1
|
Liu J, Parrish JR, Hines J, Mansfield L, Finley RL. A proteome-wide screen of Campylobacter jejuni using protein microarrays identifies novel and conformational antigens. PLoS One 2019; 14:e0210351. [PMID: 30633767 PMCID: PMC6329530 DOI: 10.1371/journal.pone.0210351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Campylobacter jejuni (C. jejuni) is a foodborne intestinal pathogen and major cause of gastroenteritis worldwide. C. jejuni proteins that are immunogenic have been sought for their potential use in the development of biomarkers, diagnostic assays, or subunit vaccines for humans or livestock. To identify new immunogenic C. jejuni proteins, we used a native protein microarray approach. A protein chip, with over 1400 individually purified GST-tagged C. jejuni proteins, representing over 86% of the proteome, was constructed to screen for antibody titers present in test sera raised against whole C. jejuni cells. Dual detection of GST signals was incorporated as a way of normalizing the variation of protein concentrations contributing to the antibody staining intensities. We detected strong signals to 102 C. jejuni antigens. In addition to antigens recognized by antiserum raised against C. jejuni, parallel experiments were conducted to identify antigens cross-reactive to antiserum raised against various serotypes of E. coli or Salmonella or to healthy human sera. This led to the identification of 34 antigens specifically recognized by the C. jejuni antiserum, only four of which were previously known. The chip approach also allowed identification of conformational antigens. We demonstrate in the case of Cj1621 that antigen signals are lost to denaturing conditions commonly used in other approaches to identify immunogens. Antigens identified in this study include those possessing sequence features indicative of cell surface localization, as well as those that do not. Together, our results indicate that the unbiased chip-based screen can help reveal the full repertoire of host antibodies against microbial proteomes.
Collapse
Affiliation(s)
- Jiayou Liu
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Jodi R Parrish
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Julie Hines
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Linda Mansfield
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Russell L Finley
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America.,Department of Microbiology, Immunology, and Biochemistry Wayne State University School of Medicine, Detroit, Michigan, United States of America
| |
Collapse
|
2
|
Maes M, Kanchanatawan B, Sirivichayakul S, Carvalho AF. In Schizophrenia, Increased Plasma IgM/IgA Responses to Gut Commensal Bacteria Are Associated with Negative Symptoms, Neurocognitive Impairments, and the Deficit Phenotype. Neurotox Res 2018; 35:684-698. [DOI: 10.1007/s12640-018-9987-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/25/2022]
|
3
|
Gagarinova A, Phanse S, Cygler M, Babu M. Insights from protein-protein interaction studies on bacterial pathogenesis. Expert Rev Proteomics 2017; 14:779-797. [DOI: 10.1080/14789450.2017.1365603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alla Gagarinova
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Miroslaw Cygler
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| |
Collapse
|
4
|
Nothaft H, Davis B, Lock YY, Perez-Munoz ME, Vinogradov E, Walter J, Coros C, Szymanski CM. Engineering the Campylobacter jejuni N-glycan to create an effective chicken vaccine. Sci Rep 2016; 6:26511. [PMID: 27221144 PMCID: PMC4879521 DOI: 10.1038/srep26511] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/04/2016] [Indexed: 12/31/2022] Open
Abstract
Campylobacter jejuni is a predominant cause of human gastroenteritis worldwide. Source-attribution studies indicate that chickens are the main reservoir for infection, thus elimination of C. jejuni from poultry would significantly reduce the burden of human disease. We constructed glycoconjugate vaccines combining the conserved C. jejuni N-glycan with a protein carrier, GlycoTag, or fused to the Escherichia coli lipopolysaccharide-core. Vaccination of chickens with the protein-based or E. coli-displayed glycoconjugate showed up to 10-log reduction in C. jejuni colonization and induced N-glycan-specific IgY responses. Moreover, the live E. coli vaccine was cleared prior to C. jejuni challenge and no selection for resistant campylobacter variants was observed. Analyses of the chicken gut communities revealed that the live vaccine did not alter the composition or complexity of the microbiome, thus representing an effective and low-cost strategy to reduce C. jejuni in chickens and its subsequent entry into the food chain.
Collapse
Affiliation(s)
- Harald Nothaft
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Alberta Glycomics Centre, University of Alberta, Edmonton, Canada
| | | | | | - Maria Elisa Perez-Munoz
- Department of Agricultural, Food &Nutritional Science, University of Alberta, Edmonton, Canada
| | - Evgeny Vinogradov
- Human Health Therapeutics, National Research Council, Ottawa, Canada
| | - Jens Walter
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Department of Agricultural, Food &Nutritional Science, University of Alberta, Edmonton, Canada
| | | | - Christine M Szymanski
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Alberta Glycomics Centre, University of Alberta, Edmonton, Canada
| |
Collapse
|
5
|
Kobierecka PA, Wyszyńska AK, Gubernator J, Kuczkowski M, Wiśniewski O, Maruszewska M, Wojtania A, Derlatka KE, Adamska I, Godlewska R, Jagusztyn-Krynicka EK. Chicken Anti-Campylobacter Vaccine - Comparison of Various Carriers and Routes of Immunization. Front Microbiol 2016; 7:740. [PMID: 27242755 PMCID: PMC4872485 DOI: 10.3389/fmicb.2016.00740] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/03/2016] [Indexed: 12/20/2022] Open
Abstract
Campylobacter spp, especially the species Campylobacter jejuni, are important human enteropathogens responsible for millions of cases of gastro-intestinal disease worldwide every year. C. jejuni is a zoonotic pathogen, and poultry meat that has been contaminated by microorganisms is recognized as a key source of human infections. Although numerous strategies have been developed and experimentally checked to generate chicken vaccines, the results have so far had limited success. In this study, we explored the potential use of non-live carriers of Campylobacter antigen to combat Campylobacter in poultry. First, we assessed the effectiveness of immunization with orally or subcutaneously delivered Gram-positive Enhancer Matrix (GEM) particles carrying two Campylobacter antigens: CjaA and CjaD. These two immunization routes using GEMs as the vector did not protect against Campylobacter colonization. Thus, we next assessed the efficacy of in ovo immunization using various delivery systems: GEM particles and liposomes. The hybrid protein rCjaAD, which is CjaA presenting CjaD epitopes on its surface, was employed as a model antigen. We found that rCjaAD administered in ovo at embryonic development day 18 by both delivery systems resulted in significant levels of protection after challenge with a heterologous C. jejuni strain. In practice, in ovo chicken vaccination is used by the poultry industry to protect birds against several viral diseases. Our work showed that this means of delivery is also efficacious with respect to commensal bacteria such as Campylobacter. In this study, we evaluated the protection after one dose of vaccine given in ovo. We speculate that the level of protection may be increased by a post-hatch booster of orally delivered antigens.
Collapse
Affiliation(s)
- Patrycja A. Kobierecka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Agnieszka K. Wyszyńska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of WrocławWrocław, Poland
| | - Maciej Kuczkowski
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life SciencesWrocław, Poland
| | - Oskar Wiśniewski
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Marta Maruszewska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Anna Wojtania
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Katarzyna E. Derlatka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Iwona Adamska
- Department of Animal Physiology, Institute of Zoology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Renata Godlewska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of WarsawWarsaw, Poland
| | | |
Collapse
|
6
|
On-bead antibody-small molecule conjugation using high-capacity magnetic beads. J Immunol Methods 2015; 426:95-103. [DOI: 10.1016/j.jim.2015.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 01/26/2023]
|
7
|
Hoppe S, Bier FF, von Nickisch-Rosenegk M. Identification of antigenic proteins of the nosocomial pathogen Klebsiella pneumoniae. PLoS One 2014; 9:e110703. [PMID: 25333280 PMCID: PMC4205017 DOI: 10.1371/journal.pone.0110703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 09/24/2014] [Indexed: 12/17/2022] Open
Abstract
The continuous expansion of nosocomial infections around the globe has become a precarious situation. Key challenges include mounting dissemination of multiple resistances to antibiotics, the easy transmission and the growing mortality rates of hospital-acquired bacterial diseases. Thus, new ways to rapidly detect these infections are vital. Consequently, researchers around the globe pursue innovative approaches for point-of-care devices. In many cases the specific interaction of an antigen and a corresponding antibody is pivotal. However, the knowledge about suitable antigens is lacking. The aim of this study was to identify novel antigens as specific diagnostic markers. Additionally, these proteins might be aptly used for the generation of vaccines to improve current treatment options. Hence, a cDNA-based expression library was constructed and screened via microarrays to detect novel antigens of Klebsiella pneumoniae, a prominent agent of nosocomial infections well-known for its extensive antibiotics resistance, especially by extended-spectrum beta-lactamases (ESBL). After screening 1536 clones, 14 previously unknown immunogenic proteins were identified. Subsequently, each protein was expressed in full-length and its immunodominant character examined by ELISA and microarray analyses. Consequently, six proteins were selected for epitope mapping and three thereof possessed linear epitopes. After specificity analysis, homology survey and 3d structural modelling, one epitope sequence GAVVALSTTFA of KPN_00363, an ion channel protein, was identified harboring specificity for K. pneumoniae. The remaining epitopes showed ambiguous results regarding the specificity for K. pneumoniae. The approach adopted herein has been successfully utilized to discover novel antigens of Campylobacter jejuni and Salmonella enterica antigens before. Now, we have transferred this knowledge to the key nosocomial agent, K. pneumoniae. By identifying several novel antigens and their linear epitope sites, we have paved the way for crucial future research and applications including the design of point-of-care devices, vaccine development and serological screenings for a highly relevant nosocomial pathogen.
Collapse
Affiliation(s)
- Sebastian Hoppe
- Department of Bioanalytics and Biosensorics, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Frank F. Bier
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Department of Biosystem Integration and Automation, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocess (IZI-BB), Potsdam, Germany
| | - Markus von Nickisch-Rosenegk
- Department of Bioanalytics and Biosensorics, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| |
Collapse
|
8
|
Danckert L, Hoppe S, Bier FF, von Nickisch-Rosenegk M. Rapid identification of novel antigens of Salmonella Enteritidis by microarray-based immunoscreening. Mikrochim Acta 2014; 181:1707-1714. [PMID: 25253911 PMCID: PMC4167438 DOI: 10.1007/s00604-014-1197-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 01/30/2014] [Indexed: 01/13/2023]
Abstract
We report on an approach to rapidly screen thousands of Salmonella Enteritidis proteins with the goal of identifying novel immunodominant proteins. We used a microarray-based system that warrants high throughput and easy handling. Seven immunogenic candidates were selected after screening. Comparative analyses by ELISA and microarrays manifested their immunodominant character. The large repetitive protein (SEN4030) that plays a role as a putative adhesin in initial cell surface interaction and is highly specific to Salmonella is considered to be the most suitable protein for a diagnostic approach. The results further demonstrate that the strategy applied herein is convenient for specifically identifying immunogenic proteins of pathogenic microorganisms. Consequently, it enables a sound assessment of promising candidates for diagnostic applications and vaccine development. Moreover, the elucidation of immunogenic proteins may assist in unveiling unknown virulence-associated factors, thus furthering the understanding of the underlying pathogenicity of Salmonella in general, and of S. Enteritidis, one of the most frequently detected serovars of this pathogen, in particular. FigureThe microarray-based approach was aimed at identifying novel immunodominant proteins of S. Enteritidis. Seven antigens were revealed by screening a cDNA expression library. SEN4030, a large repetitive protein specific for salmonella, is considered an optimal candidate for future applications.
Collapse
Affiliation(s)
- Lena Danckert
- Fraunhofer IBMT, Am Mühlenberg 13., 14476 Potsdam, Germany
| | | | - Frank F. Bier
- Fraunhofer IBMT, Am Mühlenberg 13., 14476 Potsdam, Germany
| | | |
Collapse
|
9
|
Hoppe S, Bier FF, Nickisch-Rosenegk MV. Rapid identification of novel immunodominant proteins and characterization of a specific linear epitope of Campylobacter jejuni. PLoS One 2013; 8:e65837. [PMID: 23734261 PMCID: PMC3667084 DOI: 10.1371/journal.pone.0065837] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/30/2013] [Indexed: 01/03/2023] Open
Abstract
Campylobacter jejuni remains one of the major gut pathogens of our time. Its zoonotic nature and wide-spread distribution in industrialized countries calls for a quick and reliable diagnostic tool. Antibody-based detection presents a suitable means to identify pathogenic bacteria. However, the knowledge about immunodominant targets is limited. Thus, an approach is presented, which allows for the rapid screening of numerous cDNA derived expression clones to identify novel antigens. The deeper understanding of immunodominant proteins assists in the design of diagnostic tools and furthers the insight into the bacterium's pathogenicity as well as revealing potential candidates for vaccination. We have successfully screened 1536 clones of an expression library to identify 22 proteins that have not been described as immunodominant before. After subcloning the corresponding 22 genes and expression of full-length proteins, we investigated the immunodominant character by microarrays and ELISA. Subsequently, seven proteins were selected for epitope mapping. For cj0669 and cj0920c linear epitopes were identified. For cj0669, specificity assays revealed a specific linear epitope site. Consequently, an eleven amino acid residue sequence TLIKELKRLGI was analyzed via alanine scan, which revealed the glycine residue to be significant for binding of the antibody. The innovative approach presented herein of generating cDNAs of prokaryotes in combination with a microarray platform rendering time-consuming purification steps obsolete has helped to illuminate novel immunodominant proteins of C.jejuni. The findings of a specific linear epitope pave the way for a plethora of future research and the potential use in diagnostic applications such as serological screenings. Moreover, the current approach is easily adaptable to other highly relevant bacteria making it a formidable tool for the future discovery of antigens and potential biomarkers. Consequently, it is desirable to simplify the identification of structural epitopes, as this would extend the spectrum of novel epitopes to be detected.
Collapse
Affiliation(s)
- Sebastian Hoppe
- Fraunhofer Institute for Biomedical Engineering, Am Muehlenberg, Potsdam, Germany
| | - Frank F. Bier
- Fraunhofer Institute for Biomedical Engineering, Am Muehlenberg, Potsdam, Germany
- University Potsdam, Institute of Biochemistry and Biology, Potsdam, Germany
| | | |
Collapse
|
10
|
Leptospiral outer membrane protein microarray, a novel approach to identification of host ligand-binding proteins. J Bacteriol 2012; 194:6074-87. [PMID: 22961849 DOI: 10.1128/jb.01119-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Leptospirosis is a zoonosis with worldwide distribution caused by pathogenic spirochetes belonging to the genus Leptospira. The leptospiral life cycle involves transmission via freshwater and colonization of the renal tubules of their reservoir hosts. Infection requires adherence to cell surfaces and extracellular matrix components of host tissues. These host-pathogen interactions involve outer membrane proteins (OMPs) expressed on the bacterial surface. In this study, we developed an Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 OMP microarray containing all predicted lipoproteins and transmembrane OMPs. A total of 401 leptospiral genes or their fragments were transcribed and translated in vitro and printed on nitrocellulose-coated glass slides. We investigated the potential of this protein microarray to screen for interactions between leptospiral OMPs and fibronectin (Fn). This approach resulted in the identification of the recently described fibronectin-binding protein, LIC10258 (MFn8, Lsa66), and 14 novel Fn-binding proteins, denoted Microarray Fn-binding proteins (MFns). We confirmed Fn binding of purified recombinant LIC11612 (MFn1), LIC10714 (MFn2), LIC11051 (MFn6), LIC11436 (MFn7), LIC10258 (MFn8, Lsa66), and LIC10537 (MFn9) by far-Western blot assays. Moreover, we obtained specific antibodies to MFn1, MFn7, MFn8 (Lsa66), and MFn9 and demonstrated that MFn1, MFn7, and MFn9 are expressed and surface exposed under in vitro growth conditions. Further, we demonstrated that MFn1, MFn4 (LIC12631, Sph2), and MFn7 enable leptospires to bind fibronectin when expressed in the saprophyte, Leptospira biflexa. Protein microarrays are valuable tools for high-throughput identification of novel host ligand-binding proteins that have the potential to play key roles in the virulence mechanisms of pathogens.
Collapse
|