1
|
Balatskyi VV, Dobrzyn P. Role of Stearoyl-CoA Desaturase 1 in Cardiovascular Physiology. Int J Mol Sci 2023; 24:ijms24065531. [PMID: 36982607 PMCID: PMC10059744 DOI: 10.3390/ijms24065531] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/15/2023] Open
Abstract
Stearoyl-CoA desaturase is a rate-limiting enzyme in the synthesis of monounsaturated fatty acids. Monounsaturated fatty acids limit the toxicity of exogenous saturated fats. Studies have shown that stearoyl-CoA desaturase 1 is involved in the remodeling of cardiac metabolism. The loss of stearoyl-CoA desaturase 1 reduces fatty acid oxidation and increases glucose oxidation in the heart. Such a change is protective under conditions of a high-fat diet, which reduces reactive oxygen species-generating β-oxidation. In contrast, stearoyl-CoA desaturase 1 deficiency predisposes individuals to atherosclerosis under conditions of hyperlipidemia but protects against apnea-induced atherosclerosis. Stearoyl-CoA desaturase 1 deficiency also impairs angiogenesis after myocardial infarction. Clinical data show a positive correlation between blood stearoyl-CoA Δ-9 desaturation rates and cardiovascular disease and mortality. Moreover, stearoyl-CoA desaturase inhibition is considered an attractive intervention in some obesity-associated pathologies, and the importance of stearoyl-CoA desaturase in the cardiovascular system might be a limitation for developing such therapy. This review discusses the role of stearoyl-CoA desaturase 1 in the regulation of cardiovascular homeostasis and the development of heart disease and presents markers of systemic stearoyl-CoA desaturase activity and their predictive potential in the diagnosis of cardiovascular disorders.
Collapse
|
2
|
Modulation of SCD1 activity in hepatocyte cell lines: evaluation of genomic stability and proliferation. Mol Cell Biochem 2021; 476:3393-3405. [PMID: 33954906 DOI: 10.1007/s11010-021-04167-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/21/2021] [Indexed: 12/14/2022]
Abstract
Stearoyl-CoA desaturase (SCD) is a central lipogenic enzyme for the synthesis of monounsaturated fatty acids (MUFA). SCD1 overexpression is associated with a genetic predisposition to hepatocarcinogenesis in mice and rats. This work hypothesized possible roles of SCD1 to genomic stability, lipogenesis, cell proliferation, and survival that contribute to the malignant transformation of non-tumorigenic liver cells. Therefore, HepG2 tumor cells were treated with the SCD1 inhibitor (CAY10566) to ensure a decrease in proliferation/survival, as confirmed by a lipidomic analysis that detected an efficient decrease in the concentration of MUFA. According to that, we switched to a model of normal hepatocytes, the HepaRG cell line, where we: (i) overexpressed SCD1 (HepaRG-SCD1 clones), (ii) inhibited the endogenous SCD1 activity with CAY10566, or (iii) treated with two monounsaturated (oleic OA and/or palmitoleic PA) fatty acids. SCD1 overexpression or MUFA stimulation increased cell proliferation, survival, and the levels of AKT, phospho-AKT(Ser473), and proliferating cell nuclear antigen (PCNA) proteins. By contrast, opposite molecular and cellular responses were observed in HepaRG cells treated with CAY10566. To assess genomic stability, HepaRG-SCD1 clones were treated with ionizing radiation (IR) and presented reduced levels of DNA damage and higher survival at doses of 5 Gy and 10 Gy compared to parental cells. In sum, this work suggests that modulation of SCD1 activity not only plays a role in cell proliferation and survival, but also in maintaining genomic stability, and therefore, contributes to a better understanding of this enzyme in molecular mechanisms of hepatocarcinogenesis projecting SCD1 as a potential translational target.
Collapse
|
3
|
Li H, Feng Z, He ML. Lipid metabolism alteration contributes to and maintains the properties of cancer stem cells. Theranostics 2020; 10:7053-7069. [PMID: 32641978 PMCID: PMC7330842 DOI: 10.7150/thno.41388] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Lipids, the basic components of the cell membrane, execute fundamental roles in almost all the cell activities including cell-cell recognition, signalling transduction and energy supplies. Lipid metabolism is elementary for life sustentation that balances activity between synthesis and degradation. An accumulating amount of data has indicated abnormal lipid metabolism in cancer stem cells (CSCs), and that the alteration of lipid metabolism exerts a great impact on CSCs' properties such as the capability of self-renewal, differentiation, invasion, metastasis, and drug sensitivity and resistance. CSCs' formation and maintenance cannot do without the regulation of fatty acids and cholesterol. In normal cells and embryonic development, fatty acids and cholesterol metabolism are regulated by some important signalling pathways (such as Hedgehog, Notch, Wnt signalling pathways); these signalling pathways also play crucial roles in initiating and/or maintaining CSCs' properties, and such signalling is shown to be commonly modulated by the abnormal lipid metabolism in CSCs; on the other hand, the altered lipid metabolism in turn modifies the cell signalling and generates additional impacts on CSCs. Metabolic rewiring is considered as an ideal hallmark of CSCs, and metabolic alterations would be promising therapeutic targets of CSCs for aggressive tumors. In this review, we summarize the most updated findings of lipid metabolic abnormalities in CSCs and prospect the potential applications of targeting lipid metabolism for anticancer treatment.
Collapse
|
4
|
Chen YS, Kang XR, Zhou ZH, Yang J, Xin Q, Ying CT, Zhang YP, Tao J. MiR-1908/EXO1 and MiR-203a/FOS, regulated by scd1, are associated with fracture risk and bone health in postmenopausal diabetic women. Aging (Albany NY) 2020; 12:9549-9584. [PMID: 32454462 PMCID: PMC7288911 DOI: 10.18632/aging.103227] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 04/13/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Stearoyl-coenzyme A desaturase-1 (SCD1) can inhibit the development of diabetic bone disease by promoting osteogenesis. In this study, we examined whether this regulation by SCD1 is achieved by regulating the expression of related miRNAs. METHODS SCD1 expression levels were observed in human bone-marrow mesenchymal stem cells (BM-MSCs) of patients with type 2 diabetes mellitus (T2DM), and the effect of SCD1 on osteogenesis was observed in human adipose-derived MSCs transfected with the SCD1 lentiviral system. We designed a bioinformatics prediction model to select important differentially expressed miRNAs, and established protein-protein interaction and miRNA-mRNA networks. miRNAs and mRNAs were extracted and their differential expression was detected. The SCD1-miRNA-mRNA network was validated. FINDINGS SCD1 expression in bone marrow was downregulated in patients with T2DM and low-energy fracture, and SCD1 expression promotes BM-MSC osteogenic differentiation. The predictors in the nomogram were seven microRNAs, including hsa-miR-1908 and hsa-miR-203a. SCD1 inhibited the expression of CDKN1A and FOS, but promoted the expression of EXO1 and PLS1. miR-1908 was a regulator of EXO1 expression, and miR-203a was a regulator of FOS expression. INTERPRETATION The regulation of BM-MSCs by SCD1 is a necessary condition for osteogenesis through the miR-203a/FOS and miR-1908/EXO1 regulatory pathways.
Collapse
Affiliation(s)
- Yi-sheng Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Xue-ran Kang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zi-hui Zhou
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Jiang Yang
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Qi Xin
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Chen-ting Ying
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Yun-peng Zhang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Jie Tao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| |
Collapse
|
5
|
Hwang J, Singh N, Long C, Smith SB. The Lentiviral System Construction for Highly Expressed Porcine Stearoyl-CoA Desaturase-1 and Functional Characterization in Stably Transduced Porcine Swine Kidney Cells. Lipids 2019; 53:933-945. [PMID: 30592064 PMCID: PMC10071579 DOI: 10.1002/lipd.12102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 12/14/2022]
Abstract
The most highly regulated and abundant fatty acid in animal tissue is oleic acid (18:1n9). Oleic acid is synthesized by the Δ9 desaturase, stearoyl-CoA desaturase-1 (SCD1), which is responsible for the synthesis of the putative cytokine palmitoleic acid (16:1n7) and 18:2 cis-9, trans-11 conjugated linoleic acid. Owing to the importance of SCD1 in lipid metabolism, we generated porcine swine kidney (SK6) transgenic cell lines for sustained overexpression or knockdown of porcine stearoyl-CoA desaturase-1 (pSCD1) in an inducible manner by utilizing a lentiviral expression system. We successfully validated these cell culture models for expression and functionality of pSCD1 by documenting that the pSCD-transduced cells overexpressed pSCD1 protein and mRNA. Additionally, the pSCD1-transduced cells increased the conversion of palmitate (16:0) to palmitoleic acid nearly fourfold. The lentiviral vectors utilized in this study can be further used to generate transgenic animals to document the effects of the overexpression of SCD1 on obesity and steatosis.
Collapse
Affiliation(s)
- Jinhee Hwang
- Department of Animal Science, Texas A & M University, College Station, 2471 TAMU, TX 77843, USA
| | - Neetu Singh
- Department of Veterinary Physiology and Pharmacology, Texas A & M University, College Station, 4466 TAMU, TX, 77843, USA
| | - Charles Long
- Department of Veterinary Physiology and Pharmacology, Texas A & M University, College Station, 4466 TAMU, TX, 77843, USA
| | - Stephen B Smith
- Department of Animal Science, Texas A & M University, College Station, 2471 TAMU, TX 77843, USA
| |
Collapse
|
6
|
Cruz-Gil S, Sánchez-Martínez R, Wagner-Reguero S, Stange D, Schölch S, Pape K, Ramírez de Molina A. A more physiological approach to lipid metabolism alterations in cancer: CRC-like organoids assessment. PLoS One 2019; 14:e0219944. [PMID: 31339921 PMCID: PMC6655698 DOI: 10.1371/journal.pone.0219944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/03/2019] [Indexed: 12/17/2022] Open
Abstract
Precision medicine might be the response to the recent questioning of the use of metformin as an anticancer drug in colorectal cancer (CRC). Thus, in order to establish properly its benefits, metformin application needs to be assayed on the different progression stages of CRC. In this way, intestinal organoids imply a more physiological tool, representing a new therapeutic opportunity for CRC personalized treatment to assay tumor stage-dependent drugs. The previously reported lipid metabolism-related axis, Acyl-CoA synthetases/ Stearoyl-CoA desaturase (ACSLs/SCD), stimulates colon cancer progression and metformin is able to rescue the invasive and migratory phenotype conferred to cancer cells upon this axis overexpression. Therefore, we checked ACSL/SCD axis status, its regulatory miRNAs and the effect of metformin treatment in intestinal organoids with the most common acquired mutations in a sporadic CRC (CRC-like organoids) as a model for specific and personalized treatment. Despite ACSL4 expression is upregulated progressively in CRC-like organoids, metformin is able to downregulate its expression, especially in the first two stages (I, II). Besides, organoids are clearly more sensitive in the first stage (Apc mutated) to metformin than current chemotherapeutic drugs such as fluorouracil (5-FU). Metformin performs an independent "Warburg effect" blockade to cancer progression and is able to reduce crypt stem cell markers expression such as LGR5+. These results suggest a putative increased efficiency of the use of metformin in early stages of CRC than in advanced disease.
Collapse
Affiliation(s)
- Silvia Cruz-Gil
- Molecular Oncology Group/ IMDEA Food Institute, CEI UAM + CSIC, Ctra, De Cantoblanco, Madrid, Spain
| | - Ruth Sánchez-Martínez
- Molecular Oncology Group/ IMDEA Food Institute, CEI UAM + CSIC, Ctra, De Cantoblanco, Madrid, Spain
| | - Sonia Wagner-Reguero
- Molecular Oncology Group/ IMDEA Food Institute, CEI UAM + CSIC, Ctra, De Cantoblanco, Madrid, Spain
| | - Daniel Stange
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sebastian Schölch
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kristin Pape
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ana Ramírez de Molina
- Molecular Oncology Group/ IMDEA Food Institute, CEI UAM + CSIC, Ctra, De Cantoblanco, Madrid, Spain
| |
Collapse
|
7
|
Anti-aging effects exerted by Tetramethylpyrazine enhances self-renewal and neuronal differentiation of rat bMSCs by suppressing NF-kB signaling. Biosci Rep 2019; 39:BSR20190761. [PMID: 31171713 PMCID: PMC6591573 DOI: 10.1042/bsr20190761] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/20/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022] Open
Abstract
In order to improve the therapeutic effects of mesenchymal stem cell (MSC)-based therapies for a number of intractable neurological disorders, a more favorable strategy to regulate the outcome of bone marrow MSCs (bMSCs) was examined in the present study. In view of the wide range of neurotrophic and neuroprotective effects, Tetramethylpyrazine (TMP), a biologically active alkaloid isolated from the herbal medicine Ligusticum wallichii, was used. It was revealed that treatment with 30–50 mg/l TMP for 4 days significantly increased cell viability, alleviated senescence by suppressing NF-κB signaling, and promoted bMSC proliferation by regulating the cell cycle. In addition, 40–50 mg/l TMP treatment may facilitate the neuronal differentiation of bMSCs, verified in the present study by presentation of neuronal morphology and expression of neuronal markers: microtubule-associated protein 2 (MAP-2) and neuron-specific enolase (NSE). The quantitative real-time polymerase chain reaction (qRT-PCR) revealed that TMP treatment may promote the expression of neurogenin 1 (Ngn1), neuronal differentiation 1 (NeuroD) and mammalian achaete–scute homolog 1 (Mash1). In conclusion, 4 days of 40–50 mg/l TMP treatment may significantly delay bMSC senescence by suppressing NF-κB signaling, and enhancing the self-renewal ability of bMSCs, and their potential for neuronal differentiation.
Collapse
|
8
|
Therapeutic targeting of lipid synthesis metabolism for selective elimination of cancer stem cells. Arch Pharm Res 2018; 42:25-39. [PMID: 30536027 DOI: 10.1007/s12272-018-1098-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/01/2018] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs) are believed to have an essential role in tumor resistance and metastasis; however, no therapeutic strategy for the selective elimination of CSCs has been established. Recently, several studies have shown that the metabolic regulation for ATP synthesis and biological building block generation in CSCs are different from that in bulk cancer cells and rather similar to that in normal tissue stem cells. To take advantage of this difference for CSC elimination therapy, many studies have tested the effect of blocking these metabolism. Two specific processes for lipid biosynthesis, i.e., fatty acid unsaturation and cholesterol biosynthesis, have been shown to be very effective and selective for CSC targets. In this review, lipid metabolism specific to CSCs are summarized. In addition, how monounsaturated fatty acid and cholesterol synthesis may contribute to CSC maintenance are discussed. Specifically, the molecular mechanism required for lipid synthesis and essential for stem cell biology is highlighted. The limit and preview of the lipid metabolism targeting for CSCs are also discussed.
Collapse
|
9
|
Song XQ, Su LN, Wei HP, Liu YH, Yin HF, Li JH, Zhu DX, Zhang AL. The effect of Id1gene silencing on the neural differentiation of MSCs. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1286234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Xiao-qing Song
- Department of Biology, Basic Medical College, Hebei North University, Zhangjiakou, China
| | - Li-ning Su
- Department of Biology, Basic Medical College, Hebei North University, Zhangjiakou, China
| | - Hui-ping Wei
- Department of Biology, Basic Medical College, Hebei North University, Zhangjiakou, China
| | - Ying-hui Liu
- Department of Agriculture Science, Agriculture and Forestry College of Hebei North University, Zhangjiakou, China
| | - Hai-feng Yin
- Department of Biology, Basic Medical College, Hebei North University, Zhangjiakou, China
| | - Ji-hong Li
- Department of Biology, Basic Medical College, Hebei North University, Zhangjiakou, China
| | - Deng-xiang Zhu
- Department of Biology, Basic Medical College, Hebei North University, Zhangjiakou, China
| | - Ai-lan Zhang
- Department of Biology, Basic Medical College, Hebei North University, Zhangjiakou, China
| |
Collapse
|
10
|
Chatgilialoglu A, Rossi M, Alviano F, Poggi P, Zannini C, Marchionni C, Ricci F, Tazzari PL, Taglioli V, Calder PC, Bonsi L. Restored in vivo-like membrane lipidomics positively influence in vitro features of cultured mesenchymal stromal/stem cells derived from human placenta. Stem Cell Res Ther 2017; 8:31. [PMID: 28173875 PMCID: PMC5297199 DOI: 10.1186/s13287-017-0487-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/12/2017] [Accepted: 01/21/2017] [Indexed: 12/12/2022] Open
Abstract
Background The study of lipid metabolism in stem cell physiology has recently raised great interest. The role of lipids goes beyond the mere structural involvement in assembling extra- and intra-cellular compartments. Nevertheless, we are still far from understanding the impact of membrane lipidomics in stemness maintenance and differentiation patterns. In the last years, it has been reported how in vitro cell culturing can modify membrane lipidomics. The aim of the present work was to study the membrane fatty acid profile of mesenchymal stromal cells (MSCs) derived from human fetal membranes (hFM-MSCs) and to correlate this to specific biological properties by using chemically defined tailored lipid supplements (Refeed®). Methods Freshly isolated hFM-MSCs were characterized for their membrane fatty acid composition. hFM-MSCs were cultivated in vitro following a classical protocol and their membrane fatty acid profile at different passages was compared to the profile in vivo. A tailored Refeed® lipid supplement was developed with the aim of reducing the differences created by the in vitro cultivation and was tested on cultured hFM-MSCs. Cell morphology, viability, proliferation, angiogenic differentiation, and immunomodulatory properties after in vitro exposure to the tailored Refeed® lipid supplement were investigated. Results A significant modification of hFM-MSC membrane fatty acid composition occurred during in vitro culture. Using a tailored lipid supplement, the fatty acid composition of cultured cells remained more similar to their in vivo counterparts, being characterized by a higher polyunsaturated and omega-6 fatty acid content. These changes in membrane composition had no effect on cell morphology and viability, but were linked with increased cell proliferation rate, angiogenic differentiation, and immunomodulatory properties. In particular, Refeed®-supplemented hFM-MSCs showed greater ability to express fully functional cell membrane molecules. Conclusions Culturing hFM-MSCs alters their fatty acid composition. A tailored lipid supplement is able to improve in vitro hFM-MSC functional properties by recreating a membrane environment more similar to the physiological counterpart. This approach should be considered in cell therapy applications in order to maintain a higher cell quality during in vitro passaging and to influence the outcome of cell-based therapeutic approaches when cells are administered to patients.
Collapse
Affiliation(s)
| | - Martina Rossi
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, Italy
| | - Francesco Alviano
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, Italy.
| | - Paola Poggi
- Remembrane Srl, Imola, Italy.,Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Chiara Zannini
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, Unit of Nephrology, Dialysis and Renal Transplant, St, Orsola-Malpighi University Hospital, Via Massarenti 9, 40138, Bologna, Italy
| | - Cosetta Marchionni
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, Italy
| | - Francesca Ricci
- Service of Immunohematology and Transfusion Medicine, St. Orsola-Malpighi University Hospital, Via Massarenti 9, 40138, Bologna, Italy
| | - Pier Luigi Tazzari
- Service of Immunohematology and Transfusion Medicine, St. Orsola-Malpighi University Hospital, Via Massarenti 9, 40138, Bologna, Italy
| | - Valentina Taglioli
- Laboratory of Molecular Biology, Institute of Cardiology, Department of Experimental, Diagnostic and Specialty Medicine, St. Orsola - Malpighi University Hospital, University of Bologna, Via Massarenti 9, 40138, Bologna, Italy.,National Institute of Biostructures and Biosystems at Ettore Sansavini Health Science Foundation ONLUS - Lab SWITH, Corso Garibaldi 11, 48022, Lugo (RA), Italy
| | - Philip C Calder
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Laura Bonsi
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, Italy
| |
Collapse
|
11
|
Rahimi Y, Mehdizadeh A, Nozad Charoudeh H, Nouri M, Valaei K, Fayezi S, Darabi M. Hepatocyte differentiation of human induced pluripotent stem cells is modulated by stearoyl-CoA desaturase 1 activity. Dev Growth Differ 2015; 57:667-74. [PMID: 26676854 DOI: 10.1111/dgd.12255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/11/2015] [Accepted: 10/26/2015] [Indexed: 12/22/2022]
Abstract
Stearoyl-CoA desaturase 1 (SCD1) plays important roles in organ development, glucose tolerance, insulin sensitivity, and cancer. Here, we examined the role of SCD1 for the differentiation of human induced pluripotent stem (hiPS) cells to liver cells by using drug inhibition and biochemical experiments. hiPS cells cultured in a pro-hepatic medium were exposed to an SCD1 inhibitor at various stages throughout differentiation. Liver-specific markers, specifically α-fetoprotein, albumin and urea in conditioned medium, and hepatocyte nuclear factor 4α (HNF4α) and cytochrome P450 7A1 (CYP7A1) gene expressions and triglyceride in cellular extracts were analyzed at various development stages. Measures of hepatocyte-specific function and triglyceride accumulation in later stages were strongly inhibited a minimum of -29% (P < 0.05) by SCD1 inhibitor in the early stage of hepatic differentiation and effectively reversed (>30%, P < 0.01) by the addition of oleate. The results were also reproducible with human primary mononuclear cells (hPMN). SCD1 inhibitor had no significant effect on liver-specific markers when it was added in the hepatic maturation stage. However, it strikingly led to higher albumin (1.6-fold, P = 0.03) and urea (1.9-fold, P = 0.02) production, and HNF4α (1.9-fold, P = 0.02) and CYP7A1 (1.3-fold, P = 0.03) expression upon incubation during the lineage-commitment stage. Hepatic differentiation from cultured hiPS cells is sensitive to SCD1 inhibition and this sensitivity is affected by the stage of cellular differentiation. Notably, findings also indicate that this notion can be extended to hPMN. The requirement for SCD1 activity in functional differentiation of hepatocytes may have relevance for human liver disease and metabolic dysregulation.
Collapse
Affiliation(s)
- Yaghoub Rahimi
- Stem Cell Research Center, School of Medicine, Tabriz University of Medical Sciences, Tabriz, 51666-15556, Iran.,Department of Biochemistry and Clinical Laboratories, School of Medicine, Tabriz University of Medical Sciences, Tabriz, 51666-15556, Iran
| | - Amir Mehdizadeh
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, 51666-15556, Iran
| | - Hojjatollah Nozad Charoudeh
- Stem Cell Research Center, School of Medicine, Tabriz University of Medical Sciences, Tabriz, 51666-15556, Iran
| | - Mohammad Nouri
- Department of Biochemistry and Clinical Laboratories, School of Medicine, Tabriz University of Medical Sciences, Tabriz, 51666-15556, Iran
| | - Kobra Valaei
- Stem Cell Research Center, School of Medicine, Tabriz University of Medical Sciences, Tabriz, 51666-15556, Iran
| | - Shabnam Fayezi
- Students Research Committee, Department of Anatomy and Cell Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 19989-99513, Iran
| | - Masoud Darabi
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, 51666-15556, Iran
| |
Collapse
|
12
|
Nowakowski A, Walczak P, Janowski M, Lukomska B. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine. Stem Cells Dev 2015; 24:2219-42. [PMID: 26140302 DOI: 10.1089/scd.2015.0062] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented.
Collapse
Affiliation(s)
- Adam Nowakowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland
| | - Piotr Walczak
- 2 Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,4 Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury , Olsztyn, Poland
| | - Miroslaw Janowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland .,2 Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Barbara Lukomska
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland
| |
Collapse
|