after cultured with transfer agent (HiPerFect) for 24h. Cell morphology was observed at different time points using an inverted microscope. The expression of NF-κB p65 mRNA was detected with reverse transcription-polymerase chain reaction (RT-PCR), and the expression of α-smooth muscle actin (α-SMA) protein was assayed with ELISA. RESULTS With the TGF-β2 stimulation prolongation, the expression of NF-κB p65 mRNA and α-SMA protein increased in T1, T2, T3 groups compared with the control group, and the difference was statistically significant (P<0.05). NF-κB p65 ASODN lowered the expression of NF-κB p65 mRNA and α-SMA protein induced by TGF-β2. NF-κB p65 MSODN and HiPerFect did not lower the expression of NF-κB p65 mRNA and α-SMA protein induced by TGF-β2. The difference between control group and A+T group was not statistically significant (P>0.05), but the difference among A+T group and other groups was statistically significant (P<0.05). CONCLUSION NF-κB p65 ASODN could lower the expression of NF-κB p65 mRNA and α-SMA protein induced by TGF-β2, and antagonized TGF-β2-induced transdifferentiation of HLE B-3 in vitro. NF-κB p65 ASODN could be used as a new biological therapeutic target of posterior capsular opacification.
Collapse
Affiliation(s)
- Chao Liu
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China; Department of Ophthalmology, Central Hospital of Qingdao, Qingdao 266042, Shandong Province, China
| | - Xiao-Li Wu
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China; Department of Ophthalmology, Rongjun Hospital of Shandong, Jinan 250013, Shandong Province, China
| | - Xin-Yi Wu
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| | - Zhen-Hua Zhang
- Department of Ophthalmology, Central Hospital of Qingdao, Qingdao 266042, Shandong Province, China
| | - Xiao-Hua Liu
- Department of Stomatology, Central Hospital of Qingdao, Qingdao 266042, Shandong Province, China
| |
Collapse
|
7
|
Yue Y, Liu R, Cheng W, Hu Y, Li J, Pan X, Peng J, Zhang P. GTS-21 attenuates lipopolysaccharide-induced inflammatory cytokine production in vitro by modulating the Akt and NF-κB signaling pathway through the α7 nicotinic acetylcholine receptor. Int Immunopharmacol 2015; 29:504-512. [PMID: 26490221 DOI: 10.1016/j.intimp.2015.10.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/16/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE GTS-21, a selective α7 nicotinic acetylcholine receptor agonist, has recently been established as a promising treatment for inflammation. However, the detailed molecular mechanism of GTS-21 in suppressing pro-inflammatory cytokine production is only partially explored. The study aimed to analyze cytokine expression suppressed by GTS-21 with lipopolysaccharide (LPS)-induced inflammation in vitro and to gain insights into the role of Akt/NF-κB signaling pathway in this process. MATERIALS AND METHODS Cell Counting Kit-8 (CCK-8) assay was performed to detect drug cytotoxicity. RAW 264.7 cells were stimulated with LPS and treated with GTS-21. Interleukin (IL)-1β, IL-6, or tumor necrosis factor (TNF)-α production was detected using enzyme-linked immunosorbent assay. Western blot was used to assess the expression patterns of signal transduction protein. Nuclear translocation of nuclear factor (NF)-κB was analyzed by confocal fluorescence microscopy. In addition, α7 nicotinic acetylcholine receptors (α7 nAChR) were detected on RAW264.7, and the α7 nAChR-specific antagonist was adopted to verify whether the effect of GTS-21 was mediated by α7 nAChR. RESULTS The CCK-8 assay showed that GTS-21 did not significantly affect cell proliferation. The production of IL-1β, IL-6, and TNF-α decreased after being treated with GTS-21 in LPS-stimulated RAW 264.7 cells. GTS-21 also suppressed LPS-induced phosphorylation of NF-κBp65, IKKα/β, IκBα, and Akt, as well as NF-κB p65 nuclear translocation. Moreover, α7 nAChR was expressed on the surfaces of RAW264.7 cells, and the α7 nAChR-specific antagonist almost completely prohibited the inhibitory effect of GTS-21 on NF-κB activation. CONCLUSION These findings indicate that GTS-21 suppresses LPS-induced inflammation by inhibiting the Akt/NF-κB signal pathway through α7 nAChR. GTS-21 has a potential application in inflammatory disease therapy.
Collapse
Affiliation(s)
- Ye Yue
- Shenzhen Bioactive Materials Engineering Key Lab for Medicine, Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ruoxi Liu
- Shenzhen Bioactive Materials Engineering Key Lab for Medicine, Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Institute of Orthopedics, Chinese PLA General Hospital, Fuxing 28# Road, Beijing, China
| | - Wenxiang Cheng
- Shenzhen Bioactive Materials Engineering Key Lab for Medicine, Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yiping Hu
- Shenzhen Bioactive Materials Engineering Key Lab for Medicine, Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jinchao Li
- Shenzhen Bioactive Materials Engineering Key Lab for Medicine, Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaohua Pan
- The Department of Orthopedics, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Fuxing 28# Road, Beijing, China.
| | - Peng Zhang
- Shenzhen Bioactive Materials Engineering Key Lab for Medicine, Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
8
|
Rajmani RS, Gandham RK, Gupta SK, Sahoo AP, Singh PK, Saxena S, Kumar R, Chaturvedi U, Tiwari AK. Administration of IκB-kinase inhibitor PS1145 enhances apoptosis in DMBA-induced tumor in male Wistar rats. Cell Biol Int 2015; 39:1317-28. [DOI: 10.1002/cbin.10510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/30/2015] [Indexed: 11/11/2022]
Affiliation(s)
- R. S. Rajmani
- Molecular Biology Laboratory; Indian Veterinary Research Institute; Izatnagar, Bareilly Uttar Pradesh India
| | - Ravi Kumar Gandham
- Molecular Biology Laboratory; Indian Veterinary Research Institute; Izatnagar, Bareilly Uttar Pradesh India
| | - Shishir Kumar Gupta
- Molecular Biology Laboratory; Indian Veterinary Research Institute; Izatnagar, Bareilly Uttar Pradesh India
| | - Aditya P. Sahoo
- Molecular Biology Laboratory; Indian Veterinary Research Institute; Izatnagar, Bareilly Uttar Pradesh India
| | - Prafull Kumar Singh
- Molecular Biology Laboratory; Indian Veterinary Research Institute; Izatnagar, Bareilly Uttar Pradesh India
| | - Shikha Saxena
- Molecular Biology Laboratory; Indian Veterinary Research Institute; Izatnagar, Bareilly Uttar Pradesh India
| | - Rajiv Kumar
- Molecular Biology Laboratory; Indian Veterinary Research Institute; Izatnagar, Bareilly Uttar Pradesh India
| | - Uttara Chaturvedi
- Molecular Biology Laboratory; Indian Veterinary Research Institute; Izatnagar, Bareilly Uttar Pradesh India
| | - Ashok K. Tiwari
- Molecular Biology Laboratory; Indian Veterinary Research Institute; Izatnagar, Bareilly Uttar Pradesh India
| |
Collapse
|
9
|
Akber U, Na BR, Ko YS, Lee HS, Kim HR, Kwon MS, Park ZY, Choi EJ, Han WC, Lee SH, Oh HM, Jun CD. Phytocomponent 4-hydroxy-3-methoxycinnamaldehyde ablates T-cell activation by targeting protein kinase C-θ and its downstream pathways. Int Immunopharmacol 2015; 25:130-40. [DOI: 10.1016/j.intimp.2015.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 01/17/2015] [Accepted: 01/21/2015] [Indexed: 12/18/2022]
|
10
|
Liu YJ, Du JL, Cao LP, Jia R, Shen YJ, Zhao CY, Xu P, Yin GJ. Anti-inflammatory and hepatoprotective effects of Ganoderma lucidum polysaccharides on carbon tetrachloride-induced hepatocyte damage in common carp (Cyprinus carpio L.). Int Immunopharmacol 2015; 25:112-20. [PMID: 25639226 DOI: 10.1016/j.intimp.2015.01.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 12/28/2022]
Abstract
The aim of this study was to investigate the anti-inflammatory and hepatoprotective effects of Ganoderma lucidum polysaccharides (GLPS) on carbon tetrachloride (CCl4)-induced hepatocyte damage in common carp (Cyprinus carpio L.). GLPS (0.1, 0.3, 0.6mg/ml) were added to the primary hepatocytes before (pre-treatment), after (post-treatment) and both before and after (pre- and post-treatment) the incubation of the hepatocytes with CCl4 at the concentration of 8mM in the culture medium. The supernatants and cells were collected respectively to detect the biochemical indicators. The levels of TNF-α, IL-1β, caspase-3 and caspase-8 were measured by ELISA, the mRNA expressions of CYP1A and CYP3A were determined by RT-PCR, and western blotting was used to assay the relative protein expressions of c-Rel and p65. Results showed that GLPS significantly improved cell viability and inhibited the elevations of the marker enzymes (GOT, GPT, LDH) and MDA induced by CCl4, and markedly increased the level of SOD. Treatments with GLPS resulted in a significant decrease in the expressions of CYP1A and CYP3A, and significantly down-regulated extrinsic apoptosis and immune inflammatory response. In brief, the present study showed that GLPS can protect hepatocyte injury induced by CCl4 through inhibiting lipid peroxidation, elevating antioxidant enzyme activity and suppressing apoptosis and immune inflammatory response.
Collapse
Affiliation(s)
- Ying-Juan Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Jin-Liang Du
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Li-Ping Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Rui Jia
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Yu-Jin Shen
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Cai-Yuan Zhao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Guo-Jun Yin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
11
|
Küçük C, Jiang B, Hu X, Zhang W, Chan JKC, Xiao W, Lack N, Alkan C, Williams JC, Avery KN, Kavak P, Scuto A, Sen E, Gaulard P, Staudt L, Iqbal J, Zhang W, Cornish A, Gong Q, Yang Q, Sun H, d'Amore F, Leppä S, Liu W, Fu K, de Leval L, McKeithan T, Chan WC. Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ-T or NK cells. Nat Commun 2015; 6:6025. [PMID: 25586472 DOI: 10.1038/ncomms7025] [Citation(s) in RCA: 318] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 12/02/2014] [Indexed: 02/05/2023] Open
Abstract
Lymphomas arising from NK or γδ-T cells are very aggressive diseases and little is known regarding their pathogenesis. Here we report frequent activating mutations of STAT3 and STAT5B in NK/T-cell lymphomas (n=51), γδ-T-cell lymphomas (n=43) and their cell lines (n=9) through next generation and/or Sanger sequencing. STAT5B N642H is particularly frequent in all forms of γδ-T-cell lymphomas. STAT3 and STAT5B mutations are associated with increased phosphorylated protein and a growth advantage to transduced cell lines or normal NK cells. Growth-promoting activity of the mutants can be partially inhibited by a JAK1/2 inhibitor. Molecular modelling and surface plasmon resonance measurements of the N642H mutant indicate a marked increase in binding affinity of the phosphotyrosine-Y699 with the mutant histidine. This is associated with the prolonged persistence of the mutant phosphoSTAT5B and marked increase of binding to target sites. Our findings suggest that JAK-STAT pathway inhibition may represent a therapeutic strategy.
Collapse
Affiliation(s)
- Can Küçük
- Department of Pathology, City of Hope Medical Center, Duarte, California 91010, USA
| | - Bei Jiang
- Department of Pathology, City of Hope Medical Center, Duarte, California 91010, USA
| | - Xiaozhou Hu
- Department of Pathology, City of Hope Medical Center, Duarte, California 91010, USA
| | - Wenyan Zhang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, China
| | - Wenming Xiao
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, Food and Drug Administration, Maryland 20993, USA
| | - Nathan Lack
- Department of Pharmacology, Koc University, Istanbul 34450, Turkey
| | - Can Alkan
- Department of Computer Engineering, Bilkent University, Ankara 06800, Turkey
| | - John C Williams
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Kendra N Avery
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Pınar Kavak
- Department of Computer Engineering, Boğaziçi University, İstanbul 34342, Turkey
| | - Anna Scuto
- Department of Pathology, City of Hope Medical Center, Duarte, California 91010, USA
| | - Emel Sen
- Department of Pharmacology, Koc University, Istanbul 34450, Turkey
| | - Philippe Gaulard
- Département de Pathologie, Groupe Henri-Mondor Albert-Chenevier, Inserm U955, Université Paris Est, Créteil 94000, France
| | - Lou Staudt
- Molecular Biology of Lymphoid Malignancies Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-3135, USA
| | - Weiwei Zhang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-3135, USA
| | - Adam Cornish
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198-5805, USA
| | - Qiang Gong
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, China
| | - Qunpei Yang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hong Sun
- Department of Pathology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Francesco d'Amore
- Department of Hematology, Aarhus University Hospital, Aarhus 8000, Denmark
| | - Sirpa Leppä
- Department of Oncology, Helsinki University Central Hospital, PO Box 180, Helsinki 00029, Finland
| | - Weiping Liu
- Department of Pathology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Kai Fu
- Department of Pathology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Laurence de Leval
- Pathologie Clinique Institut, Universitaire de Pathologie rue du Bugnon 25, CH 1011 Lausanne, Switzerland
| | - Timothy McKeithan
- Department of Pathology, City of Hope Medical Center, Duarte, California 91010, USA
| | - Wing C Chan
- Department of Pathology, City of Hope Medical Center, Duarte, California 91010, USA
| |
Collapse
|
12
|
Chatterjee R, Mitra A. An overview of effective therapies and recent advances in biomarkers for chronic liver diseases and associated liver cancer. Int Immunopharmacol 2015; 24:335-345. [PMID: 25560752 DOI: 10.1016/j.intimp.2014.12.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/12/2014] [Accepted: 12/14/2014] [Indexed: 02/07/2023]
Abstract
Chronic liver diseases (CLDs) such as hepatitis, alcoholic liver disease, nonalcoholic fatty liver, and their downstream effect cancer affect more than a billion of people around the world both symptomatically and asymptomatically. The major limitation for early detection and suitable medical management of CLDs and liver cancer is either the absent of symptoms or their similar manifestations as other diseases. This detection impediment has led to a steady increase in the number of people suffering from CLDs with an ultimate outcome of liver failure and undergoing transplantation. A better understanding of CLD pathogenesis has helped us to develop novel therapies for patients who are at greatest risk for CLD progression to the most serious disease cancer. With the discovery of aberrant molecular pathways in CLDs, it is now possible to delineate a road map for selecting targeted therapies for CLDs. Technological advances in imaging as well as the availability of several stable, sensitive, early, noninvasive biomarkers for distinguishing different stages of CLDs and cancer have greatly facilitated both drug target identification and real-time monitoring of response to therapy. Biomarkers are the most useful in clinical practice for liver diseases like hepatocellular carcinoma (HCC), which is associated with secretion of various tumor-related proteins or nucleotides in peripheral circulation. The need for the identification of CLD biomarkers remains high. This article reviews the etiologies of CLDs, the results of recent clinical trials of treatments for CLDs, and development of noninvasive methodologies for detecting CLDs and monitoring their progression toward HCC.
Collapse
Affiliation(s)
| | - Abhisek Mitra
- University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
13
|
Mitra A, Satelli A, Xia X, Cutrera J, Mishra L, Li S. Cell-surface Vimentin: A mislocalized protein for isolating csVimentin(+) CD133(-) novel stem-like hepatocellular carcinoma cells expressing EMT markers. Int J Cancer 2014; 137:491-6. [PMID: 25487874 DOI: 10.1002/ijc.29382] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 11/19/2014] [Indexed: 11/07/2022]
Abstract
Recent advances in cancer stem cell biology have shown that cancer stem-like cells with epithelial-mesenchymal transition (EMT) phenotypes are more aggressive and cause relapse; however, absence of a specific marker to isolate these EMT stem-like cells hampers research in this direction. Cell surface markers have been identified for isolating cancer stem-like cells, but none has been identified for isolating cancer stem-like cells with EMT phenotype. Recently, we discovered that Vimentin, an intracellular EMT tumor cell marker, is present on the surface of colon metastatic tumor nodules in the liver. In our study, we examined the potential of targeting cell surface Vimentin (CSV) to isolate stem-like cancer cells with EMT phenotype, by using a specific CSV-binding antibody, 84-1. Using this antibody, we purified the CSV-positive, CD133-negative (csVim(+) CD133(-) ) cell population from primary liver tumor cell suspensions and characterized for stem cell properties. The results of sphere assays and staining for the stem cell markers Sox2 and Oct4A demonstrated that csVim(+) CD133(-) cells have stem-like properties similar to csVim(-) CD133(+) population. Our investigation further revealed that the csVim(+) CD133(-) cells had EMT phenotypes, as evidenced by the presence of Twist and Slug in the nucleus, the absence of EpCAM on the cell surface and basal level of expression of epithelial marker E-cadherin. The csVimentin-negative CD133-positive stem cells do not have any EMT phenotypes. csVim(+) CD133(-) cells exhibited more aggressively metastatic in livers than csVim(-) CD133(+) cells. Our findings indicate that csVim(+) CD133(-) cells are promising targets for treatment and prevention of metastatic hepatocellular carcinoma.
Collapse
Affiliation(s)
- Abhisek Mitra
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Arun Satelli
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Xueqing Xia
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jeffrey Cutrera
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lopa Mishra
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shulin Li
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
14
|
Mitra A, Satelli A, Yan J, Xueqing X, Gagea M, Hunter CA, Mishra L, Li S. IL-30 (IL27p28) attenuates liver fibrosis through inducing NKG2D-rae1 interaction between NKT and activated hepatic stellate cells in mice. Hepatology 2014; 60:2027-39. [PMID: 25351459 PMCID: PMC4245364 DOI: 10.1002/hep.27392] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 08/21/2014] [Indexed: 12/21/2022]
Abstract
UNLABELLED Chronic hepatic diseases, such as cirrhosis, hepatocellular carcinoma, and virus-mediated immunopathogenic infections, affect billions of people worldwide. These diseases commonly initiate with fibrosis. Owing to the various side effects of antifibrotic therapy and the difficulty of diagnosing asymptomatic patients, suitable medication remains a major concern. To overcome this drawback, the use of cytokine-based sustained therapy might be a suitable alternative with minimal side effects. Here, we studied the therapeutic efficacy and potential mechanisms of interleukin (IL)-30 as antifibrosis therapy in murine liver fibrosis models. CCl4 or 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) 0.1% (wt/wt) Purina 5015 Chow (LabDiet, St. Louis, MO) was fed for 3 weeks to induce liver fibrosis. Either control vector (pCtr) or pIL30 was injected hydrodynamically once per week. A significant decrease in collagen deposition and reduced expression of alpha-smooth muscle actin (α-SMA) protein indicated that IL-30-based gene therapy dramatically reduced bridging fibrosis that was induced by CCl4 or DDC. Immunophenotyping and knockout studies showed that IL-30 recruits natural-killer-like T (NKT) cells to the liver to remove activated hepatic stellate cells (HSCs) significantly and ameliorate liver fibrosis. Both flow cytometric and antibody-mediated neutralization studies showed that liver NKT cells up-regulate the natural killer group 2, member D (NKG2D) ligand and bind with the NKG2D ligand, retinoic acid early inducible 1 (Rae1), and positively activated HSCs to ameliorate liver fibrosis. Furthermore, adoptive transfer of liver NKT cells in T-cell-deficient mice showed reduction of fibrosis upon IL-30 administration. CONCLUSIONS Highly target-specific liver NKT cells selectively remove activated HSCs through an NKG2D-Rae1 interaction to ameliorate liver fibrosis after IL-30 treatment.
Collapse
Affiliation(s)
- Abhisek Mitra
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Arun Satelli
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Yan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xia Xueqing
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mihai Gagea
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Lopa Mishra
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shulin Li
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA,Corresponding author. Department of Pediatrics, Unit 0853, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030 USA, , Phone: 713-563-9608, FAX: 713-563-9607
| |
Collapse
|
15
|
Gerloff D, Grundler R, Wurm AA, Bräuer-Hartmann D, Katzerke C, Hartmann JU, Madan V, Müller-Tidow C, Duyster J, Tenen DG, Niederwieser D, Behre G. NF-κB/STAT5/miR-155 network targets PU.1 in FLT3-ITD-driven acute myeloid leukemia. Leukemia 2014; 29:535-47. [PMID: 25092144 DOI: 10.1038/leu.2014.231] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/11/2014] [Accepted: 07/21/2014] [Indexed: 01/07/2023]
Abstract
Almost 30% of all acute myeloid leukemias (AML) are associated with an internal tandem duplication (ITD) in the juxtamembrane domain of FMS-like tyrosine kinase 3 receptor (FLT3). Patients with FLT3-ITD mutations tend to have a poor prognosis. MicroRNAs (miRNAs) have a pivotal role in myeloid differentiation and leukemia. MiRNA-155 (MiR-155) was found to be upregulated in FLT3-ITD-associated AMLs. In this study, we discovered that FLT3-ITD signaling induces the oncogenic miR-155. We show in vitro and in vivo that miR-155 expression is regulated by FLT3-ITD downstream targets nuclear factor-κB (p65) and signal transducer and activator of transcription 5 (STAT5). Further, we demonstrate that miR-155 targets the myeloid transcription factor PU.1. Knockdown of miR-155 or overexpression of PU.1 blocks proliferation and induces apoptosis of FLT3-ITD-associated leukemic cells. Our data demonstrate a novel network in which FLT3-ITD signaling induces oncogenic miR-155 by p65 and STAT5 in AML, thereby targeting transcription factor PU.1.
Collapse
Affiliation(s)
- D Gerloff
- Division of Hematology and Oncology, Leipzig University Hospital, Leipzig, Germany
| | - R Grundler
- Department of Internal Medicine III, Technical University Munich, Munich, Germany
| | - A A Wurm
- Division of Hematology and Oncology, Leipzig University Hospital, Leipzig, Germany
| | - D Bräuer-Hartmann
- Division of Hematology and Oncology, Leipzig University Hospital, Leipzig, Germany
| | - C Katzerke
- Division of Hematology and Oncology, Leipzig University Hospital, Leipzig, Germany
| | - J-U Hartmann
- Division of Hematology and Oncology, Leipzig University Hospital, Leipzig, Germany
| | - V Madan
- Cancer Science Institute, National University of Singapore, Singapore
| | - C Müller-Tidow
- Department of Medicine IV, Hematology and Oncology, University of Halle, Halle, Germany
| | - J Duyster
- Department of Hematology/Oncology 1, University Medical Center Freiburg, Freiburg, Germany
| | - D G Tenen
- 1] Cancer Science Institute, National University of Singapore, Singapore [2] Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - D Niederwieser
- Division of Hematology and Oncology, Leipzig University Hospital, Leipzig, Germany
| | - G Behre
- Division of Hematology and Oncology, Leipzig University Hospital, Leipzig, Germany
| |
Collapse
|
16
|
Rani A, Greenlaw R, Runglall M, Jurcevic S, John S. FRA2 is a STAT5 target gene regulated by IL-2 in human CD4 T cells. PLoS One 2014; 9:e90370. [PMID: 24587342 PMCID: PMC3938719 DOI: 10.1371/journal.pone.0090370] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/29/2014] [Indexed: 01/05/2023] Open
Abstract
Signal transducers and activators of transcription 5(STAT5) are cytokine induced signaling proteins, which regulate key immunological processes, such as tolerance induction, maintenance of homeostasis, and CD4 T-effector cell differentiation. In this study, transcriptional targets of STAT5 in CD4 T cells were studied by Chromatin Immunoprecipitation (ChIP). Genomic mapping of the sites cloned and identified in this study revealed the striking observation that the majority of STAT5-binding sites mapped to intergenic (>50 kb upstream) or intronic, rather than promoter proximal regions. Of the 105 STAT5 responsive binding sites identified, 94% contained the canonical (IFN-γ activation site) GAS motifs. A number of putative target genes identified here are associated with tumor biology. Here, we identified Fos-related antigen 2 (FRA2) as a transcriptional target of IL-2 regulated STAT5. FRA2 is a basic -leucine zipper (bZIP) motif ‘Fos’ family transcription factor that is part of the AP-1 transcription factor complex and is also known to play a critical role in the progression of human tumours and more recently as a determinant of T cell plasticity. The binding site mapped to an internal intron within the FRA2 gene. The epigenetic architecture of FRA2, characterizes a transcriptionally active promoter as indicated by enrichment for histone methylation marks H3K4me1, H3K4me2, H3K4me3, and transcription/elongation associated marks H2BK5me1 and H4K20me1. FRA2 is regulated by IL-2 in activated CD4 T cells. Consistently, STAT5 bound to GAS sequence in the internal intron of FRA2 and reporter gene assays confirmed IL-2 induced STAT5 binding and transcriptional activation. Furthermore, addition of JAK3 inhibitor (R333) or Daclizumab inhibited the induction in TCR stimulated cells. Taken together, our data suggest that FRA2 is a novel STAT5 target gene, regulated by IL-2 in activated CD4 T cells.
Collapse
Affiliation(s)
- Aradhana Rani
- Division of Transplantation Immunology and Mucosal Biology, King's College London, London, United Kingdom
| | - Roseanna Greenlaw
- Division of Transplantation Immunology and Mucosal Biology, King's College London, London, United Kingdom
| | - Manohursingh Runglall
- Division of Transplantation Immunology and Mucosal Biology, King's College London, London, United Kingdom
| | - Stipo Jurcevic
- Division of Transplantation Immunology and Mucosal Biology, King's College London, London, United Kingdom
- * E-mail: (SJurcevic); (SJohn)
| | - Susan John
- Department of Immunobiology, King's College London, London, United Kingdom
- * E-mail: (SJurcevic); (SJohn)
| |
Collapse
|
17
|
Pharmacological control of receptor of advanced glycation end-products and its biological effects in psoriasis. INTERNATIONAL JOURNAL OF BIOMEDICAL SCIENCE : IJBS 2013; 9:112-22. [PMID: 24170986 PMCID: PMC3809352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 06/27/2013] [Indexed: 11/11/2022]
Abstract
Receptor for advanced glycation end-products is implicated in a development of chronic inflammatory response. Aim of this paper is to provide a review on commercial and experimental medicines that can interfere with RAGE and signaling through RAGE. We searched three bibliographical databases (PubMed, Web of Science and MEDLINE) for the publications from 2005 to March 2012 and identified 5 major groups of agents that can interfere with RAGE biological effects. In the first part of this paper, we discuss AGE crosslink breakers. These chemicals destroy advanced glycation end products (AGEs) that are crosslinked to the extracellular matrix proteins and can interact with RAGE as ligands. Then, we describe two non-conventional agents SAGEs and KIOM-79 that abolish certain biological effects of RAGE and have a strong anti-inflammatory potential. In the third part, we evaluate the inhibitors of the signaling cascades that underlie RAGE. Particularly, we discuss two groups of kinase inhibitors tyrphostins and the inhibitors of JAK kinases. Considering RAGE as a potential master regulator of processes that are crucial for the pathogenesis of psoriasis, we propose that these medicins may help in controlling the disease by abolishing the chronic inflammation in skin lesions.
Collapse
|
18
|
Nagy ZS, Ross JA, Rodriguez G, Balint BL, Szeles L, Nagy L, Kirken RA. Genome wide mapping reveals PDE4B as an IL-2 induced STAT5 target gene in activated human PBMCs and lymphoid cancer cells. PLoS One 2013; 8:e57326. [PMID: 23451206 PMCID: PMC3581501 DOI: 10.1371/journal.pone.0057326] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 01/21/2013] [Indexed: 11/18/2022] Open
Abstract
IL-2 is the primary growth factor for promoting survival and proliferation of activated T cells that occurs following engagement of the Janus Kinase (JAK)1–3/and Signal Transducer and Activator of Transcription (STAT) 5 signaling pathway. STAT5 has two isoforms: STAT5A and STAT5B (commonly referred to as STAT5) which, in T cells, play redundant roles transcribing cell cycle and survival genes. As such, inhibition of STAT5 by a variety of mechanisms can rapidly induce apoptosis in certain lymphoid tumor cells, suggesting that it and its target genes represent therapeutic targets to control certain lymphoid diseases. To search for these molecules we aligned IL-2 regulated genes detected by Affymetrix gene expression microarrays with the STAT5 cistrome identified by chip-on-ChIP analysis in an IL-2-dependent human leukemia cell line, Kit225. Select overlapping genes were then validated using qRT2PCR medium-throughput arrays in human PHA-activated PBMCs. Of 19 putative genes, one key regulator of T cell receptor signaling, PDE4B, was identified as a novel target, which was readily up-regulated at the protein level (3 h) in IL-2 stimulated, activated human PBMCs. Surprisingly, only purified CD8+ primary T-cells expressed PDE4B, but not CD4+ cells. Moreover, PDE4B was found to be highly expressed in CD4+ lymphoid cancer cells, which suggests that it may represent a physiological role unique to the CD8+ and lymphoid cancer cells and thus might represent a target for pharmaceutical intervention for certain lymphoid diseases.
Collapse
Affiliation(s)
- Zsuzsanna S Nagy
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America.
| | | | | | | | | | | | | |
Collapse
|
19
|
Rodriguez G, Ross JA, Nagy ZS, Kirken RA. Forskolin-inducible cAMP pathway negatively regulates T-cell proliferation by uncoupling the interleukin-2 receptor complex. J Biol Chem 2013; 288:7137-46. [PMID: 23341462 DOI: 10.1074/jbc.m112.408765] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cytokine-mediated regulation of T-cell activity involves a complex interplay between key signal transduction pathways. Determining how these signaling pathways cross-talk is essential to understanding T-cell function and dysfunction. In this work, we provide evidence that cross-talk exists between at least two signaling pathways: the Jak3/Stat5 and cAMP-mediated cascades. The adenylate cyclase activator forskolin (Fsk) significantly increased intracellular cAMP levels and reduced proliferation of the human T-cells via inhibition of cell cycle regulatory genes but did not induce apoptosis. To determine this inhibitory mechanism, effects of Fsk on IL-2 signaling was investigated. Fsk treatment of MT-2 and Kit 225 T-cells inhibited IL-2-induced Stat5a/b tyrosine and serine phosphorylation, nuclear translocation, and DNA binding activity. Fsk treatment also uncoupled IL-2 induced association of the IL-2Rβ and γc chain, consequently blocking Jak3 activation. Interestingly, phosphoamino acid analysis revealed that Fsk-treated cells resulted in elevated serine phosphorylation of Jak3 but not Stat5, suggesting that Fsk can negatively regulate Jak3 activity possibly mediated through PKA. Indeed, in vitro kinase assays and small molecule inhibition studies indicated that PKA can directly serine phosphorylate and functionally inactivate Jak3. Taken together, these findings suggest that Fsk activation of adenylate cyclase and PKA can negatively regulate IL-2 signaling at multiple levels that include IL-2R complex formation and Jak3/Stat5 activation.
Collapse
Affiliation(s)
- Georgialina Rodriguez
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas 79902, USA
| | | | | | | |
Collapse
|
20
|
Curcumin improves the antitumor effect of X-ray irradiation by blocking the NF-κB pathway: an in-vitro study of lymphoma. Anticancer Drugs 2012; 23:597-605. [PMID: 22273827 DOI: 10.1097/cad.0b013e3283503fbc] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Curcumin, a phenolic compound from the rhizomes of Curcuma longa, inhibits the growth of a variety of malignant cell types including lymphoma cells. We investigated the role of curcumin in modulating the response of Burkitt's lymphoma cells to ionizing radiation (IR) in vitro and explored the mechanisms that mediated this effect. We treated three Burkitt's lymphoma cell lines with vehicle, curcumin, IR, and curcumin in combination with IR. Cell viability, apoptosis, and cell cycle distribution were determined to ascertain the radiosensitization effect of curcumin. Nuclear factor-kappa B (NF-κB) activation was assessed by nuclear translocation of p65. Apoptosis-related proteins were monitored by western blot assay and real-time RT-PCR. Pretreatment of curcumin sensitized lymphoma cells to IR-induced apoptosis and increased G2/M phase arrest in the cell cycle distribution. Accordingly, the antiapoptotic Bcl-xL protein, cell cycle modulating protein CDC2, and cyclin B1 were downregulated by the curcumin treatment. IR activated NF-κB as evidenced by an increased nuclear p65 translocation and cytoplasmic IκBα expression. However, pretreatment with curcumin significantly decreased the nuclear translocation of p65 and cytoplasmic IκBα degradation. Survivin and hexokinase II, downstream effectors of NF-κB that mediate the antiapoptotic effect of NF-κB, were suppressed by the pretreatment of curcumin. These observations suggest that the activated NF-κB pathway plays a prosurvival role in Burkitt's lymphoma in response to IR. Curcumin blocks this pathway and has therapeutic potential for improving the antitumor effects of radiotherapy.
Collapse
|
21
|
Dawson M, Foster S, Bannister A, Robson S, Hannah R, Wang X, Xhemalce B, Wood A, Green A, Göttgens B, Kouzarides T. Three distinct patterns of histone H3Y41 phosphorylation mark active genes. Cell Rep 2012; 2:470-7. [PMID: 22999934 PMCID: PMC3607218 DOI: 10.1016/j.celrep.2012.08.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/16/2012] [Accepted: 08/16/2012] [Indexed: 02/02/2023] Open
Abstract
The JAK2 tyrosine kinase is a critical mediator of cytokine-induced signaling. It plays a role in the nucleus, where it regulates transcription by phosphorylating histone H3 at tyrosine 41 (H3Y41ph). We used chromatin immunoprecipitation coupled to massively parallel DNA sequencing (ChIP-seq) to define the genome-wide pattern of H3Y41ph in human erythroid leukemia cells. Our results indicate that H3Y41ph is located at three distinct sites: (1) at a subset of active promoters, where it overlaps with H3K4me3, (2) at distal cis-regulatory elements, where it coincides with the binding of STAT5, and (3) throughout the transcribed regions of active, tissue-specific hematopoietic genes. Together, these data extend our understanding of this conserved and essential signaling pathway and provide insight into the mechanisms by which extracellular stimuli may lead to the coordinated regulation of transcription.
Collapse
Affiliation(s)
- Mark A. Dawson
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge, CB2 1QN, UK,Department of Haematology, Cambridge Institute for Medical Research and The Wellcome Trust and MRC Stem Cell Institute, University of Cambridge, Cambridge, CB2 0XY, UK,Addenbrooke’s Hospital, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Samuel D. Foster
- Department of Haematology, Cambridge Institute for Medical Research and The Wellcome Trust and MRC Stem Cell Institute, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Andrew J. Bannister
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Samuel C. Robson
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Rebecca Hannah
- Department of Haematology, Cambridge Institute for Medical Research and The Wellcome Trust and MRC Stem Cell Institute, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Xiaonan Wang
- Department of Haematology, Cambridge Institute for Medical Research and The Wellcome Trust and MRC Stem Cell Institute, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Blerta Xhemalce
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Andrew D. Wood
- Department of Haematology, Cambridge Institute for Medical Research and The Wellcome Trust and MRC Stem Cell Institute, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Anthony R. Green
- Department of Haematology, Cambridge Institute for Medical Research and The Wellcome Trust and MRC Stem Cell Institute, University of Cambridge, Cambridge, CB2 0XY, UK,Addenbrooke’s Hospital, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research and The Wellcome Trust and MRC Stem Cell Institute, University of Cambridge, Cambridge, CB2 0XY, UK,Corresponding author
| | - Tony Kouzarides
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge, CB2 1QN, UK,Corresponding author
| |
Collapse
|
22
|
Linton K, Howarth C, Wappett M, Newton G, Lachel C, Iqbal J, Pepper S, Byers R, Chan WJ, Radford J. Microarray gene expression analysis of fixed archival tissue permits molecular classification and identification of potential therapeutic targets in diffuse large B-cell lymphoma. J Mol Diagn 2012; 14:223-32. [PMID: 22446084 DOI: 10.1016/j.jmoldx.2012.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 01/08/2012] [Accepted: 01/18/2012] [Indexed: 02/06/2023] Open
Abstract
Refractory/relapsed diffuse large B-cell lymphoma (DLBCL) has a poor prognosis. Novel drugs targeting the constitutively activated NF-κB pathway characteristic of ABC-DLBCL are promising, but evaluation depends on accurate activated B cell-like (ABC)/germinal center B cell-like (GCB) molecular classification. This is traditionally performed on gene microarray expression profiles of fresh biopsies, which are not routinely collected, or by immunohistochemistry on formalin-fixed, paraffin-embedded (FFPE) tissue, which lacks reproducibility and classification accuracy. We explored the possibility of using routine archival FFPE tissue for gene microarray applications. We examined Affymetrix HG U133 Plus 2.0 gene expression profiles from paired archival FFPE and fresh-frozen tissues of 40 ABC/GCB-classified DLBCL cases to compare classification accuracy and test the potential for this approach to aid the discovery of therapeutic targets and disease classifiers in DLBCL. Unsupervised hierarchical clustering of unselected present probe sets distinguished ABC/GCB in FFPE with remarkable accuracy, and a Bayesian classifier correctly assigned 32 of 36 cases with >90% probability. Enrichment for NF-κB genes was appropriately seen in ABC-DLBCL FFPE tissues. The top discriminatory genes expressed in FFPE separated cases with high statistical significance and contained novel biology with potential therapeutic insights, warranting further investigation. These results support a growing understanding that archival FFPE tissues can be used in microarray experiments aimed at molecular classification, prognostic biomarker discovery, and molecular exploration of rare diseases.
Collapse
Affiliation(s)
- Kim Linton
- The University of Manchester, Manchester Cancer Research Centre, Manchester, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mitra A, Ross JA, Rodriguez G, Nagy ZS, Wilson HL, Kirken RA. Signal transducer and activator of transcription 5b (Stat5b) serine 193 is a novel cytokine-induced phospho-regulatory site that is constitutively activated in primary hematopoietic malignancies. J Biol Chem 2012; 287:16596-608. [PMID: 22442148 DOI: 10.1074/jbc.m111.319756] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Signal transducer and activator of transcription 5b (Stat5b) is a critical node in the signaling network downstream of external (cytokines or growth factors) or internal (oncogenic tyrosine kinases) stimuli. Maximum transcriptional activation of Stat5b requires both tyrosine and serine phosphorylation. Although the mechanisms governing tyrosine phosphorylation and activation of Stat5b have been extensively studied, the role of serine phosphorylation remains to be fully elucidated. Using mass spectrometry and phospho-specific antibodies, we identified Ser-193 as a novel site of cytokine-induced phosphorylation within human Stat5b. Stat5b Ser(P)-193 was detected in activated primary human peripheral blood mononuclear cells or lymphoid cell lines in response to several γ common (γc) cytokines, including interleukin (IL)-2, IL-7, IL-9, and IL-15. Kinetic and spatial analysis indicated that Stat5b Ser-193 phosphorylation was rapid and transient and occurred in the cytoplasmic compartment of the cell prior to Stat5b translocation to the nucleus. Moreover, inducible Stat5b Ser-193 phosphorylation was sensitive to inhibitors of mammalian target of rapamycin (mTOR), whereas inhibition of protein phosphatase 2A (PP2A) induced phosphorylation of Ser-193. Reconstitution assays in HEK293 cells in conjunction with site-directed mutagenesis, EMSA, and reporter assays indicated that Ser(P)-193 is required for maximal Stat5b transcriptional activity. Indeed, Stat5b Ser-193 was found constitutively phosphorylated in several lymphoid tumor cell lines as well as primary leukemia and lymphoma patient tumor cells. Taken together, IL-2 family cytokines tightly control Stat5b Ser-193 phosphorylation through a rapamycin-sensitive mechanism. Furthermore, constitutive Ser-193 phosphorylation is associated with Stat5b proto-oncogenic activity and therefore may serve as a novel therapeutic target for treating hematopoietic malignancies.
Collapse
Affiliation(s)
- Abhisek Mitra
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas, El Paso, Texas 79968, USA
| | | | | | | | | | | |
Collapse
|
24
|
Monocytes and T cells cooperate to favor normal and follicular lymphoma B-cell growth: role of IL-15 and CD40L signaling. Leukemia 2011; 26:139-48. [PMID: 21788945 DOI: 10.1038/leu.2011.179] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interleukin-15 (IL-15) has been extensively studied for its role in the survival and proliferation of NK and T cells through a unique mechanism of trans-presentation by producer cells. Conversely, whereas activated B cells have been described as IL-15-responding cells, the cellular and molecular context sustaining this effect remains unexplored. In this study, we found that, whereas human B cells could not respond to soluble IL-15, monocytes and lymphoid tissue-derived macrophages but not stromal cells efficiently trans-present IL-15 to normal B cells and cooperate with T-cell-derived CD40L to promote IL-15-dependent B-cell proliferation. Furthermore, CD40L signaling triggers a Src-independent upregulation of STAT5 expression and favors a Src-dependent phosphorylation of STAT5 in response to IL-15. In follicular lymphoma (FL), immunohistochemical studies reported a strong relationship between malignant B cells, infiltrating macrophages and T cells. We show here an overexpression of IL-15 in purified tumor-associated macrophages, and STAT5A in purified tumor B cells. Moreover, FL B cells respond to IL-15 trans-presented by monocytes/macrophages, in particular, in the presence of CD40L-mediated signaling. This cooperation between IL-15 and CD40L reinforces the importance of tumor microenvironment and unravels a mechanism of FL growth that should be considered if using IL-15 as a drug in this disease.
Collapse
|
25
|
Wu S, Morrison A, Sun H, De Luca F. Nuclear factor-kappaB (NF-kappaB) p65 interacts with Stat5b in growth plate chondrocytes and mediates the effects of growth hormone on chondrogenesis and on the expression of insulin-like growth factor-1 and bone morphogenetic protein-2. J Biol Chem 2011; 286:24726-34. [PMID: 21592969 DOI: 10.1074/jbc.m110.175364] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth hormone (GH) stimulates growth plate chondrogenesis and longitudinal bone growth with its stimulatory effects primarily mediated by insulin-like growth factor-1 (IGF-1) both systemically and locally in the growth plate. It has been shown that the transcription factor Stat5b mediates the GH promoting effect on IGF-1 expression and on chondrogenesis, yet it is not known whether other signaling molecules are activated by GH in growth plate chondrocytes. We have previously demonstrated that nuclear factor-κB p65 is a transcription factor expressed in growth plate chondrocytes where it facilitates chondrogenesis. We have also shown that fibroblasts isolated from a patient with growth failure and a heterozygous mutation of inhibitor-κBα (IκB; component of the nuclear factor-κB (NF-κB) signaling pathway) exhibit GH insensitivity. In this study, we cultured rat metatarsal bones in the presence of GH and/or pyrrolidine dithiocarbamate (PDTC), a known NF-κB inhibitor. The GH-mediated stimulation of metatarsal longitudinal growth and growth plate chondrogenesis was neutralized by PDTC. In cultured chondrocytes isolated from rat metatarsal growth plates, GH induced NF-κB-DNA binding and chondrocyte proliferation and differentiation and prevented chondrocyte apoptosis. The inhibition of NF-κB p65 expression and activity (by NF-κB p65 siRNA and PDTC, respectively) in chondrocytes reversed the GH-mediated effects on chondrocyte proliferation, differentiation, and apoptosis. Lastly, the inhibition of Stat5b expression in chondrocytes prevented the GH promoting effects on NF-κB-DNA binding, whereas the inhibition of NF-κB p65 expression or activity prevented the GH-dependent activation of IGF-1 and bone morphogenetic protein-2 expression.
Collapse
Affiliation(s)
- Shufang Wu
- Section of Endocrinology and Diabetes, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, Pennsylvania 19134, USA
| | | | | | | |
Collapse
|
26
|
Abstract
An improved understanding of the molecular biology of cancer cell growth and survival and the role of the microenvironment in supporting the survival of cancer cells, including lymphoma cells, has led to the identification of a number of potential therapeutic targets. Despite these advances, drug development for lymphoma remains slow, inefficient, and frequently unfocused. Future work should focus on identifying 'driver' molecular defects of oncogenic pathways that can be targeted therapeutically, discovering predictive biomarkers for treatment response, and prioritizing promising drugs to accelerate their approval. This Review summarizes the current development status of novel agents for lymphoma and discusses strategies to move the field forward.
Collapse
Affiliation(s)
- Anas Younes
- Department of Lymphoma and Myeloma, Unit 429, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
27
|
STAT6 transcription factor is a facilitator of the nuclear receptor PPARγ-regulated gene expression in macrophages and dendritic cells. Immunity 2010; 33:699-712. [PMID: 21093321 PMCID: PMC3052437 DOI: 10.1016/j.immuni.2010.11.009] [Citation(s) in RCA: 334] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 08/04/2010] [Accepted: 09/08/2010] [Indexed: 01/17/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a lipid-activated transcription factor regulating lipid metabolism and inflammatory response in macrophages and dendritic cells (DCs). These immune cells exposed to distinct inflammatory milieu show cell type specification as a result of altered gene expression. We demonstrate here a mechanism how inflammatory molecules modulate PPARγ signaling in distinct subsets of cells. Proinflammatory molecules inhibited whereas interleukin-4 (IL-4) stimulated PPARγ activity in macrophages and DCs. Furthermore, IL-4 signaling augmented PPARγ activity through an interaction between PPARγ and signal transducer and activators of transcription 6 (STAT6) on promoters of PPARγ target genes, including FABP4. Thus, STAT6 acts as a facilitating factor for PPARγ by promoting DNA binding and consequently increasing the number of regulated genes and the magnitude of responses. This interaction, underpinning cell type-specific responses, represents a unique way of controlling nuclear receptor signaling by inflammatory molecules in immune cells.
Collapse
|
28
|
Dynamic Mathematical Modeling of IL13-Induced Signaling in Hodgkin and Primary Mediastinal B-Cell Lymphoma Allows Prediction of Therapeutic Targets. Cancer Res 2010; 71:693-704. [DOI: 10.1158/0008-5472.can-10-2987] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Nagy ZS, Ross JA, Rodriguez G, Bader J, Dimmock J, Kirken RA. Uncoupling JAK3 activation induces apoptosis in human lymphoid cancer cells via regulating critical survival pathways. FEBS Lett 2010; 584:1515-20. [PMID: 20211620 DOI: 10.1016/j.febslet.2010.02.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/23/2010] [Accepted: 02/24/2010] [Indexed: 10/19/2022]
Abstract
In the current work, we report that specific inhibition of Janus tyrosine kinase (JAK3) via NC1153 induces apoptosis of certain leukemia/lymphoma cell lines. Affymetrix microarray profiling following NC1153 treatment unveiled JAK3 dependent survival modulating pathways (p53, TGF-beta, TNFR and ER stress) in Kit225 cells. IL-2 responsive NC1153 target genes were regulated in human JAK3 positive, but not in JAK3 negative lymphoid tumor cells. Moreover, primary lymphoma samples revealed that a number of these genes were reciprocally regulated during disease progression and JAK3 inhibition suggesting that downstream targets of JAK3 could be exploited in the development of novel cancer treatment regimes.
Collapse
Affiliation(s)
- Zsuzsanna S Nagy
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA.
| | | | | | | | | | | |
Collapse
|