1
|
Yao J, Takenaga K, Koshikawa N, Kida Y, Lin J, Watanabe T, Maru Y, Hippo Y, Yamamoto S, Zhu Y, Nagase H. Anticancer effect of a pyrrole-imidazole polyamide-triphenylphosphonium conjugate selectively targeting a common mitochondrial DNA cancer risk variant in cervical cancer cells. Int J Cancer 2023; 152:962-976. [PMID: 36214789 DOI: 10.1002/ijc.34319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 01/06/2023]
Abstract
Cervical cancer remains a major threat to women's health, especially in countries with limited medical resources, and new drugs are needed to improve patient survival and minimize adverse effects. Here, we examine the effects of a triphenylphosphonium (TPP)-conjugated pyrrole-imidazole polyamide (CCC-h1005) targeting the common homoplasmic mitochondrial DNA (mtDNA) cancer risk variant (ATP6 8860A>G) on the survival of cervical cancer cell lines, cisplatin-resistant HeLa cells and patient-derived cervical clear cell carcinoma cells as models of cervical cancer treatment. We found that CCC-h1005 induced death in these cells and suppressed the growth of xenografted HeLa tumors with no severe adverse effects. These results suggest that PIP-TPP designed to target mtDNA cancer risk variants can be used to treat many cervical cancers harboring high copies of the target variant, providing a foundation for clinical trials of this class of molecules for treating cervical cancer and other types of cancers.
Collapse
Affiliation(s)
- Jihang Yao
- Division of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan.,Department of Gynecology, The First Hospital of China Medical University, Shenyang, China
| | - Keizo Takenaga
- Division of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Nobuko Koshikawa
- Division of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yuki Kida
- Division of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Jason Lin
- Division of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Takayoshi Watanabe
- Division of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yoshiaki Maru
- Department of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yoshitaka Hippo
- Department of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Seigi Yamamoto
- Division of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Hiroki Nagase
- Division of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| |
Collapse
|
2
|
Mitochondrial DNA Changes in Genes of Respiratory Complexes III, IV and V Could Be Related to Brain Tumours in Humans. Int J Mol Sci 2022; 23:ijms232012131. [PMID: 36292984 PMCID: PMC9603055 DOI: 10.3390/ijms232012131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial DNA changes can contribute to both an increased and decreased likelihood of cancer. This process is complex and not fully understood. Polymorphisms and mutations, especially those of the missense type, can affect mitochondrial functions, particularly if the conservative domain of the protein is concerned. This study aimed to identify the possible relationships between brain gliomas and the occurrence of specific mitochondrial DNA polymorphisms and mutations in respiratory complexes III, IV and V. The investigated material included blood and tumour material collected from 30 Caucasian patients diagnosed with WHO grade II, III or IV glioma. The mitochondrial genetic variants were investigated across the mitochondrial genome using next-generation sequencing (MiSeq/FGx system—Illumina). The study investigated, in silico, the effects of missense mutations on the biochemical properties, structure and functioning of the encoded protein, as well as their potential harmfulness. The A14793G (MTCYB), A15758G, (MT-CYB), A15218G (MT-CYB), G7444A (MT-CO1) polymorphisms, and the T15663C (MT-CYB) and G8959A (ATP6) mutations were assessed in silico as harmful alterations that could be involved in oncogenesis. The G8959A (E145K) ATP6 missense mutation has not been described in the literature so far. In light of these results, further research into the role of mtDNA changes in brain tumours should be conducted.
Collapse
|
3
|
Mitochondrial Dysfunction Pathway Alterations Offer Potential Biomarkers and Therapeutic Targets for Ovarian Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5634724. [PMID: 35498135 PMCID: PMC9045977 DOI: 10.1155/2022/5634724] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/24/2021] [Accepted: 04/02/2022] [Indexed: 11/29/2022]
Abstract
The mitochondrion is a very versatile organelle that participates in some important cancer-associated biological processes, including energy metabolism, oxidative stress, mitochondrial DNA (mtDNA) mutation, cell apoptosis, mitochondria-nuclear communication, dynamics, autophagy, calcium overload, immunity, and drug resistance in ovarian cancer. Multiomics studies have found that mitochondrial dysfunction, oxidative stress, and apoptosis signaling pathways act in human ovarian cancer, which demonstrates that mitochondria play critical roles in ovarian cancer. Many molecular targeted drugs have been developed against mitochondrial dysfunction pathways in ovarian cancer, including olive leaf extract, nilotinib, salinomycin, Sambucus nigra agglutinin, tigecycline, and eupatilin. This review article focuses on the underlying biological roles of mitochondrial dysfunction in ovarian cancer progression based on omics data, potential molecular relationship between mitochondrial dysfunction and oxidative stress, and future perspectives of promising biomarkers and therapeutic targets based on the mitochondrial dysfunction pathway for ovarian cancer.
Collapse
|
4
|
Shukla P, Singh KK. The mitochondrial landscape of ovarian cancer: emerging insights. Carcinogenesis 2021; 42:663-671. [PMID: 33928357 PMCID: PMC8163040 DOI: 10.1093/carcin/bgab033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/18/2021] [Accepted: 04/20/2021] [Indexed: 02/02/2023] Open
Abstract
Ovarian cancer (OC) is known to be the most lethal cancer in women worldwide, and its etiology is poorly understood. Recent studies show that mitochondrial DNA (mtDNA) content as well as mtDNA and nuclear genes encoding mitochondrial proteins influence OC risk. This review presents an overview of role of mitochondrial genetics in influencing OC development and discusses the contribution of mitochondrial proteome in OC development, progression and therapy. A role of mitochondrial genetics in racial disparity is also highlighted. In-depth understanding of role of mitochondria in OC will help develop strategies toward prevention and treatment and improving overall survival in women with OC.
Collapse
Affiliation(s)
- Pallavi Shukla
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Molecular Endocrinology, Indian Council of Medical Research-National Institute for Research in Reproductive Health (ICMR-NIRRH), Mumbai, India
| | - Keshav K Singh
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
5
|
Abd Elrahman MM, El Makawy AI, Hassanane MS, Alam SS, Hassan NHA, Amer MK. Assessment of correlation between asthenozoospermia and mitochondrial DNA mutations in Egyptian infertile men. J Genet Eng Biotechnol 2021; 19:11. [PMID: 33459881 PMCID: PMC7813956 DOI: 10.1186/s43141-020-00111-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/25/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Asthenozoospermia is a chief reason for male seminal pathologies with an impression of around 19% of infertile patients. Spermatozoa mitochondrial DNA variations seem to link with low sperm motility. The objective of the study was to assess the relation between mitochondrial mutations and male sterility, especially in asthenozoospermia. The patient semen samples were investigated by studying the sperm physical characters; motility, viability, and morphological parameters were then classified into normozoospermia and asthenozoospermia. In addition, the level of malondialdehyde (MDA) as a bio-indicator of lipid peroxidation, seminal fructose, and total antioxidant capacity (TAC) were estimated. For molecular analysis, DNA from the semen samples was extracted using a DNA extraction kit. ND1, ND2, and ATPase6 genes were amplified by using a specific primer. After the purification procedure, each PCR product was sequenced to identify the single nucleotide polymorphisms (SNPs) in selected genes. RESULTS A significant negative correlation between seminal plasma malondialdehyde levels and sperm motility was detected. Meanwhile, TAC analysis revealed significantly lower activity (p ≤ 0.05) in the sample of asthenozoospermic than in normozoospermic men. As regards the seminal plasma fructose, there was no significant difference in the fructose level of normozoospermia and asthenozoospermia cases. At the molecular level, 31 diverse nucleotide substitutions were recognized in mitochondrial DNA. Only ten (10) mutations led to amino acid transformation: four have deleterious effects, four are benign, and the other two have conflicting effectiveness. CONCLUSIONS This study is the first in Egypt that is concerned with studying the relationship between the mitochondrial DNA mutations in human spermatozoa of asthenozoospermic patients and fertility. The results displayed scientific indications evidenced that there is an association between mitochondrial mutations and male infertility.
Collapse
Affiliation(s)
- Mohamed M Abd Elrahman
- Cell Biology Dept. , Division of Genetic Engineering and Biotechnology Research, National Research Centre, 33 El Bohouth St., Dokki, P.O.12622, Giza, Egypt
| | - Aida I El Makawy
- Cell Biology Dept. , Division of Genetic Engineering and Biotechnology Research, National Research Centre, 33 El Bohouth St., Dokki, P.O.12622, Giza, Egypt.
| | - Mohamed S Hassanane
- Cell Biology Dept. , Division of Genetic Engineering and Biotechnology Research, National Research Centre, 33 El Bohouth St., Dokki, P.O.12622, Giza, Egypt
| | - Sally S Alam
- Cell Biology Dept. , Division of Genetic Engineering and Biotechnology Research, National Research Centre, 33 El Bohouth St., Dokki, P.O.12622, Giza, Egypt
| | - Nagwa H A Hassan
- Zoology Dept., Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Medhat K Amer
- Surgery Andrology and infertility Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Miree O, Srivastava SK, Dasgupta S, Singh S, Rocconi R, Singh AP. Current and Futuristic Roadmap of Ovarian Cancer Management: An Overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1330:1-19. [PMID: 34339027 DOI: 10.1007/978-3-030-73359-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy among women worldwide. In most cases, it is diagnosed late at an advanced stage and does not respond well to existing therapies leading to its poor prognosis. In addition, other factors including epidemiological, complex histological diversity, multiple molecular alterations, and overlapping signaling pathways are also important contributors to poor disease outcome. Efforts have continued to develop a deeper understanding of the molecular pathogenesis and altered signaling nodes that provide hope for better clinical management through the development of novel approaches for early diagnosis, disease subtyping, prognosis, and therapy. In this chapter, we provide a detailed overview of OC and its histological subtypes and discuss prevalent molecular aberrations and active signaling pathways that drive OC progression. We also summarize various diagnostic and prognostic markers and therapeutic approaches currently being employed and discuss emerging findings that hold the potential to change the future course of OC management.
Collapse
Affiliation(s)
- Orlandric Miree
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA.,Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Sanjeev Kumar Srivastava
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA.,Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Santanu Dasgupta
- Department of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA.,Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Rodney Rocconi
- Division of Gynecologic Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA. .,Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA. .,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.
| |
Collapse
|
7
|
G protein-coupled estrogen receptor 1 (GPER-1) and agonist G-1 inhibit growth of ovarian cancer cells by activation of anti-tumoral transcriptome responses: impact of GPER-1 mRNA on survival. J Cancer Res Clin Oncol 2020; 146:3175-3188. [PMID: 32813115 DOI: 10.1007/s00432-020-03333-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE The present study intended to further elucidate the role of G protein-coupled estrogen receptor 1 (GPER-1) in ovarian cancer by comparing the effects of a GPER-1 knockdown and treatment with its agonist G-1 on cell growth, apoptosis, and the transcriptome of two ovarian cancer cell lines. Furthermore, the role of GPER-1 in ovarian cancer survival was examined. METHODS GPER-1 expression in OVCAR-3 and OAW-42 ovarian cancer cells was knocked down by RNAi. The effects on cell growth were measured by means of the fluorimetric cell titer blue assay and on the transcriptome by Affymetrix GeneChip analysis. The effect of GPER-1 on patient's survival was examined using open source mRNA and clinical data of 1657 ovarian cancer patients. RESULTS GPER-1 knockdown resulted in a significant growth stimulation of both cell lines, whereas treatment with agonist G-1 decreased growth of both cell lines in a dose-dependent manner. Transcriptome analyses revealed a set of 18 genes being conversely regulated after GPER-1 knockdown and G-1 treatment. Generally, treatment with G-1 led to a transcriptome response associated with growth inhibition. In contrast, knockdown of GPER-1 exerted opposite effects, stimulating pathways activating mitosis, but inhibiting pathways associated with apoptosis or interferon signaling. Further analyses using open-access mRNA and clinical data by bioinformatical online tools revealed a longer OS (HR = 0.86, p = 0.057) and PFS (HR = 0.81, p = 0.0035) of ovarian cancer patients with high GPER-1 mRNA expression. CONCLUSIONS The results of this study clearly support the hypothesis that GPER-1 acts as a tumor suppressor in ovarian cancer.
Collapse
|
8
|
Masserrat A, Sharifpanah F, Akbari L, Tonekaboni SH, Karimzadeh P, Asharafi MR, Mazouei S, Sauer H, Houshmand M. Mitochondrial G8292A and C8794T mutations in patients with Niemann-Pick disease type C. Biomed Rep 2018; 9:65-73. [PMID: 29930807 PMCID: PMC6007046 DOI: 10.3892/br.2018.1095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/27/2018] [Indexed: 11/06/2022] Open
Abstract
Niemann-Pick disease type C (NP-C) is a neurovisceral lipid storage disorder. At the cellular level, the disorder is characterized by accumulation of unesterified cholesterol and glycolipids in the lysosomal/late endosomal system. NP-C is transmitted in an autosomal recessive manner and is caused by mutations in either the NPC1 (95% of families) or NPC2 gene. The estimated disease incidence is 1 in 120,000 live births, but this likely represents an underestimate, as the disease may be under-diagnosed due to its highly heterogeneous presentation. Variants of adenosine triphosphatase (ATPase) subunit 6 and ATPase subunit 8 (ATPase6/8) in mitochondrial DNA (mtDNA) have been reported in different types of genetic diseases including NP-C. In the present study, the blood samples of 22 Iranian patients with NP-C and 150 healthy subjects as a control group were analyzed. The DNA of the blood samples was extracted by the salting out method and analyzed for ATPase6/8 mutations using polymerase chain reaction sequencing. Sequence variations in mitochondrial genome samples were determined via the Mitomap database. Analysis of sequencing data confirmed the existence of 11 different single nucleotide polymorphisms (SNPs) in patients with NP-C1. One of the most prevalent polymorphisms was the A8860G variant, which was observed in both affected and non-affected groups and determined to have no significant association with NP-C incidence. Amongst the 11 polymorphisms, only one was identified in the ATPase8 gene, while 9 including A8860G were observed in the ATPase6 gene. Furthermore, two SNPs, G8292A and C8792A, located in the non-coding region of mtDNA and the ATPase6 gene, respectively, exhibited significantly higher prevalence rates in NP-C1 patients compared with the control group (P<0.01). The present study suggests that there may be an association between mitochondrial ATPase6/8 mutations and the incidence of NP-C disease. In addition, the mitochondrial SNPs identified maybe pathogenic mutations involved in the development and prevalence of NP-C. Furthermore, these results suggest a higher occurrence of mutations in ATPase6 than in ATPase8 in NP-C patients.
Collapse
Affiliation(s)
- Abbas Masserrat
- Department of Biology, Faculty of Science, Islamic Azad University, Damghan 3671639998, Iran
| | - Fatemeh Sharifpanah
- Department of Physiology, Faculty of Medicine, Justus Liebig University, D-35392 Giessen, Germany
| | - Leila Akbari
- Houshmand Genetic Diagnostics Laboratory, Taban Clinic, Tehran 1997844151, Iran
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Seyed Hasan Tonekaboni
- Department of Neurology, Faculty of Medicine, Shahid Beheshti University, Tehran 19839-63113, Iran
| | - Parvaneh Karimzadeh
- Department of Neurology, Faculty of Medicine, Shahid Beheshti University, Tehran 19839-63113, Iran
| | - Mahmood Reza Asharafi
- Department of Neurology, Faculty of Medicine, Tehran University, Tehran 1417613151, Iran
| | - Safoura Mazouei
- Department of Cardiology, Clinic of Internal Medicine I, Friedrich Schiller University, D-07747 Jena, Germany
| | - Heinrich Sauer
- Department of Physiology, Faculty of Medicine, Justus Liebig University, D-35392 Giessen, Germany
| | - Massoud Houshmand
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161, Iran
| |
Collapse
|
9
|
Effect of estrogen receptor β agonists on proliferation and gene expression of ovarian cancer cells. BMC Cancer 2017; 17:319. [PMID: 28482871 PMCID: PMC5422944 DOI: 10.1186/s12885-017-3246-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/30/2017] [Indexed: 01/25/2023] Open
Abstract
Background Estrogen receptor (ER) β has been suggested to affect ovarian carcinogenesis. We examined the effects of four ERβ agonists on proliferation and gene expression of two ovarian cancer cell lines. Methods OVCAR-3 and OAW-42 ovarian cancer cells were treated with the ERβ agonists ERB-041, WAY200070, Liquiritigenin and 3β-Adiol and cell growth was measured by means of the Cell Titer Blue Assay (Promega). ERβ expression was knocked down by transfection with specific siRNA. Additionally, transcriptome analyses were performed by means of Affymetrix GeneChip arrays. To confirm the results of DNA microarray analysis, Western blot experiments were performed. Results All ERβ agonists tested significantly decreased proliferation of OVCAR-3 and OAW-42 cells at a concentration of 10 nM. Maximum antiproliferative effects were induced by flavonoid Liquiritigenin, which inhibited growth of OVCAR-3 cells by 31.2% after 5 days of treatment, and ERB-041 suppressing proliferation of the same cell line by 29.1%. In OAW-42 cells, maximum effects were observed after treatment with the ERβ agonist WAY200070, inhibiting cell growth by 26.8%, whereas ERB-041 decreased proliferation by 24.4%. In turn, knockdown of ERβ with specific siRNA increased cell growth of OAW-42 cells about 1.9-fold. Transcriptome analyses revealed a set of genes regulated by ERβ agonists including ND6, LCN1 and PTCH2, providing possible molecular mechanisms underlying the observed antiproliferative effects. Conclusion In conclusion, the observed growth-inhibitory effects of all ERβ agonists on ovarian cancer cell lines in vitro encourage further studies to test their possible use in the clinical setting.
Collapse
|
10
|
Soon BH, Abdul Murad NA, Then SM, Abu Bakar A, Fadzil F, Thanabalan J, Mohd Haspani MS, Toh CJ, Mohd Tamil A, Harun R, Wan Ngah WZ, Jamal R. Mitochondrial DNA Mutations in Grade II and III Glioma Cell Lines Are Associated with Significant Mitochondrial Dysfunction and Higher Oxidative Stress. Front Physiol 2017; 8:231. [PMID: 28484394 PMCID: PMC5399085 DOI: 10.3389/fphys.2017.00231] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/31/2017] [Indexed: 01/13/2023] Open
Abstract
The role of mitochondria in tumorigenesis has regained much attention as it could dysregulate cellular energetics, oxidative stress and apoptosis. However, the role of mitochondria in different grade gliomasis still unknown. This study aimed to identify mitochondrial DNA (mtDNA) sequence variations that could possibly affect the mitochondrial functions and also the oxidative stress status. Three different grades of human glioma cell lines and a normal human astrocyte cell line were cultured in-vitro and tested for oxidative stress biomarkers. Relative oxidative stress level, mitochondria activity, and mitochondrial mass were determined by live cell imaging with confocal laser scanning microscope using CM-H2DCFDA, MitoTracker Green, and MitoTracker Orange stains. The entire mitochondrial genome was sequenced using the AffymetrixGeneChip Human Mitochondrial Resequencing Array 2.0. The mitochondrial sequence variations were subjected to phylogenetic haplogroup assessment and pathogenicity of the mutations were predicted using pMUT and PolyPhen2. The Grade II astrocytoma cells showed increased oxidative stress wherea high level of 8-OHdG and oxidative stress indicator were observed. Simultaneously, Grade II and III glioma cells showed relatively poor mitochondria functions and increased number of mutations in the coding region of the mtDNA which could be due to high levels of oxidative stress in these cells. These non-synonymous mtDNA sequence variations were predicted to be pathogenic and could possibly lead to protein dysfunction, leading to oxidative phosphorylation (OXPHOS) impairment, mitochondria dysfunction and could create a vicious cycle of oxidative stress. The Grade IV cells had no missense mutation but preserved intact mitochondria and excellent antioxidant defense mechanisms thus ensuring better survival. In conclusion, Grade II and III glioma cells demonstrated coding region mtDNA mutations, leading to mitochondrial dysfunction and higher oxidative stress.
Collapse
Affiliation(s)
- Bee Hong Soon
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia.,Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Sue-Mian Then
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia.,The University of Nottingham Malaysia CampusSemenyih, Malaysia
| | - Azizi Abu Bakar
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Farizal Fadzil
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Jegan Thanabalan
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | | | - Charng Jeng Toh
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Azmi Mohd Tamil
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Roslan Harun
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Wan Z Wan Ngah
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| |
Collapse
|
11
|
Girolimetti G, De Iaco P, Procaccini M, Panzacchi R, Kurelac I, Amato LB, Dondi G, Caprara G, Ceccarelli C, Santini D, Porcelli AM, Perrone AM, Gasparre G. Mitochondrial DNA sequencing demonstrates clonality of peritoneal implants of borderline ovarian tumors. Mol Cancer 2017; 16:47. [PMID: 28241835 PMCID: PMC5327524 DOI: 10.1186/s12943-017-0614-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/17/2017] [Indexed: 11/10/2022] Open
Abstract
Borderline ovarian tumors are rare low malignant potential neoplasms characterized by the absence of stromal invasion, whose main prognostic factors are stage and type of peritoneal implants. The latter are defined as invasive when cell proliferation invades the underlying tissue (peritoneal surface, omentum and intestinal wall), or noninvasive. It is still unknown if these implants are metastatic spread from the primary ovarian mass or a neoplastic transformation de novo of the peritoneal surface. Mitochondrial DNA sequencing was performed to assess clonality in eight patients presenting both borderline ovarian tumors and implants. In 37.5% of the cases, the same mitochondrial DNA mutation was present in both borderline ovarian tumors and the peritoneal implant, being this evidence that implants may arise as a consequence of a spread from a single ovarian site.
Collapse
Affiliation(s)
- Giulia Girolimetti
- Department of Medical and Surgical Sciences (DIMEC) - Unit of Medical Genetics, University of Bologna Medical School, Via G. Massarenti 9, 40138, Bologna, Italy
| | - Pierandrea De Iaco
- Department of Obstetrics and Gynecology, Oncologic Gynecology Unit, University Hospital S.Orsola-Malpighi, 40138, Bologna, Italy
| | - Martina Procaccini
- Department of Obstetrics and Gynecology, Oncologic Gynecology Unit, University Hospital S.Orsola-Malpighi, 40138, Bologna, Italy
| | - Riccardo Panzacchi
- Unit of Pathology, University Hospital S.Orsola-Malpighi, 40138, Bologna, Italy
| | - Ivana Kurelac
- Department of Medical and Surgical Sciences (DIMEC) - Unit of Medical Genetics, University of Bologna Medical School, Via G. Massarenti 9, 40138, Bologna, Italy
| | - Laura Benedetta Amato
- Department of Medical and Surgical Sciences (DIMEC) - Unit of Medical Genetics, University of Bologna Medical School, Via G. Massarenti 9, 40138, Bologna, Italy
| | - Giulia Dondi
- Department of Obstetrics and Gynecology, Oncologic Gynecology Unit, University Hospital S.Orsola-Malpighi, 40138, Bologna, Italy
| | - Giacomo Caprara
- Unit of Oncology and Transplant Pathology, University Hospital S.Orsola-Malpighi, 40138, Bologna, Italy
| | - Claudio Ceccarelli
- Department of Experimental, Diagnostic, and Specialty Medicine, University Hospital S.Orsola-Malpighi, 40138, Bologna, Italy
| | - Donatella Santini
- Unit of Pathology, University Hospital S.Orsola-Malpighi, 40138, Bologna, Italy
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40138, Bologna, Italy
| | - Anna Myriam Perrone
- Department of Obstetrics and Gynecology, Oncologic Gynecology Unit, University Hospital S.Orsola-Malpighi, 40138, Bologna, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC) - Unit of Medical Genetics, University of Bologna Medical School, Via G. Massarenti 9, 40138, Bologna, Italy.
| |
Collapse
|
12
|
Cohen S, Mehrabi S, Yao X, Millingen S, Aikhionbare FO. Reactive Oxygen Species and Serous Epithelial Ovarian Adenocarcinoma. ACTA ACUST UNITED AC 2017; 4:106-114. [PMID: 28503633 DOI: 10.11648/j.crj.20160406.13] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Serous ovarian cancer (SOC) is usually diagnosed at late stage and stage-adjusted five year survival rate is low. Mortality is relatively heavy on African-Americans/Black (AA) affected with SOC compared to their Caucasian counterparts, though the cause for the disparity remains unclear. DNA damage induced by oxidative stress has been linked to ovarian cancer, but the role of oxidative stress in distinguishing differences in aggressive SOC tumors among patients is yet to be determined. This study aims to determine the levels of reactive oxygen species (ROS), malondialdehyde (MDA), reactive carbonyl groups and antioxidants in primary SOC normal, precancerous (cystadenoma, borderline) and invasive (III/IV) tissue samples obtained from AA and Caucasian subgroups. Additionally, the study seeks to investigate significant changes in the level of ROS between AA and Caucasian SOC samples. A fluorogenic probe, dichlorodihydrofluorescein (DCFH-DiOxyQ), was used to scavenge reactive oxygen species in SOC normal, precancerous and malignant stages III/IV tissue samples. Malondialdehyde (MDA), a lipid peroxidation marker, and reactive carbonyl groups were measured as indicators of oxidative injury. Moreover, antioxidant status was assessed by estimating glutathione peroxidase 3 (GPX3) enzyme levels. Results indicate ROS concentration was approximately 96% higher in the malignant tissues in comparative to the normal non-diseased controls. In addition, ROS concentration among AA women was approximately 9% higher than Caucasian women. MDA levels increased exponentially from non-disease control and precancerous tissues relative to malignant tissues. Furthermore, malignant serous ovarian samples showed significantly higher reactive carbonyl content compared to the non-disease controls (p=0.009), while GPX3 levels decreased considerably in serous cystadenoma and malignant tissue samples, and non-diseased control compared to borderline disease. The results suggest accumulation of ROS and MDA levels may be a causative factor for SOC. Elevated levels of MDA and reactive carbonyl proteins could override the GPX3 enzyme capacity therefore, initiating serous ovarian neoplasm.
Collapse
Affiliation(s)
- Shakeria Cohen
- Department of Internal Medicine, Morehouse School of Medicine, Atlanta, USA
| | - Sharifeh Mehrabi
- Department of Internal Medicine, Morehouse School of Medicine, Atlanta, USA
| | - Xuebiao Yao
- Department of Physiology, Morehouse School of Medicine, Atlanta, USA
| | | | | |
Collapse
|
13
|
Mohammed FMA, Rezaee Khorasany AR, Mosaieby E, Houshmand M. Mitochondrial A12308G alteration in tRNA(Leu(CUN)) in colorectal cancer samples. Diagn Pathol 2015; 10:115. [PMID: 26189042 PMCID: PMC4506765 DOI: 10.1186/s13000-015-0337-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 06/26/2015] [Indexed: 12/14/2022] Open
Abstract
Background Colorectal cancer is the third most common type of cancer in men and women and the second leading cause of cancer-related deaths in the United States and UK. Colorectal cancer is strongly related to age, with almost three-quarters of cases occurring in people aged 65 or over. Pre-symptomatic screening is one of the most powerful tools for preventing colorectal cancer. Recently, the use of mitochondrial tRNA genes mutation or polymorphism patterns as a biomarker is rapidly expanding in different cancers because tRNA genes perform several functions including processing and translation which are essential components of mitochondrial protein synthesis. The aim of the present study was to find out the association of mitochondrial A12308G alteration in tRNALeu(CUN) in colorectal cancer and its usage as a new biomarker screening test. Methods A tumor tissues from 30 patients who had colorectal cancer were selected randomly. The A12308G alteration in tRNALeu (CUN) was screened in the 30 colorectal tumor tissues. For comparison, 100 blood samples of healthy controls using PCR-sequencing methods were selected and the following results were found. Result The A12308G, a polymorphic mutation in V-loop tRNALeu(CUN), was found in 6 Colorectal tumor tissues and 3 healthy controls. A statistical significant difference was found between cases and control regarding the association of the A12308G mutation with the colorectal tumor (P < 0.05). Conclusions The A12308G, a polymorphic mutation in V-loop tRNALeu(CUN), could be considered as pathogenic mutation in combination with mitochondrial external conditions and other mitochondrial genes in developing different diseases especially cancers and could be used as one of the diagnostic tool. Also it seems that maybe there is relevance between A12308G mutation and other mutations that it can cause various phenotypes. Electronic supplementary material The online version of this article (doi:10.1186/s13000-015-0337-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fawziah M A Mohammed
- Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Kuwait.
| | - Ali Reza Rezaee Khorasany
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Elaheh Mosaieby
- Department of cellular and molecular biology, Mazandaran university, Babolsar, Iran.
| | - Massoud Houshmand
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
14
|
Thapa S, Lalrohlui F, Ghatak S, Zohmingthanga J, Lallawmzuali D, Pautu JL, Senthil Kumar N. Mitochondrial complex I and V gene polymorphisms associated with breast cancer in mizo-mongloid population. Breast Cancer 2015; 23:607-16. [PMID: 25896597 DOI: 10.1007/s12282-015-0611-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/07/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND Mizoram has the highest incidence of cancer in India. Among women, breast cancer is most prevalent and the state occupies fifth position globally. The reason for high rate of cancer in this region is still not known but it may be related to ethnic/racial variations or lifestyle factors. METHODS The present study aims to identify the candidate mitochondrial DNA (mtDNA) biomarkers-ND1and ATPase for early breast cancer diagnosis in Mizo population. Genomic DNA was extracted from blood samples of 30 unrelated breast cancer and ten healthy women. The mtNDI and mtATP coding regions were amplified by step-down PCR and were subjected to restriction enzyme digestion and direct sequencing by Sanger method. Subsequently, the results of the DNA sequence analysis were compared with that of the revised Cambridge Reference Sequence (rCRS) using Mutation Surveyor and MITOMAP. RESULTS Most of the mutations were reported and new mutations that are not reported in relationship with breast cancer were also found. The mutations are mostly base substitutions. The effect of non-synonymous substitutions on the amino acid sequence was determined using the PolyPhen-2 software. Statistical analysis was performed for both cases and controls. Odds ratios (ORs) and 95 % confidence intervals (CIs) were estimated from logistic regression. High intake of animal fat and age at menarche was found to be associated with a higher risk of breast cancer in Mizo population. CONCLUSION Our results also showed that ATPase6 as compared to ATPase8 gene is far more predisposed to variations in Mizo population with breast cancer and this finding may play an important role in breast cancer prognosis.
Collapse
Affiliation(s)
- Sunaina Thapa
- Department of Biotechnology, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Freda Lalrohlui
- Department of Biotechnology, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Souvik Ghatak
- Department of Biotechnology, Mizoram University, Aizawl, 796004, Mizoram, India
| | | | - Doris Lallawmzuali
- Mizoram State Cancer Institute, Zemabawk, Aizawl, 796017, Mizoram, India
| | - Jeremy L Pautu
- Mizoram State Cancer Institute, Zemabawk, Aizawl, 796017, Mizoram, India
| | | |
Collapse
|
15
|
Wang C, Wang Y, Wang H, Zhang R, Guo Z. Mitochondrial DNA haplogroup N is associated good outcome of gastric cancer. Tumour Biol 2014; 35:12555-9. [PMID: 25201064 DOI: 10.1007/s13277-014-2575-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/29/2014] [Indexed: 12/23/2022] Open
Abstract
Accumulation of mutations and single nucleotide polymorphisms (SNPs) in the displacement loop (D-loop) of mitochondrial DNA (mtDNA) has been identified for their association with cancer risk and disease outcome in a variety of cancers. We have identified cancer risk-associated D-loop SNPs in gastric cancer patients. In this study, we evaluated the predictive value of these SNPs for cancer outcome. Two SNP sites of nucleotides 489C/T and 523-524AC/del were identified for statistically significant prediction of postoperative survival in gastric cancer by univariate analysis with log-rank test. In addition, the mitochondrial DNA haplogroup N (489T) contributed to the good survival of gastric cancer patients compared with the mitochondrial DNA haplogroup M (489C) genotype (relative risk, 1.753; 95 %CI, 1.005-3.060; p = 0.048) by multivariate analysis with COX hazards model. In conclusion, analysis of genetic polymorphisms in the mitochondrial D-loop can help identify subgroups of patients who are at a high risk of a poor disease outcome.
Collapse
Affiliation(s)
- Cuiju Wang
- Department of Gynaecology Ultrasound, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | | | | | | | | |
Collapse
|
16
|
Grzybowska-Szatkowska L, Slaska B, Rzymowska J, Brzozowska A, Floriańczyk B. Novel mitochondrial mutations in the ATP6 and ATP8 genes in patients with breast cancer. Mol Med Rep 2014; 10:1772-8. [PMID: 25110199 PMCID: PMC4148381 DOI: 10.3892/mmr.2014.2471] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 05/28/2014] [Indexed: 01/24/2023] Open
Abstract
The role of the mitochondria in the process of carcinogenesis, mainly oxidative phosphorylation, mostly concerns their participation in the production of free radicals and ATP and in the process of apoptosis. The purpose of this study was to detect potential changes in the genes encoding the subunits 6 and 8 of the ATP synthase and their impact on the enzyme's biochemical properties, structure and function in patients with breast tumors. The tested material was mitochondrial DNA (mtDNA) isolated from specimens of ductal carcinoma (carcinoma ductale) Tp1-2Np0-1Mp0, blood and non-cancerous tissue of mammary gland (control), sampled from 50 patients who had been operated for breast cancer. In the case of missense-type changes in the mtDNA, protein prediction software was used to assess their effect on the biochemical properties of the protein, its structure and function. We identified 8 changes in the ATP6 gene in 36/50 examined breast cancer cell samples and 5 changes in the ATP8 gene (10/50). Most of them were homoplasmic changes of missense type. Four of the changes (A8439C, G8858C, C9130G and T9119G) had not been described in the literature before. The identified mutations and polymorphisms, especially those of missense type, can affect mitochondrial functions, especially if the conservative domain of the protein is concerned. Replacement of 'wild-type' mtDNA by mutated mtDNA can be an important event in carcinogenesis.
Collapse
Affiliation(s)
| | - Brygida Slaska
- Department of Biological Bases of Animal Production, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Jolanta Rzymowska
- Department of Biology and Genetics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Anna Brzozowska
- Department of Oncology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Bolesław Floriańczyk
- Department of Clinical Dietetics, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
17
|
Barathidasan R, Pawaiya RS, Rai RB, Dhama K. Upregulated Myc expression in N-methyl nitrosourea (MNU)- induced rat mammary tumours. Asian Pac J Cancer Prev 2014; 14:4883-9. [PMID: 24083763 DOI: 10.7314/apjcp.2013.14.8.4883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The most common incident cancer and cause of cancer-related deaths in women is breast cancer. The Myc gene is upregulated in many cancer types including breast cancer, and it is considered as a potential anti-cancer drug target. The present study was conducted to evaluate the Myc (gene and protein) expression pattern in an experimental mammary tumour model in rats. MATERIALS AND METHODS Thirty six Sprague Dawley rats were divided into: Experimental group (26 animals), which received the chemical carcinogen N-methyl nitrosourea (MNU) and a control group (10 animals), which received vehicle only. c-Myc oncoprotein and its mRNA expression pattern were evaluated using immunohistochemistry (IHC) and semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), respectively, in normal rat mammary tissue and mammary tumours. The rat glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene was used as internal control for semi-quantitative RT-PCR. RESULTS Histopathological examination of mammary tissues and tumours from MNU treated animals revealed the presence of premalignant lesions, benign tumours, in situ carcinomas and invasive carcinomas. Immunohistochemical evaluation of tumour tissues showed upregulation and heterogeneous cellular localization of c-Myc oncoprotein. The expression levels of c-Myc oncoprotein were significantly elevated (75- 91%) in all the tumours. Semi-quantitative RT-PCR revealed increased expression of c-Myc mRNA in mammary tumours compared to normal mammary tissues. CONCLUSIONS Further large-scale investigation study is needed to adopt this experimental rat mammary tumour model as an in vivo model to study anti-cancer strategies directed against Myc or its downstream partners at the transcriptional or post-transcriptional level.
Collapse
Affiliation(s)
- Rajamani Barathidasan
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, India E-mail :
| | | | | | | |
Collapse
|
18
|
Ghaffarpour M, Mahdian R, Fereidooni F, Kamalidehghan B, Moazami N, Houshmand M. The mitochondrial ATPase6 gene is more susceptible to mutation than the ATPase8 gene in breast cancer patients. Cancer Cell Int 2014; 14:21. [PMID: 24588805 PMCID: PMC3942513 DOI: 10.1186/1475-2867-14-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 02/20/2014] [Indexed: 12/15/2022] Open
Abstract
Background Breast cancer is the most common malignancy in women throughout the world. Mitochondria play important roles in cellular energy production, free radical generation and apoptosis. Identification of mitochondrial DNA mutations and/or polymorphisms as cancer biomarkers is rapidly developing in molecular oncology research. Methods In this study, the DNA alterations of the mitochondrial ATPase 6 and 8 genes were investigated in 49 breast cancer patients using PCR amplification and direct DNA sequencing on mtDNA. A possible association between these variants and tumorigenesis was assessed. Furthermore, the impact of non-synonymous substitutions on the amino acid sequence was evaluated using the PolyPhen-2 software. Results Twenty eight distinct somatic mitochondrial DNA variants were detected in tumor tissues but not in the corresponding adjacent non-tumor tissues. Among these variants, 9 were observed for the first time in breast cancer patients. The mtDNA variants of A8384 (T7A), T8567C (I14T), G8572A (G16S), A9041G (H172R) and G9055A (A177T) showed the most significant effects probably due to damaging changes to the resulting protein. Furthermore, non-synonymous amino acid changing variants were more frequent in the ATPase6 gene compared to the ATPase8 gene. Conclusion Our results showed that the ATPase6 gene is more susceptible to variations in breast cancer and may play an important role in tumorigenesis by changing the energy metabolism level in cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Massoud Houshmand
- Medical Genetics Department, National Institute for Genetic Engineering & Biotechnology, Tehran, Iran.
| |
Collapse
|
19
|
Parr RL, Jakupciak JP, Birch-Machin MA, Dakubo GD. The mitochondrial genome: a biosensor for early cancer detection? ACTA ACUST UNITED AC 2013; 1:169-82. [PMID: 23489304 DOI: 10.1517/17530059.1.2.169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mutations in the mitochondrial genome have been reported as biomarkers for the detection of cancer. Hallmarks of cancer development include the accumulation of genetic alterations in the mitochondrial and nuclear genomes. Damage to mitochondria affects energy metabolism, generation of reactive oxygen species, apoptosis, cell growth and other processes that contribute to the neoplastic process. Furthermore, mitochondrial DNA mutations occur frequently in cancer. Little work has been done to link a pathway between mitochondrial mutations and cancer etiology. Volumes of work have been reported on the association of mitochondrial mutations and almost all types of cancer including the use of body fluids for early detection. This review examines the measurement of mitochondrial mutations for the application of detecting human tumor tissue.
Collapse
Affiliation(s)
- Ryan L Parr
- Vice President of Research, Genesis Genomics, Inc., 290 Munro Street, Ste 1000, Thunder Bay, Ontario, P7A 7T1, Canada +1 807 346 8100; +1 807 346 8105 ;
| | | | | | | |
Collapse
|
20
|
De Paepe B. Mitochondrial Markers for Cancer: Relevance to Diagnosis, Therapy, and Prognosis and General Understanding of Malignant Disease Mechanisms. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/217162] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cancer cells display changes that aid them to escape from cell death, sustain their proliferative powers, and shift their metabolism toward glycolytic energy production. Mitochondria are key organelles in many metabolic and biosynthetic pathways, and the adaptation of mitochondrial function has been recognized as crucial to the changes that occur in cancer cells. This paper zooms in on the pathologic evaluation of mitochondrial markers for diagnosing and staging of human cancer and determining the patients’ prognoses.
Collapse
Affiliation(s)
- Boel De Paepe
- Laboratories for Neuropathology & Mitochondrial Disorders, Ghent University Hospital, Building K5 3rd Floor, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
21
|
Ovarian cancer and body size: individual participant meta-analysis including 25,157 women with ovarian cancer from 47 epidemiological studies. PLoS Med 2012; 9:e1001200. [PMID: 22606070 PMCID: PMC3317899 DOI: 10.1371/journal.pmed.1001200] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 02/24/2012] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Only about half the studies that have collected information on the relevance of women's height and body mass index to their risk of developing ovarian cancer have published their results, and findings are inconsistent. Here, we bring together the worldwide evidence, published and unpublished, and describe these relationships. METHODS AND FINDINGS Individual data on 25,157 women with ovarian cancer and 81,311 women without ovarian cancer from 47 epidemiological studies were collected, checked, and analysed centrally. Adjusted relative risks of ovarian cancer were calculated, by height and by body mass index. Ovarian cancer risk increased significantly with height and with body mass index, except in studies using hospital controls. For other study designs, the relative risk of ovarian cancer per 5 cm increase in height was 1.07 (95% confidence interval [CI], 1.05-1.09; p<0.001); this relationship did not vary significantly by women's age, year of birth, education, age at menarche, parity, menopausal status, smoking, alcohol consumption, having had a hysterectomy, having first degree relatives with ovarian or breast cancer, use of oral contraceptives, or use of menopausal hormone therapy. For body mass index, there was significant heterogeneity (p<0.001) in the findings between ever-users and never-users of menopausal hormone therapy, but not by the 11 other factors listed above. The relative risk for ovarian cancer per 5 kg/m(2) increase in body mass index was 1.10 (95% CI, 1.07-1.13; p<0.001) in never-users and 0.95 (95% CI, 0.92-0.99; p=0.02) in ever-users of hormone therapy. CONCLUSIONS Ovarian cancer is associated with height and, among never-users of hormone therapy, with body mass index. In high-income countries, both height and body mass index have been increasing in birth cohorts now developing the disease. If all other relevant factors had remained constant, then these increases in height and weight would be associated with a 3% increase in ovarian cancer incidence per decade. Please see later in the article for the Editors' Summary.
Collapse
|
22
|
Ashrafi M, Bathaie SZ, Abroun S. High Expression of Cyclin D1 and p21 in N-Nitroso-N-Methylurea-Induced Breast Cancer in Wistar Albino Female Rats. CELL JOURNAL 2012; 14:193-202. [PMID: 23508728 PMCID: PMC3584436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 02/07/2012] [Indexed: 10/31/2022]
Abstract
OBJECTIVE N-nitroso-N-methylurea (NMU) induces breast cancer in rodents, particularly in rats. This model of breast cancer is very similar to human breast cancer. As a continuation of our recent work, we investigated the expressions of cyclin D1 and p21 in NMU-induced breast cancer of Wistar Albino rats. MATERIALS AND METHODS In this experimental study, mammary carcinoma was induced in female Wistar Albino rats by a new protocol which included the intraperitoneal injection of NMU (50 mg/kg) at 50, 65, and 80 days of the animal's age. The animals were weighed weekly and palpated in order to record the numbers, location, and size of tumors. Subsequently tumor incidence (TI), latency period (LP), and tumor multiplicity (TM) were reported. About four weeks after the tumor size reached 1.5 cm3, rats were sacrificed. Cyclin D1 and p21 expressions in tumors and normal mammary glands from normal rats were measured by reverse-transcription polymerase chain reaction (RT- PCR) and Western blot analysis. Statistical analysis of the data was performed using SPSS software version 16.0. RESULTS The efficiency of tumor induction was 65%, LP was 150 days, and a TM of 1.43 ± 0.53 per rat was noted. RT-PCR and Western blot data indicated significant (p<0.05) induction of both cyclin D1 and p21 expressions in rat mammary tumors compared with normal tissue from the control group. CONCLUSION These results indicate an efficient mammary tumor induction protocol for this type of rat, which is accompanied by an increase in cyclin D1 and p21 expressions.
Collapse
Affiliation(s)
- Mahboobeh Ashrafi
- 1. Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TUM), Tehran, Iran
| | - Seyedeh Zahra Bathaie
- 1. Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TUM), Tehran, Iran, * Corresponding Address:
P.O.Box: 14115-111Department of Clinical BiochemistryFaculty of Medical SciencesTarbiat Modares University (TUM)TehranIran
| | - Saeid Abroun
- 2. Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
23
|
Ramos A, Barbena E, Mateiu L, del Mar González M, Mairal Q, Lima M, Montiel R, Aluja MP, Santos C. Nuclear insertions of mitochondrial origin: Database updating and usefulness in cancer studies. Mitochondrion 2011; 11:946-53. [DOI: 10.1016/j.mito.2011.08.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/10/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
|
24
|
Mehrabi S, Akwe JA, Adams G, Grizzle W, Yao X, Aikhionbare FO. Analysis of mtDNA sequence variants in colorectal adenomatous polyps. Diagn Pathol 2010; 5:66. [PMID: 20929553 PMCID: PMC2959018 DOI: 10.1186/1746-1596-5-66] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 10/07/2010] [Indexed: 11/15/2022] Open
Abstract
Colorectal tumors mostly arise from sporadic adenomatous polyps. Polyps are defined as a mass of cells that protrudes into the lumen of the colon. Adenomatous polyps are benign neoplasms that, by definition display some characteristics of dysplasia. It has been shown that polyps were benign tumors which may undergo malignant transformation. Adenomatous polyps have been classified into three histologic types; tubular, tubulovillous, and villous with increasing malignant potential. The ability to differentially diagnose these colorectal adenomatous polyps is important for therapeutic intervention. To date, little efforts have been directed to identifying genetic changes involved in adenomatous polyps. This study was designed to examine the relevance of mitochondrial genome alterations in the three adenomatous polyps. Using high resolution restriction endonucleases and PCR-based sequencing, fifty-seven primary fresh frozen tissues of adenomatous polyps (37 tumors and 20 matched surrounding normal tissues) obtained from the southern regional Cooperative Human Tissue Network (CHTN) and Grady Memorial Hospital at Atlanta were screened with three mtDNA regional primer pairs that spanned 5.9 kbp. Results from our data analyses revealed the presence of forty-four variants in some of these mitochondrial genes that the primers spanned; COX I, II, III, ATP 6, 8, CYT b, ND 5, 6 and tRNAs. Based on the MITODAT database as a sequence reference, 25 of the 44 (57%) variants observed were unreported. Notably, a heteroplasmic variant C8515G/T in the MT-ATP 8 gene and a germline variant 8327delA in the tRNAlys was observed in all the tissue samples of the three adenomatous polyps in comparison to the referenced database sequence. A germline variant G9055A in the MT-ATP 6 gene had a frequency of 100% (17/17) in tubular and 57% (13/23) in villous adenomas; no corresponding variant was in tubulovillous adenomas. Furthermore, A9006G variant at MT-ATP 6 gene was observed at frequency of 57% (13/23) in villous adenomas only. Interestingly, variants A9006G and G9055A were absent in the villous tissue samples that were clinicopathological designated as "polyvillous adenomas". Our current data provide a basis for continued investigation of certain mtDNA variants as predictors of the three adenomatous polyps in a larger number of clinicopathological specimens.
Collapse
Affiliation(s)
- Sharifeh Mehrabi
- Department of Medicine, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Joyce A Akwe
- Department of Medicine, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Gregory Adams
- Department of Medicine, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - William Grizzle
- Department of Pathology and Comprehensive Cancer Center, University of Alabama, Birmingham, AL, 35294, USA
| | - Xuebiao Yao
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Felix O Aikhionbare
- Department of Medicine, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| |
Collapse
|
25
|
Fendt L, Niederstätter H, Huber G, Zelger B, Dünser M, Seifarth C, Röck A, Schäfer G, Klocker H, Parson W. Accumulation of mutations over the entire mitochondrial genome of breast cancer cells obtained by tissue microdissection. Breast Cancer Res Treat 2010; 128:327-36. [PMID: 20697806 DOI: 10.1007/s10549-010-1092-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 07/23/2010] [Indexed: 12/01/2022]
Abstract
The occurrence of heteroplasmy and mixtures is technically challenging for the analysis of mitochondrial DNA. More than that, observed mutations need to be carefully interpreted in the light of the phylogeny as mitochondrial DNA is a uniparental marker reflecting human evolution. Earlier attempts to explain the role of mtDNA in cancerous tissues led to substantial confusion in medical genetics mainly due to the presentation of low sequence data quality and misinterpretation of mutations representing a particular haplogroup background rather than being cancer-specific. The focus of this study is to characterize the extent and level of mutations in breast cancer samples obtained by tissue microdissection by application of an evaluated full mtDNA genome sequencing protocol. We amplified and sequenced the complete mitochondrial genomes of microdissected breast cancer cells of 15 patients and compared the results to those obtained from paired non-cancerous breast tissue derived from the same patients. We observed differences in the heteroplasmic states of substitutions between cancerous and normal cells, one of which was affecting a position that has been previously reported in lung cancer and another one that has been identified in 16 epithelial ovarian tumors, possibly indicating functional relevance. In the coding region, we found full transitions in two cancerous mitochondrial genomes and 12 heteroplasmic substitutions as compared to the non-cancerous breast cells. We identified somatic mutations over the entire mtDNA of human breast cancer cells potentially impairing the mitochondrial OXPHOS system.
Collapse
Affiliation(s)
- Liane Fendt
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Molecular oncology focus - is carcinogenesis a 'mitochondriopathy'? J Biomed Sci 2010; 17:31. [PMID: 20416110 PMCID: PMC2876137 DOI: 10.1186/1423-0127-17-31] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Accepted: 04/25/2010] [Indexed: 01/08/2023] Open
Abstract
Mitochondria are sub-cellular organelles that produce adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS). As suggested over 70 years ago by Otto Warburg and recently confirmed with molecular techniques, alterations in respiratory activity and in mitochondrial DNA (mtDNA) appear to be common features of malignant cells. Somatic mtDNA mutations have been reported in many types of cancer cells, and some reports document the prevalence of inherited mitochondrial DNA polymorphisms in cancer patients. Nevertheless, a careful reanalysis of methodological criteria and methodology applied in those reports has shown that numerous papers can't be used as relevant sources of data for systematic review, meta-analysis, or finally for establishment of clinically applicable markers. In this review technical and conceptual errors commonly occurring in the literature are summarized. In the first place we discuss, why many of the published papers cannot be used as a valid and clinically useful sources of evidence in the biomedical and healthcare contexts. The reasons for introduction of noise in data and in consequence - bias for the interpretation of the role of mitochondrial DNA in the complex process of tumorigenesis are listed. In the second part of the text practical aspects of mtDNA research and requirements necessary to fulfill in order to use mtDNA analysis in clinics are shown. Stringent methodological criteria of a case-controlled experiment in molecular medicine are indicated. In the third part we suggest, what lessons can be learned for the future and propose guidelines for mtDNA analysis in oncology. Finally we conclude that, although several conceptual and methodological difficulties hinder the research on mitochondrial patho-physiology in cancer cells, this area of molecular medicine should be considered of high importance for future clinical practice.
Collapse
|
27
|
Fendt L, Zimmermann B, Daniaux M, Parson W. Sequencing strategy for the whole mitochondrial genome resulting in high quality sequences. BMC Genomics 2009; 10:139. [PMID: 19331681 PMCID: PMC2669098 DOI: 10.1186/1471-2164-10-139] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 03/30/2009] [Indexed: 11/18/2022] Open
Abstract
Background It has been demonstrated that a reliable and fail-safe sequencing strategy is mandatory for high-quality analysis of mitochondrial (mt) DNA, as the sequencing and base-calling process is prone to error. Here, we present a high quality, reliable and easy handling manual procedure for the sequencing of full mt genomes that is also appropriate for laboratories where fully automated processes are not available. Results We amplified whole mitochondrial genomes as two overlapping PCR-fragments comprising each about 8500 bases in length. We developed a set of 96 primers that can be applied to a (manual) 96 well-based technology, which resulted in at least double strand sequence coverage of the entire coding region (codR). Conclusion This elaborated sequencing strategy is straightforward and allows for an unambiguous sequence analysis and interpretation including sometimes challenging phenomena such as point and length heteroplasmy that are relevant for the investigation of forensic and clinical samples.
Collapse
Affiliation(s)
- Liane Fendt
- Institute of Legal Medicine, Innsbruck Medical University, Müllerstrasse 44, Austria.
| | | | | | | |
Collapse
|
28
|
Shi H, Pan L, Song T. Impact of Platinum on the Whole Mitochondrial Genome of Ovarian Carcinomas Both In Vivo and In Vitro. Int J Gynecol Cancer 2009; 19:423-30. [DOI: 10.1111/igc.0b013e3181a19ff0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Objectives:To investigate somatic mitochondrial DNA mutation in primary and recurrent ovarian carcinoma tissues as well as that in drug-resistant cell lines to illuminate the impact of chemotherapeutic drugs on mitochondrial DNA (mtDNA).Methods:Complete mtDNA genomes of 20 pairs of ovarian carcinomas and their matched normal tissues together with 2 ovarian carcinoma cell lines and their 4 platinum-resistant cell lines were sequenced. Mitochondrial DNA alterations, consequent amino acid alterations were compared between the 2 groups of patients and the 2 types of cell lines.Results:A large number of mtDNA new polymorphisms (55) and mutations (18) were identified in 20 ovarian carcinoma samples. Platinum-based chemotherapy did not increase the number of new polymorphisms (P = 0.094), mutations (P = 0.688), and consequent amino acid alterations (P = 0.202 and 0.795). Data gained from the cell lines also indicated that platinum had some effect on the mitochondrial genome but not specific to particular positions.Conclusions:What we found suggested that mtDNA damage could be made by chemotherapeutic drugs but not as much as imagined in ovarian carcinomas. Some of the mtDNA defects might be part of the disease processes and cell properties as well as a consequence of treatment.
Collapse
|
29
|
Bragoszewski P, Kupryjanczyk J, Bartnik E, Rachinger A, Ostrowski J. Limited clinical relevance of mitochondrial DNA mutation and gene expression analyses in ovarian cancer. BMC Cancer 2008; 8:292. [PMID: 18842121 PMCID: PMC2571110 DOI: 10.1186/1471-2407-8-292] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 10/08/2008] [Indexed: 12/19/2022] Open
Abstract
Background In recent years, numerous studies have investigated somatic mutations in mitochondrial DNA in various tumours. The observed high mutation rates might reflect mitochondrial deregulation; consequently, mutation analyses could be clinically relevant. The purpose of this study was to determine if mutations in the mitochondrial D-loop region and/or the level of mitochondrial gene expression could influence the clinical course of human ovarian carcinomas. Methods We sequenced a 1320-base-pair DNA fragment of the mitochondrial genome (position 16,000-750) in 54 cancer samples and in 44 corresponding germline control samples. In addition, six transcripts (MT-ATP6, MT-CO1, MT-CYB, MT-ND1, MT-ND6, and MT-RNR1) were quantified in 62 cancer tissues by real-time RT-PCR. Results Somatic mutations in the D-loop sequence were found in 57% of ovarian cancers. Univariate analysis showed no association between mitochondrial DNA mutation status or mitochondrial gene expression and any of the examined clinicopathologic parameters. A multivariate logistic regression model revealed that the expression of the mitochondrial gene RNR1 might be used as a predictor of tumour sensitivity to chemotherapy. Conclusion In contrast to many previously published papers, our study indicates rather limited clinical relevance of mitochondrial molecular analyses in ovarian carcinomas. These discrepancies in the clinical utility of mitochondrial molecular tests in ovarian cancer require additional large, well-designed validation studies.
Collapse
Affiliation(s)
- Piotr Bragoszewski
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education at the Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Roentgena 5, Warsaw, Poland.
| | | | | | | | | |
Collapse
|
30
|
Aikhionbare FO, Mehrabi S, Thompson W, Yao X, Grizzle W, Partridge E. mtDNA sequence variants in subtypes of epithelial ovarian cancer stages in relation to ethnic and age difference. Diagn Pathol 2008; 3:32. [PMID: 18662401 PMCID: PMC2494992 DOI: 10.1186/1746-1596-3-32] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 07/28/2008] [Indexed: 11/10/2022] Open
Abstract
Epithelial ovarian cancer is the fifth leading cause of cancer mortality among women in the United States. For this disease, differences in age-adjusted incidence and survival rates between African American and Caucasian women are substantial. The objective of this study was to examine mtDNA sequence variants in 118 frozen tissues of three subtypes of epithelial ovarian cancer (serous, n = 48 endometrioid, n = 47 and mucinous, n = 23) and matched paracancerous normal tissues (n = 18) in relation to racial/ethnic and age differences. Restriction fragment length polymorphism (RFLP) and polymerase chain reaction (PCR)-based sequencing were used to evaluate two regions of mtDNA spanning 5317 to 7608 and 8282 to 10110 bp and including ND subunits 2, 3, MT-COI, II, and III, ATPase 8, a part of ATPase 6, and tRNA genes in frozen ovarian tissues obtained from the southern regional Cooperative Human Tissue Network (CHTN) and University of Alabama-Birmingham (UAB) Ovarian Spore Center. Thirty-nine mtDNA variants were detected of which 28 were previously unreported. One somatic variant of C9500T was observed. A variant, C7028T in the MT-CO1 gene, had an ascending frequency from borderline (8%) to stages III/IV (75%) among the three ovarian cancer subtypes and stages. It was found in 86% (42/49) of African-American and 43% (37/87) of the Caucasian women. A variant, T8548G in the ATPase 6 gene was detected at a frequency of 72% (18/25) in ovarian serous subtype tissues in stages III/IV. Of the African American patients under age 40, 95% (20/21) harbored the T8548G variant; this was in contrast to only 22% (8/35) of Caucasian patients in same age group. Variants C7256T and G7520A had a frequency of 54% (6/11) in endometrioid stage III; no corresponding variants were observed in mucinous subtype stage III. Furthermore, variants C7256T and G7520A were absent in serous ovarian cancer subtype. Interestingly, the C7520T variant in tRNA gene was present in 74% (36/49) of African American and 26% (23/87) of Caucasian patients. Taken together, our results suggest that, with respect to ethnic and age difference, these mtDNA variants may be involved in epithelial ovarian carcinogenesis.
Collapse
Affiliation(s)
- Felix O Aikhionbare
- Department of Medicine, Morehouse School of Medicine, Atlanta, GA 30310, USA.
| | | | | | | | | | | |
Collapse
|