1
|
Ishtiaq A, Mushtaq I, Rehman H, Mushtaq I, Mushtaq I, Abbasi SW, Liaqat F, Rasheed A, Ahmad S, Akhtar Z, Murtaza I. Tetra aniline-based polymers ameliorate BPA-induced cardiotoxicity in Sprague Dawley rats, in silico and in vivo analysis. Life Sci 2024; 358:123104. [PMID: 39366552 DOI: 10.1016/j.lfs.2024.123104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
AIMS Bisphenol A (BPA), xenoestrogen, is an environmental toxicant, that generates oxidative stress leading to cardiotoxicity. The oxidative stress can be neutralized by natural and synthetic antioxidants. The present study elucidates the highly selective antioxidative potential of synthetic tetra aniline polymers Es-37 and L-37 against Bisphenol A-induced cardiac cellular impairments and the role of miRNA-15a-5p in the regulation of different apoptotic proteins. MATERIALS AND METHODS The molecular docking of L-37 and Es-37 with three proteins (p53, Cytochrome c, and Bcl-2) were performed. The dose of 1 mg/kg BW of BPA, 1 mg/kg BW Es-37 and L-37 and 50 mg/kg BW N-acetyl cysteine (NAC) was administered to Sprague Dawley rats. The miRNA and target gene expression were confirmed by qRt-PCR and Immunoblotting. KEY FINDINGS In our results, BPA administration significantly elevated the reactive oxygen species (ROS), p53, cytochrome c, and particularly miRNA-15a-5p expression; however: these changes were notably reversed by Es-37 and L-37 treatment. Additionally, molecular docking of synthetic polymers validated that L-37 has a greater binding affinity with the target proteins compared to Es-37, with the highest binding values reported for the enzymatic protein cytochrome c. SIGNIFICANCE These results suggest that both synthetic polymers Es-37 and L-37 have the potential to scavenge free radicals, boost-up antioxidant enzyme activities, and avert (BPA-induced) toxicity, thus, may serve as cardioprotective agents. Moreover, this study first time proposes that miRNA-15a-5p overexpression is associated with oxidative stress and coincides with BPA induced cardiotoxicity, thus may serve as potential therapeutic target in future.
Collapse
Affiliation(s)
- Ayesha Ishtiaq
- Signal Transduction Laboratory, Department of Biochemistry, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Irrum Mushtaq
- Department of Chemistry, Quaid-i-Azam University Islamabad, Pakistan
| | - Hina Rehman
- Signal Transduction Laboratory, Department of Biochemistry, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Iqra Mushtaq
- Signal Transduction Laboratory, Department of Biochemistry, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Iram Mushtaq
- Signal Transduction Laboratory, Department of Biochemistry, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Sumra Wajid Abbasi
- Department of Biological Sciences, National University of Medical Sciences, 46000 Rawalpindi, Pakistan
| | - Faroha Liaqat
- Department of Chemistry, Quaid-i-Azam University Islamabad, Pakistan
| | - Ammarah Rasheed
- Department of Chemistry, Quaid-i-Azam University Islamabad, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Zareen Akhtar
- Department of Chemistry, Quaid-i-Azam University Islamabad, Pakistan
| | - Iram Murtaza
- Signal Transduction Laboratory, Department of Biochemistry, Quaid-i-Azam University Islamabad, 45320, Pakistan.
| |
Collapse
|
2
|
Ding W, Fan JH, Zhong LR, Wang NX, Liu LH, Zhang HB, Wang L, Wang MQ, He BL, Wei AY. N-acetylcysteine ameliorates erectile dysfunction in rats with hyperlipidemia by inhibiting oxidative stress and corpus cavernosum smooth muscle cells phenotypic modulation. Asian J Androl 2024; 26:99-106. [PMID: 37534881 PMCID: PMC10846835 DOI: 10.4103/aja202324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 05/22/2023] [Indexed: 08/04/2023] Open
Abstract
Hyperlipidemia is a major risk factor for erectile dysfunction (ED). Oxidative stress and phenotypic modulation of corpus cavernosum smooth muscle cells (CCSMCs) are the key pathological factors of ED. N-acetylcysteine (NAC) can inhibit oxidative stress; however, whether NAC can alleviate pathological variations in the corpus cavernosum and promote erectile function recovery in hyperlipidemic rats remains unclear. A hyperlipidemia model was established using 27 eight-week-old male Sprague-Dawley (SD) rats fed a high-fat and high-cholesterol diet (hyperlipidemic rats, HR). In addition, 9 male SD rats were fed a normal diet to serve as controls (NC). HR rats were divided into three groups: HR, HR+normal saline (NS), and HR+NAC (n = 9 for each group; NS or NAC intraperitoneal injections were administered daily for 16 weeks). Subsequently, the lipid profiles, erectile function, oxidative stress, phenotypic modulation markers of CCSMCs, and tissue histology were analyzed. The experimental results revealed that erectile function was significantly impaired in the HR and HR + NS groups, but enhanced in the HR + NAC group. Abnormal lipid levels, over-activated oxidative stress, and multi-organ lesions observed in the HR and HR + NS groups were improved in the HR + NAC group. Moreover, the HR group showed significant phenotypic modulation of CCSMCs, which was also inhibited by NAC treatment. This report focuses on the therapeutic effect of NAC in restoring erectile function using a hyperlipidemic rat model by preventing CCSMC phenotypic modulation and attenuating oxidative stress.
Collapse
Affiliation(s)
- Wei Ding
- Department of Urology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550002, China
| | - Jun-Hong Fan
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Li-Ren Zhong
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Nan-Xiong Wang
- Department of Urology, Shenzhen Immigration Inspection General Station Hospital, Shenzhen 518000, China
| | - Lu-Hao Liu
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Hai-Bo Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Li Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Ming-Qiang Wang
- Department of Endocrinology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550002, China
| | - Bing-Lin He
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - An-Yang Wei
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| |
Collapse
|
3
|
Xu Y, Bu H, Jiang Y, Zhuo X, Hu K, Si Z, Chen Y, Liu Q, Gong X, Sun H, Zhu Q, Cui L, Ma X, Cui Y. N‑acetyl cysteine prevents ambient fine particulate matter‑potentiated atherosclerosis via inhibition of reactive oxygen species‑induced oxidized low density lipoprotein elevation and decreased circulating endothelial progenitor cell. Mol Med Rep 2022; 26:236. [PMID: 35621139 PMCID: PMC9185698 DOI: 10.3892/mmr.2022.12752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/09/2022] [Indexed: 11/06/2022] Open
Abstract
Ambient fine particulate matter (PM) serves an important role in the development of cardiovascular disease, including atherosclerosis. Antioxidant N‑acetyl cysteine (NAC) has protective effects in the cardiovascular system. However, it is unknown if NAC prevents PM‑potentiated atherosclerosis in hyperlipidemia. Low‑density lipoprotein (LDL) receptor knockout mice were pretreated with 1 mg/ml NAC in drinking water for 1 week and continued to receive NAC, high‑fat diet and intranasal instillation of PM for 1 week or 6 months. Blood plasma was collected for lipid profile, oxidized (ox‑)LDL, blood reactive oxygen species (ROS) and inflammatory cytokine (TNF‑α, IL‑1β and IL‑6) measurement. Blood cells were harvested for endothelial progenitor cell (EPC) population and intracellular ROS analysis. Murine aorta was isolated for atherosclerotic plaque ratio calculation. NAC treatment maintained circulating EPC level and significantly decreased blood ox‑LDL and ROS, inflammatory cytokines, mononuclear and EPC intracellular ROS levels as well as aortic plaque ratio. NAC prevented PM‑potentiated atherosclerosis by inhibiting plasma ROS‑induced ox‑LDL elevation, mononuclear cell and EPC intracellular ROS‑induced circulating EPC reduction and inflammatory cytokine production.
Collapse
Affiliation(s)
- Yixin Xu
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Haoran Bu
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yufan Jiang
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xiaoqing Zhuo
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Ke Hu
- Department of Emergency, Qianfoshan Hospital, Shandong First Medical University, Jinan, Shandong 250014, P.R. China
| | - Zhihua Si
- Department of Emergency, Qianfoshan Hospital, Shandong First Medical University, Jinan, Shandong 250014, P.R. China
| | - Yong Chen
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Qiwei Liu
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xianwei Gong
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Haihui Sun
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Qingyi Zhu
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lianqun Cui
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xiaochun Ma
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Yuqi Cui
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
4
|
El-Shal LM, El-Star AAA, Azmy AM, Elnegris HM. The possible protective role of N-acetyl cysteine on duodenal mucosa of high fat diet and orlistat treated adult male albino rats and the active role of tumor necrosis factor α (TNFα) and Interleukin 6 (IL6) (histological and biochemical study). Ultrastruct Pathol 2022; 46:18-36. [PMID: 34979873 DOI: 10.1080/01913123.2021.2007194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Obesity is a major universal health issue linked to a majority of illness. AIM To evaluate the histological and biochemical changes occurred in the duodenal mucosa of high fat diet HFD and orlistat fed rats and to assess the possible protective role of N-acetyl cysteine NAC supplementation. MATERIAL AND METHOD Sixty male albino rats weighing 180-200 g were classified randomly into control group I and three experimental groups (HFD group II, HFD + orlistat group III, and HFD + orlistat + NAC group IV). All experimental groups received HFD alone/and treatment for 6 weeks. Group III received orlistat (32 mg/kg/day) before meals and group IV received the same regimen as group III in addition to NAC (230 mg/kg/day) after meals. After completion of the experiment, duodenal sections were processed for histological examination, oxidative stress parameters, and semiqualitative real time PCR for proinflammatory mediators TNFα and IL6 evaluation. Also, plasma lipid parameters were assessed and morphometric duodenal results were analyzed statistically. RESULTS By histological examination of HFD and (HFD + orlistat) groups, we found severe to moderate duodenal structural disturbances, increased goblet cells, collagen fibers, and BAX and iNOS immunostaining. By Biochemical examination, both groups showed increased proinflammatory markers level (TNFα and IL6) with decreased all antioxidant parameters and increased MDA. Moreover, NAC treatment in group IV significantly reduced all structural changes, levels of proinflammatory mediators and increased all antioxidant parameter levels and decreased MDA. CONCLUSION All findings elucidated that NAC could be accounted to be a useful drug for protection of duodenal mucosa of HFD and orlistat treated animals.
Collapse
Affiliation(s)
- Laila Moustafa El-Shal
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Alyaa A Abd El-Star
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Abeer M Azmy
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Heba M Elnegris
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.,Department of Histology and Cell Biology, Faculty of Medicine, Badr University in Cairo, Cairo, Egypt
| |
Collapse
|
5
|
Antioxidants Supplementation Reduces Ceramide Synthesis Improving the Cardiac Insulin Transduction Pathway in a Rodent Model of Obesity. Nutrients 2021; 13:nu13103413. [PMID: 34684414 PMCID: PMC8541644 DOI: 10.3390/nu13103413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 01/10/2023] Open
Abstract
Obesity-related disruption in lipid metabolism contributes to cardiovascular dysfunction. Despite numerous studies on lipid metabolism in the left ventricle, there is no data describing the influence of n-acetylcysteine (NAC) and α-lipoic acid (ALA), as glutathione precursors, on sphingolipid metabolism, and insulin resistance (IR) occurrence. The aim of our experiment was to evaluate the influence of chronic antioxidants administration on myocardial sphingolipid state and intracellular insulin signaling as a potential therapeutic strategy for obesity-related cardiovascular IR. The experiment was conducted on male Wistar rats fed a standard rodent chow or a high-fat diet with intragastric administration of NAC or ALA for eight weeks. Cardiac and plasma sphingolipid species were assessed by high-performance liquid chromatography (HPLC). The proteins expressed from sphingolipid and insulin signaling pathways were determined by Western blot. Antioxidant supplementation markedly reduced ceramide accumulation by lowering the expression of selected proteins from the sphingolipid pathway and simultaneously increased the myocardial sphingosine-1-phosphate level. Moreover, NAC and ALA augmented the expression of GLUT4 and the phosphorylation state of Akt (Ser473) and GSK3β (Ser9), which improved the intracellular insulin transduction pathway. Based on our results, we may postulate that NAC and ALA have a beneficial influence on the cardiac ceramidose under IR conditions.
Collapse
|
6
|
Dludla PV, Nkambule BB, Mazibuko-Mbeje SE, Nyambuya TM, Marcheggiani F, Cirilli I, Ziqubu K, Shabalala SC, Johnson R, Louw J, Damiani E, Tiano L. N-Acetyl Cysteine Targets Hepatic Lipid Accumulation to Curb Oxidative Stress and Inflammation in NAFLD: A Comprehensive Analysis of the Literature. Antioxidants (Basel) 2020; 9:E1283. [PMID: 33339155 PMCID: PMC7765616 DOI: 10.3390/antiox9121283] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Impaired adipose tissue function and insulin resistance remain instrumental in promoting hepatic lipid accumulation in conditions of metabolic syndrome. In fact, enhanced lipid accumulation together with oxidative stress and an abnormal inflammatory response underpin the development and severity of non-alcoholic fatty liver disease (NAFLD). There are currently no specific protective drugs against NAFLD, and effective interventions involving regular exercise and healthy diets have proved difficult to achieve and maintain. Alternatively, due to its antioxidant and anti-inflammatory properties, there has been growing interest in understanding the therapeutic effects of N-acetyl cysteine (NAC) against metabolic complications, including NAFLD. Here, reviewed evidence suggests that NAC blocks hepatic lipid accumulation in preclinical models of NAFLD. This is in part through the effective regulation of a fatty acid scavenger molecule (CD36) and transcriptional factors such as sterol regulatory element-binding protein (SREBP)-1c/-2 and peroxisome proliferator-activated receptor gamma (PPARγ). Importantly, NAC appears effective in improving liver function by reducing pro-inflammatory markers such as interleukin (IL)-6 IL-1β, tumour necrosis factor alpha (TNF-α) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). This was primarily through the attenuation of lipid peroxidation and enhancements in intracellular response antioxidants, particularly glutathione. Very few clinical studies support the beneficial effects of NAC against NAFLD-related complications, thus well-organized randomized clinical trials are still necessary to confirm its therapeutic potential.
Collapse
Affiliation(s)
- Phiwayinkosi V. Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (S.C.S.); (R.J.); (J.L.)
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (B.B.N.); (T.M.N.)
| | - Sithandiwe E. Mazibuko-Mbeje
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2745, South Africa; (S.E.M.-M.); (K.Z.)
| | - Tawanda M. Nyambuya
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (B.B.N.); (T.M.N.)
- Department of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek 9000, Namibia
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Khanyisani Ziqubu
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2745, South Africa; (S.E.M.-M.); (K.Z.)
| | - Samukelisiwe C. Shabalala
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (S.C.S.); (R.J.); (J.L.)
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (S.C.S.); (R.J.); (J.L.)
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (S.C.S.); (R.J.); (J.L.)
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
| |
Collapse
|
7
|
Tun S, Spainhower CJ, Cottrill CL, Lakhani HV, Pillai SS, Dilip A, Chaudhry H, Shapiro JI, Sodhi K. Therapeutic Efficacy of Antioxidants in Ameliorating Obesity Phenotype and Associated Comorbidities. Front Pharmacol 2020; 11:1234. [PMID: 32903449 PMCID: PMC7438597 DOI: 10.3389/fphar.2020.01234] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity has been a worldwide epidemic for decades. Despite the abundant increase in knowledge regarding the etiology and pathogenesis of obesity, the prevalence continues to rise with estimates predicting considerably higher numbers by the year 2030. Obesity is characterized by an abnormal lipid accumulation, however, the physiological consequences of obesity are far more concerning. The development of the obesity phenotype constitutes dramatic alterations in adipocytes, along with several other cellular mechanisms which causes substantial increase in systemic oxidative stress mediated by reactive oxygen species (ROS). These alterations promote a chronic state of inflammation in the body caused by the redox imbalance. Together, the systemic oxidative stress and chronic inflammation plays a vital role in maintaining the obese state and exacerbating onset of cardiovascular complications, Type II diabetes mellitus, dyslipidemia, non-alcoholic steatohepatitis, and other conditions where obesity has been linked as a significant risk factor. Because of the apparent role of oxidative stress in the pathogenesis of obesity, there has been a growing interest in attenuating the pro-oxidant state in obesity. Hence, this review aims to highlight the therapeutic role of antioxidants, agents that negate pro-oxidant state of cells, in ameliorating obesity and associated comorbidities. More specifically, this review will explore how various antioxidants target unique and diverse pathways to exhibit an antioxidant defense mechanism.
Collapse
Affiliation(s)
- Steven Tun
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Caleb James Spainhower
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Cameron Lee Cottrill
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Hari Vishal Lakhani
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Sneha S Pillai
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Anum Dilip
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Hibba Chaudhry
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Joseph I Shapiro
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Komal Sodhi
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| |
Collapse
|
8
|
Yolland CO, Hanratty D, Neill E, Rossell SL, Berk M, Dean OM, Castle DJ, Tan EJ, Phillipou A, Harris AW, Barreiros AR, Hansen A, Siskind D. Meta-analysis of randomised controlled trials with N-acetylcysteine in the treatment of schizophrenia. Aust N Z J Psychiatry 2020; 54:453-466. [PMID: 31826654 DOI: 10.1177/0004867419893439] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE There is accumulating evidence that adjunctive treatment with N-acetylcysteine may be effective for schizophrenia. This study aimed to conduct a comprehensive meta-analysis examining the efficacy of randomised control trials investigating N-acetylcysteine as an adjunct treatment for schizophrenia and the first to investigate cognition as an outcome. METHODS We systematically reviewed Medline, EmCare, PsycINFO, Embase, CINAHL Complete, China Knowledge Resource Integrated Database and the Cochrane Clinical Trials online registry for randomised control trials of N-acetylcysteine for schizophrenia. We undertook pairwise meta-analyses of N-acetylcysteine vs placebo for psychosis symptoms and cognition. RESULTS Seven studies, including n = 220 receiving N-acetylcysteine and n = 220 receiving placebo, met inclusion criteria for the pairwise meta-analyses. Positive and Negative Syndrome Scale negative and total scores were significantly improved in the N-acetylcysteine group after 24 weeks of treatment. The cognitive domain of working memory improved with N-acetylcysteine supplementation. CONCLUSION Evidence supports the notion that N-acetylcysteine may be a useful adjunct to standard treatment for the improvement of schizophrenia symptoms, as well as the cognitive domain of working memory. Treatment effects were observed at the later time point (⩾24 weeks), suggesting that longer interventions are required for the success of N-acetylcysteine treatment.
Collapse
Affiliation(s)
- Caitlin Ob Yolland
- Centre for Mental Health, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Donal Hanratty
- Department of Psychiatry, St. Vincent's Hospital Melbourne, Melbourne, VIC, Australia.,Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Erica Neill
- Centre for Mental Health, Swinburne University of Technology, Hawthorn, VIC, Australia.,Department of Psychiatry, St. Vincent's Hospital Melbourne, Melbourne, VIC, Australia.,Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Susan L Rossell
- Centre for Mental Health, Swinburne University of Technology, Hawthorn, VIC, Australia.,Department of Psychiatry, St. Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - Michael Berk
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia.,IMPACT Strategic Research Centre, Barwon Health, Deakin University, Geelong, VIC, Australia.,Orygen Youth Health Research Centre, Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Olivia M Dean
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia.,IMPACT Strategic Research Centre, Barwon Health, Deakin University, Geelong, VIC, Australia.,Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - David J Castle
- Centre for Mental Health, Swinburne University of Technology, Hawthorn, VIC, Australia.,Department of Psychiatry, St. Vincent's Hospital Melbourne, Melbourne, VIC, Australia.,Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Eric J Tan
- Centre for Mental Health, Swinburne University of Technology, Hawthorn, VIC, Australia.,Department of Psychiatry, St. Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - Andrea Phillipou
- Centre for Mental Health, Swinburne University of Technology, Hawthorn, VIC, Australia.,Department of Psychiatry, St. Vincent's Hospital Melbourne, Melbourne, VIC, Australia.,Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Anthony Wf Harris
- Discipline of Psychiatry, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,Brain Dynamics Centre, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Ana Rita Barreiros
- Brain Dynamics Centre, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Abigail Hansen
- Brain Dynamics Centre, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Dan Siskind
- Metro South Addiction and Mental Health Service, Mobile Intensive Rehabilitation Team, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Enhancement of Lipid Metabolism and Hepatic Stability in Fat-Induced Obese Mice by Fermented Cucurbita moschata Extract. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3908453. [PMID: 29725353 PMCID: PMC5872621 DOI: 10.1155/2018/3908453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 12/17/2017] [Indexed: 12/24/2022]
Abstract
The aim of this study was to evaluate the potentials of fermented Cucurbita moschata extract (FCME) in the treatment of obesity and nonalcoholic fatty liver disease (NAFLD). Five-week-old male C57BL/6 mice were assigned to 6 groups and treated for 8 weeks by feeding the normal diet (ND) and high fat diet (HFD) with and without FCME. Changes in body weight gain and consumption of feed and water were recorded. Major organs, adipose tissues, and blood samples were collected after the experimental period. The serum lipid profile, histological features of liver and adipose tissues, and mRNA expression of different adipogenic/lipogenic genes from liver tissue were evaluated. The supplementation of FCME in HFD significantly prevented HFD-induced increment of bodyweight. The adipose tissue mass, liver enzymes, and plasma lipids were also reduced significantly (p < 0.05) by the consumption of FCME. The mRNA expressions of adipogenic/lipogenic genes (PPARγ, C/EBPα, C/EBPβ, C/EBPγ, and SREBP-1C) in FCME-treated obese mice were considerably (p < 0.05) suppressed. FCME showed its antiobesity potential by suppressing the body weight gain and by modulating the plasma lipids and liver enzymes through the regulation of adipogenic/lipogenic transcriptional factors. Fermented Cucurbita moschata could be an opportunistic agent in controlling obesity and fatty liver changes.
Collapse
|
10
|
Effect of N-Acetylcysteine on Dyslipidemia and Carbohydrate Metabolism in STZ-Induced Diabetic Rats. Int J Vasc Med 2018; 2018:6428630. [PMID: 29796316 PMCID: PMC5896413 DOI: 10.1155/2018/6428630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/27/2017] [Indexed: 11/24/2022] Open
Abstract
Background Type 1 diabetes mellitus (T1DM) is characterized by insulin-deficient production leading to hyperglycemia, which is associated with diabetic complications such as cardiovascular diseases. Antioxidants have been proving a good alternative to diabetic complications, with N-acetylcysteine (NAC) having antioxidant characteristics. The aim of this study was to assess the effect of NAC on the lipid profile and the atherogenic index (AI) in streptozotocin- (STZ-) induced diabetic rats. Method 32 male Wistar rats (60 days of age) weighting ±250 g were randomly distributed into four groups (n = 8): CTRL: control rats; CTRL+NAC: control rats treated with NAC; DM: diabetic rats; DM+NAC: diabetic rats treated with NAC. T1DM was induced using STZ (60 mg/kg, ip; single dose), and NAC (25 mg/kg/day) was administrated by gavage, for 37 days. The animals received chow and water ad libitum. After the experimental period, blood and cardiac tissue samples were collected to analyze energetic metabolism, lipid profile, and AI. Results NAC decreased (p < 0.01) glycemia, energy intake, carbohydrate, and protein consumption in diabetic rats (DM+NAC), when compared with DM, while the alimentary efficiency was improved (p < 0.01) in treated diabetic rats (DM+NAC). Diabetic rats treated with NAC decreased (p < 0.01) lipid profile and AI in diabetic rats (DM+NAC) when compared to DM. Conclusion NAC improves lipid profile and decreases AI in STZ-induced diabetic rats.
Collapse
|
11
|
Gasparotto J, Kunzler A, Senger MR, Souza CDSFD, Simone SGD, Bortolin RC, Somensi N, Dal-Pizzol F, Moreira JCF, Abreu-Silva AL, Calabrese KDS, Silva FP, Gelain DP. N-acetyl-cysteine inhibits liver oxidative stress markers in BALB/c mice infected with Leishmania amazonensis. Mem Inst Oswaldo Cruz 2017; 112:146-154. [PMID: 28177049 PMCID: PMC5293124 DOI: 10.1590/0074-02760160403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/07/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Leishmaniasis is a parasitosis caused by several species of the genus Leishmania. These parasites present high resistance against oxidative stress generated by inflammatory cells. OBJECTIVES To investigate oxidative stress and molecular inflammatory markers in BALB/c mice infected with L. amazonensis and the effect of antioxidant treatment on these parameters. METHODS Four months after infection, oxidative and inflammatory parameters of liver, kidneys, spleen, heart and lungs from BALB/c mice were assessed. FINDINGS In liver, L. amazonensis caused thiol oxidation and nitrotyrosine formation; SOD activity and SOD2 protein content were increased while SOD1 protein content decreased. The content of the cytokines IL-1β, IL-6, TNF-α, and the receptor of advanced glycation endproducts (RAGE) increased in liver. Treatment with the antioxidant N-acetyl-cysteine (20 mg/kg b.w) for five days inhibited oxidative stress parameters. MAIN CONCLUSIONS L. amazonensis induces significant alterations in the redox status of liver but not in other organs. Acute antioxidant treatment alleviates oxidative stress in liver, but it had no effect on pro-inflammatory markers. These results indicate that the pathobiology of leishmaniasis is not restricted to the cutaneous manifestations and open perspectives for the development of new therapeutic approaches to the disease, especially for liver function.
Collapse
Affiliation(s)
- Juciano Gasparotto
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Porto Alegre, RS, Brasil
| | - Alice Kunzler
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Porto Alegre, RS, Brasil
| | - Mario Roberto Senger
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica Experimental e Computacional de Fármacos, Rio de Janeiro, RJ, Brasil
| | | | - Salvatore Giovanni de Simone
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Centro de Desenvolvimento Tecnológico em Saúde, Rio de Janeiro, RJ, Brasil
| | - Rafael Calixto Bortolin
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Porto Alegre, RS, Brasil
| | - Nauana Somensi
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Porto Alegre, RS, Brasil
| | - Felipe Dal-Pizzol
- Universidade do Extremo Sul Catarinense, Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Fisiopatologia Experimental, Criciúma, SC, Brasil
| | - José Claudio Fonseca Moreira
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Porto Alegre, RS, Brasil
| | | | - Kátia da Silva Calabrese
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunomodulação e Protozoologia, Rio de Janeiro, RJ, Brasil
| | - Floriano Paes Silva
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica Experimental e Computacional de Fármacos, Rio de Janeiro, RJ, Brasil
| | - Daniel Pens Gelain
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Porto Alegre, RS, Brasil
| |
Collapse
|
12
|
Küskü-Kiraz Z, Genc S, Bekpınar S, Ünlücerci Y, Çevik A, Olgaç V, Gürdöl F, Uysal M. Effects of betaine supplementation on nitric oxide metabolism, atherosclerotic parameters, and fatty liver in guinea pigs fed a high cholesterol plus methionine diet. Nutrition 2017; 45:41-48. [PMID: 29129236 DOI: 10.1016/j.nut.2017.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/06/2017] [Accepted: 07/11/2017] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the effect of high cholesterol (CHOL) and CHOL + methionine (MET) diets on atherogenic and oxidative index parameters and on the factors that influence nitric oxide (NO) bioavailability. Also, attempts were made to determine whether dietary betaine (BET) resulted in any improvement in the changes that occurred after CHOL + MET administration. METHODS Guinea pigs were fed chow containing 1.5% CHOL with or without 2% MET for 10 wk. A third group received the CHOL + MET + BET diet. Control groups were given standard chow or standard chow + BET. Arginine, NO, nitrotyrosine (NT), and asymmetric dimethylarginine (ADMA) levels; lipid profile; and dimethylarginine dimethylaminohydrolase (DDAH) activity were measured. The liver and aorta were subjected to histopathologic analysis. RESULTS The CHOL + MET diet caused higher serum CHOL and homocysteine levels, but no further increases were seen in aortic CHOL and diene conjugate (DC) levels and histopathologic lesions as compared with the CHOL group. Hepatic lipids and DC levels were also higher, and histopathologic lesions were more severe. CHOL + MET feeding increased ADMA and NT levels as compared with those of the CHOL-fed group. When BET (1 g/kg body weight/d) was added to the CHOL + MET diet, homocysteine and lipid levels decreased and histopathologic changes were reversed. BET diet decreased serum ADMA and hepatic and aortic DC levels and partly restored DDAH activity. CONCLUSIONS BET supplementation may be effective in preventing hyperlipidemia, disturbed NO availability, oxidative stress, and the development of fatty liver and atherosclerotic lesions that might result from excess amounts of cholesterol and methionine in the diet.
Collapse
Affiliation(s)
- Zeynep Küskü-Kiraz
- Department of Biochemistry, Faculty of Medicine, Osman Gazi University, Eskişehir, Turkey
| | - Sema Genc
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Seldağ Bekpınar
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Yeşim Ünlücerci
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Aydın Çevik
- Aziz Sancar Experimental and Medical Research Institute, Istanbul University, Istanbul, Turkey
| | - Vakur Olgaç
- Department of Pathology, The Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Figen Gürdöl
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Müjdat Uysal
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
13
|
Zou Y, Hu T, Shi Y, Liao S, Liu J, Mu L, Chen CYO. Silkworm pupae oil exerts hypercholesterolemic and antioxidant effects in high-cholesterol diet-fed rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:2050-2056. [PMID: 27558637 DOI: 10.1002/jsfa.8009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 08/17/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Silkworm pupae is a good resource of edible oil that is especially rich in unsaturated fatty acids and is considered to be an excellent dietary supplement for hyperlipidemia. RESULTS Groups fed a high-cholesterol diet (HCD) with silkworm pupae oil (SPO) supplementation (1, 2, or 4 mL kg-1 day-1 ) orally had significantly lower levels of serum total cholesterol (P < 0.05) and low-density lipoprotein cholesterol (P < 0.05) compared to the HCD group. With regard to antioxidant parameters, except for levels of glutathione peroxidase (GSH-Px) in the liver, 2 and 4 mL kg-1 day-1 of SPO supplementation leaded to higher total antioxidant capacity (P < 0.05), superoxide dismutase (P < 0.05) and GSH-Px levels (P < 0.05), as well as lower malondialdehyde levels (P < 0.05), both in serum and liver compared to the HCD group. CONCLUSION The results of the present study indicate that supplementation with SPO can improve lipid profiles and alleviate oxidative stress in high-cholesterol diet-fed rats. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuxiao Zou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Tenggen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Ying Shi
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Sentai Liao
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Jun Liu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Lixia Mu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - C-Y Oliver Chen
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| |
Collapse
|
14
|
Ali MHH, Messiha BAS, Abdel-Latif HAT. Protective effect of ursodeoxycholic acid, resveratrol, and N-acetylcysteine on nonalcoholic fatty liver disease in rats. PHARMACEUTICAL BIOLOGY 2016; 54:1198-1208. [PMID: 26134756 DOI: 10.3109/13880209.2015.1060247] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. Resveratrol (RSV) and N-acetylcysteine (NAC) are safe representatives of natural and synthetic antioxidants, respectively. OBJECTIVE The objective of this study was to evaluate protective effects of RSV and NAC, compared with ursodeoxycholic acid (UDCA), on experimental NAFLD. MATERIALS AND METHODS NAFLD was induced by feeding rats a methionine choline-deficient diet (MCDD) for four cycles, each of 4 d of MCDD feeding and 3 d of fasting. Animals were divided into normal control, steatosis control, and five treatment groups, receiving UDCA (25 mg/kg/d), RSV (10 mg/kg/d), NAC (20 mg/kg/d), UDCA + RSV, and UDCA + NAC orally for 28 d. Liver integrity markers (liver index and serum transaminases), serum tumor necrosis factor-α (TNF-α), glucose, albumin, renal functions (urea, creatinine), lipid profile (total cholesterol; TC, triglycerides, high density lipoproteins, low density lipoproteins; LDL-C, very low density lipoproteins, leptin), and oxidative stress markers (hepatic malondialdehyde; MDA, glutathione; GSH, glutathione-S-transferase; GST) were measured using automatic analyzer, colorimetric kits, and ELISA kits, supported by a liver histopathological study. RESULTS RSV and NAC administration significantly improved liver index (RSV only), alanine transaminase (52, 52%), TNF-α (70, 70%), glucose (69, 80%), albumin (122, 114%), MDA (55, 63%), GSH (160, 152%), GST (84, 84%), TC (86, 86%), LDL-C (83, 81%), and leptin (59, 70%) levels compared with steatosis control values. A combination of RSV or NAC with UDCA seems to ameliorate their effects. DISCUSSION AND CONCLUSION RSV and NAC are effective on NAFLD through antioxidant, anti-inflammatory, and lipid-lowering potentials, where as RSV seems better than UDCA or NAC.
Collapse
Affiliation(s)
- Mahmoud Hussein Hassan Ali
- a Department of Pharmacology and Toxicology , Faculty of Pharmacy, Beni-Sueif University , Beni-Sueif , Egypt and
| | - Basim Anwar Shehata Messiha
- a Department of Pharmacology and Toxicology , Faculty of Pharmacy, Beni-Sueif University , Beni-Sueif , Egypt and
| | | |
Collapse
|
15
|
Ma Y, Gao M, Liu D. N-acetylcysteine Protects Mice from High Fat Diet-induced Metabolic Disorders. Pharm Res 2016; 33:2033-42. [PMID: 27161488 DOI: 10.1007/s11095-016-1941-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/02/2016] [Indexed: 01/13/2023]
Abstract
PURPOSE To study the effects of N-acetylcysteine (NAC, C5H9NO3S) on diet-induced obesity and obesity-related metabolic disorders. METHODS Six-week-old male C57BL/6 mice fed a chow or high-fat diet (HFD) were treated with NAC (2 g/L) in drinking water for 11 weeks. Its influences on body weight and food intake were manually measured, and influence on body composition were analyzed by magnetic residence imaging. Glucose meter and ELISA were used to determine serum glucose and insulin levels, as well as lipid content in the liver. The effects of NAC treatment on mRNA levels of genes involved in inflammation, thermogenesis, and lipid metabolism in various tissues were determined by real time PCR. RESULTS NAC supplementation inhibited the increase of fat mass and the development of obesity when mice were fed an HFD. NAC treatment significantly lowered HFD-induced macrophage infiltration, and enhanced adiponectin gene expression, resulting in reduced hyperglycemia and hyperinsulinemia, and improvement of insulin resistance. NAC oral administration suppressed hepatic lipid accumulation, as evidenced by lower levels of triglyceride and cholesterol in the liver. The beneficial effects are associated with a decrease of hepatic Pparγ and its target gene expression, and an increase in the expression of genes responsible for lipid oxidation and activation of farnesoid X receptor. Furthermore, NAC treatment also stimulates expression of thermogenic genes. CONCLUSION These results provide direct proof of the protective potential of NAC against HFD-induced obesity and obesity-associated metabolic disorders.
Collapse
Affiliation(s)
- Yongjie Ma
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, Georgia, USA
| | - Mingming Gao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, Georgia, USA
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, Georgia, USA.
| |
Collapse
|
16
|
Lasram MM, Dhouib IB, Annabi A, El Fazaa S, Gharbi N. A review on the possible molecular mechanism of action of N-acetylcysteine against insulin resistance and type-2 diabetes development. Clin Biochem 2015; 48:1200-8. [DOI: 10.1016/j.clinbiochem.2015.04.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 04/18/2015] [Accepted: 04/21/2015] [Indexed: 01/01/2023]
|
17
|
Machado JT, Iborra RT, Fusco FB, Castilho G, Pinto RS, Machado-Lima A, Nakandakare ER, Seguro AC, Shimizu MH, Catanozi S, Passarelli M. N-acetylcysteine prevents endoplasmic reticulum stress elicited in macrophages by serum albumin drawn from chronic kidney disease rats and selectively affects lipid transporters, ABCA-1 and ABCG-1. Atherosclerosis 2014; 237:343-52. [DOI: 10.1016/j.atherosclerosis.2014.09.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/26/2014] [Accepted: 09/08/2014] [Indexed: 01/11/2023]
|
18
|
Impact of N-acetylcysteine and sesame oil on lipid metabolism and hypothalamic-pituitary-adrenal axis homeostasis in middle-aged hypercholesterolemic mice. Sci Rep 2014; 4:6806. [PMID: 25348324 PMCID: PMC4210865 DOI: 10.1038/srep06806] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/07/2014] [Indexed: 12/21/2022] Open
Abstract
Hyperlipidemia and stress are important factors affecting cardiovascular health in middle-aged individuals. We investigated the effects of N-acetylcysteine (NAC) and sesame oil on the lipidemic status, liver architecture and the hypothalamic-pituitary-adrenal (HPA) axis of middle-aged mice fed a cholesterol-enriched diet. We randomized 36 middle-aged C57bl/6 mice into 6 groups: a control group, a cholesterol/cholic acid diet group, a cholesterol/cholic acid diet group with NAC supplementation, a cholesterol/cholic acid diet enriched with 10% sesame oil and two groups receiving a control diet enriched with NAC or sesame oil. NAC administration prevented the onset of the disturbed lipid profile, exhibiting decreased lipid peroxidation and alkaline phosphatase (ALP) levels, restored nitric oxide bioavailability and reduced hepatic damage, compared to non-supplemented groups. High-cholesterol feeding resulted in increased hypothalamic glucocorticoid receptors (GR) levels, while NAC supplementation prevented this effect. NAC supplementation presented significant antioxidant capacity by means of preventing serum lipid status alterations, hepatic damage, and HPA axis disturbance due to high-cholesterol feeding in middle-aged mice. These findings suggest a beneficial preventive action of plant-derived antioxidants, such as NAC, on lipid metabolism and on the HPA axis.
Collapse
|
19
|
Majdalawieh AF, Ro HS. Sesamol and sesame (Sesamum indicum) oil enhance macrophage cholesterol efflux via up-regulation of PPARγ1 and LXRα transcriptional activity in a MAPK-dependent manner. Eur J Nutr 2014; 54:691-700. [DOI: 10.1007/s00394-014-0747-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/23/2014] [Indexed: 02/08/2023]
|
20
|
Georgiadis I, Karatzas T, Korou LM, Agrogiannis G, Vlachos IS, Pantopoulou A, Tzanetakou IP, Katsilambros N, Perrea DN. Evaluation of Chios Mastic Gum on Lipid and Glucose Metabolism in Diabetic Mice. J Med Food 2014; 17:393-9. [DOI: 10.1089/jmf.2013.0069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ioannis Georgiadis
- N.S. Christeas Department for Experimental Surgery and Surgical Research, Athens School of Medicine, Athens, Greece
| | - Theodore Karatzas
- N.S. Christeas Department for Experimental Surgery and Surgical Research, Athens School of Medicine, Athens, Greece
- Second Department of Propedeutic Surgery, University of Athens, Laiko General Hospital, Athens, Greece
| | - Laskarina-Maria Korou
- N.S. Christeas Department for Experimental Surgery and Surgical Research, Athens School of Medicine, Athens, Greece
| | | | - Ioannis S. Vlachos
- N.S. Christeas Department for Experimental Surgery and Surgical Research, Athens School of Medicine, Athens, Greece
| | - Alkisti Pantopoulou
- N.S. Christeas Department for Experimental Surgery and Surgical Research, Athens School of Medicine, Athens, Greece
| | - Irene P. Tzanetakou
- N.S. Christeas Department for Experimental Surgery and Surgical Research, Athens School of Medicine, Athens, Greece
| | - Nikolaos Katsilambros
- N.S. Christeas Department for Experimental Surgery and Surgical Research, Athens School of Medicine, Athens, Greece
| | - Despina N. Perrea
- N.S. Christeas Department for Experimental Surgery and Surgical Research, Athens School of Medicine, Athens, Greece
| |
Collapse
|
21
|
Shimizu MHM, Volpini RA, de Bragança AC, Campos R, Canale D, Sanches TR, Andrade L, Seguro AC. N-acetylcysteine attenuates renal alterations induced by senescence in the rat. Exp Gerontol 2013; 48:298-303. [PMID: 23183129 DOI: 10.1016/j.exger.2012.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 10/08/2012] [Accepted: 11/15/2012] [Indexed: 11/25/2022]
Abstract
The aim of this study was to evaluate the effects of N-acetylcysteine (NAC) on renal function, as well as on sodium and water transporters, in the kidneys of aged rats. Normal, 8-month-old male Wistar rats were treated (n=6) or not (n=6) with NAC (600 mg/L in drinking water) and followed for 16 months. At the end of the follow-up period, we determined inulin clearance, serum thiobarbituric acid reactive substances (TBARS), serum cholesterol, and urinary phosphate excretion. In addition, we performed immunohistochemical staining for p53 and for ED-1-positive cells (macrophages/monocytes), together with Western blotting of kidney tissue for NKCC2, aquaporin 2 (AQP2), urea transporter A1 (UT-A1) and Klotho protein. At baseline, the two groups were similar in terms of creatinine clearance, proteinuria, cholesterol, and TBARS. At the end of the follow-up period, NAC-treated rats presented greater inulin clearance and reduced proteinuria, as well as lower serum cholesterol, serum TBARS, and urinary phosphate excretion, in comparison with untreated rats. In addition, NAC-treated rats showed upregulated expression of NKCC2, AQP2, and UT-A1; elevated Klotho protein expression, low p53 expression, and few ED-1 positive cells. In conclusion, we attribute these beneficial effects of NAC (the significant improvements in inulin clearance and in the expression of NKCC2, AQP2, and UT-A1) to its ability to decrease oxidative stress, inhibit p53 expression, minimize kidney inflammation, and stimulate Klotho expression.
Collapse
Affiliation(s)
- Maria Heloisa M Shimizu
- Laboratory for Medical Research, Nephrology Department, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Mariee AD, Abd-Allah GM, El-Beshbishy HA. Protective effect of dietary flavonoid quercetin against lipemic-oxidative hepatic injury in hypercholesterolemic rats. PHARMACEUTICAL BIOLOGY 2012; 50:1019-1025. [PMID: 22775419 DOI: 10.3109/13880209.2012.655424] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CONTEXT Quercetin, a dietary-derived flavonoid, is ubiquitous in fruits and vegetables and plays important roles in human health by virtue of its antioxidant activity. OBJECTIVE This study was conducted to investigate the possible modulatory effect of quercetin against hepatic lipemic-oxidative injury in rats fed with a high cholesterol diet (HCD), and to highlight the underlying mechanisms of such effect. MATERIALS AND METHODS Different groups of male Sprague-Dawley rats were used; one group was treated by gavage with HCD cocktail (1 mL/100 g) whereas another group was orally administered HCD-enriched with quercetin (15 mg/kg). Corresponding control animals were also used. RESULTS Quercetin administration significantly decreased liver triglycerides (24%), liver total cholesterol (TC) (22%), serum TC (20%), serum low-density lipoprotein cholesterol (31%), and duplicated serum high-density lipoprotein cholesterol (HDL-C). This study also revealed that quercetin administration significantly reduced the activity of serum alanine aminotransferase (41%), aspartate aminotransferase (51%), and γ-glutamyl transpeptidase (G-GT) (35%). Significant inhibition of thiobarbituric acid-reacting substances (40%), together with a valuable enhancement of reduced glutathione (GSH) content (53%) in the liver homogenates, was observed. In addition, quercetin-treated hypercholesterolemic animals exhibited a reasonable improvement of hepatic antioxidant enzymes. Moreover, serum and liver content of nitric oxide (NO) were markedly decreased in this model (26 and 25%, respectively), and were almost normalized following quercetin administration. DISCUSSION AND CONCLUSION These data revealed that quercetin has the ability to ameliorate HCD-induced lipemic-oxidative injury in rat liver possibly through its antioxidant potential and/or increased NO bioavailability.
Collapse
Affiliation(s)
- Amr D Mariee
- Department of Biochemistry, College of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | | | | |
Collapse
|
23
|
Rosenbaum MA, Miyazaki K, Graham LM. Hypercholesterolemia and oxidative stress inhibit endothelial cell healing after arterial injury. J Vasc Surg 2011; 55:489-96. [PMID: 22047834 DOI: 10.1016/j.jvs.2011.07.081] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Endothelial cell (EC) migration is essential for arterial healing after angioplasty. Oxidized low-density lipoproteins and oxidative stress decrease EC migration in vitro. The objective of this study was to determine the effect of hypercholesterolemia and oxidative stress on EC healing after an arterial injury. METHODS C57BL/6 wild-type mice were placed in one of eight groups: chow diet (n = 11), high-cholesterol (HC) diet (n = 11), chow diet plus paraquat (n = 11), HC diet plus paraquat (n = 11), chow diet plus N-acetylcysteine (NAC) (n = 11), HC diet plus NAC (n = 11), chow diet plus paraquat and NAC (n = 11), and HC diet plus paraquat and NAC (n = 11). After 2 weeks on the assigned diet with or without NAC, the carotid artery was injured using electrocautery. Animals in the paraquat groups were given 1 mg/kg intraperitoneally to increase oxidative stress. After 120 hours, Evans Blue dye was infused intravenously to stain the area of the artery that remained deendothelialized. This was used to calculate the percentage of re-endothelialization. Plasma and tissue samples were analyzed for measures of oxidative stress. RESULTS The HC diet increased oxidative stress and reduced EC healing compared with a chow diet, with EC covering 26.8% ± 2.8% and 48.1% ± 5.2% (P < .001) of the injured area, respectively. Administration of paraquat decreased healing in both chow and HC animals to 18.1% ± 3.5% (P < .001) and 9.8% ± 4.6% (P < .001), respectively. Pretreatment with NAC (120 mmol/L in drinking water) for 2 weeks prior to injury, to decrease oxidative stress, improved EC healing to 39.9% ± 5.7% (P < .001) in hypercholesterolemic mice and to 30.7% ± 3.6% (P < .001) in the paraquat group. NAC treatment improved healing to 24.6% ± 3.4% (P < .001) in hypercholesterolemic mice treated with paraquat. CONCLUSION Re-endothelialization of arterial injuries is reduced in hypercholesterolemic mice and is inversely correlated with oxidative stress. An oral antioxidant decreases oxidative stress and improves EC healing. CLINICAL RELEVANCE Vascular injury following cardiovascular intervention, including cardiac and peripheral arterial angioplasty and stenting, is associated with inflammation and oxidative stress. Hypercholesterolemia is also associated with increased oxidative stress. Oxidative stress, regardless of the source, induces cellular dysfunction in endothelial and smooth muscle cells that reduce healing after arterial injury. Decreasing oxidative stress with an exogenously administered antioxidant can improve endothelial cell healing, and this is important to control intimal hyperplasia and reduce the thrombogenicity of the vessel.
Collapse
Affiliation(s)
- Michael A Rosenbaum
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|