1
|
Ku K, Frey C, Arad M, Ghafourifar G. Development of novel enzyme immobilization methods employing formaldehyde or triethoxysilylbutyraldehyde to fabricate immobilized enzyme microreactors for peptide mapping. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4053-4063. [PMID: 36196924 DOI: 10.1039/d2ay00840h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/16/2023]
Abstract
The digestion of proteins with proteolytic enzymes has expedited the analysis of peptide mapping. Here, we compared the digestion efficiency of soluble chymotrypsin (CT) with two immobilized CT preparations using bovine serum albumin (BSA) as the substrate. An efficient method of immobilizing chymotrypsin using formaldehyde (FA) was optimized and the conditions were applied to assess a novel immobilization reagent, triethoxysilylbutaraldehyde (TESB). Efforts to determine the best enzyme-to-substrate (E : S) ratios during digestion of denatured BSA with single-use FA-CT enzyme particles were performed by adjusting the amount of substrate used. An E : S ratio of 10 : 1 was found to be best based on the LC-MS/MS analysis data showing sequence coverage of 67%. Fabrication of immobilized enzyme microreactors (IMERs) was carried out using both (3-aminopropyl)triethoxysilane (APTES) with the idealized conditions with FA, as well as the novel procedure utilizing TESB for a proof of concept open-tubular IMER. It was found that the FA-APTES IMER had a sequence coverage of 6%, while the TESB IMER had 29% sequence coverage from MS analysis. The application of TESB in enzyme immobilization has the potential to facilitate a greater degree of enzymatic digestion with higher sequence coverage than traditional immobilization or crosslinking reagents for bottom-up proteomics.
Collapse
Affiliation(s)
- Kenneth Ku
- Department of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, British Columbia, V2S 7M8, Canada.
| | - Connor Frey
- Department of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, British Columbia, V2S 7M8, Canada.
| | - Maor Arad
- Department of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, British Columbia, V2S 7M8, Canada.
| | - Golfam Ghafourifar
- Department of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, British Columbia, V2S 7M8, Canada.
| |
Collapse
|
2
|
Briffa JF, Bevens W, Gravina S, Said JM, Wlodek ME. Pregnant biglycan knockout mice have altered cardiorenal adaptations and a shorter gestational length, but do not develop a pre-eclamptic phenotype. Placenta 2022; 119:52-62. [PMID: 35150975 DOI: 10.1016/j.placenta.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/19/2021] [Revised: 01/23/2022] [Accepted: 02/03/2022] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Pre-eclampsia complicates 4.6% of pregnancies and is linked to impaired placentation; likely due to dysregulated vasculogenesis/angiogenesis. Proteoglycans, such as biglycan, are located on the endothelial surface of fetal capillaries. Biglycan is reduced in the placenta of pregnancies complicated by fetal growth restriction and pre-eclampsia. Importantly, biglycan stimulates angiogenesis in numerous tissues. Therefore, this study investigated whether biglycan knockdown in mice results in a pre-eclamptic phenotype. METHODS Wild-type (WT) and Bgn-/- mice underwent cardiorenal measurements prior to and during pregnancy. One cohort of mice underwent post-mortem on gestational day 18 (E18) and another cohort underwent post-mortem on postnatal day 1 (PN1), with maternal and offspring tissues of relevance collected. RESULTS Bgn-/- dams had increased heart rate (+9%, p < 0.037) and reduced systolic (-11%, p < 0.001), diastolic (-15%, p < 0.001), and mean arterial (-12%, p < 0.001) pressures at all ages investigated compared to WT. Additionally, Bgn-/- dams had reduced urine flow rate (-64%, p < 0.001) as well as reduced urinary excretions (-49%, p < 0.004) during late gestation compared to WT. Bgn-/- pups had higher body weight (+8%, p = 0.004; E18 only) and a higher liver-to-brain weight ratio (+43%, p < 0.001). Placental weight was unaltered with only minor changes in vasculogenic and angiogenic gene abundances detected, which did not correlate to changes in protein expression. DISCUSSION This study demonstrated that total knockdown of biglycan is not associated with features of pre-eclampsia.
Collapse
Affiliation(s)
- J F Briffa
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - W Bevens
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - S Gravina
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - J M Said
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, 3010, Australia; Maternal Fetal Medicine, Sunshine Hospital, Western Health, St Albans, VIC, 3021, Australia
| | - M E Wlodek
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
3
|
Mangwiro YTM, Cuffe JSM, Mahizir D, Anevska K, Gravina S, Romano T, Moritz KM, Briffa JF, Wlodek ME. Exercise initiated during pregnancy in rats born growth restricted alters placental mTOR and nutrient transporter expression. J Physiol 2019; 597:1905-1918. [PMID: 30734290 DOI: 10.1113/jp277227] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/27/2018] [Accepted: 01/24/2019] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS Fetal growth is dependent on effective placental nutrient transportation, which is regulated by mammalian target of rapamycin (mTOR) complex 1 modulation of nutrient transporter expression. These transporters are dysregulated in pregnancies affected by uteroplacental insufficiency and maternal obesity. Nutrient transporters and mTOR were altered in placentae of mothers born growth restricted compared to normal birth weight dams, with maternal diet- and fetal sex-specific responses. Exercise initiated during pregnancy downregulated mTOR protein expression, despite an increase in mTOR activation in male associated placentae, and reduced nutrient transporter gene abundance, which was also dependent on maternal diet and fetal sex. Limited changes were characterized with exercise initiated before and continued throughout pregnancy in nutrient transporter and mTOR expression. Maternal exercise during pregnancy differentially regulated mTOR and nutrient transporters in a diet- and sex-specific manner, which likely aimed to improve late gestational placental growth and neonatal survival. ABSTRACT Adequate transplacental nutrient delivery is essential for fetoplacental development. Intrauterine growth restriction and maternal obesity independently alter placental nutrient transporter expression. Although exercise is beneficial for maternal health, limited studies have characterized how the timing of exercise initiation influences placental nutrient transport. Therefore, this study investigated the impact of maternal exercise on placental mechanistic target of rapamycin (mTOR) and nutrient transporter expression in growth restricted mothers and whether these outcomes were dependent on maternal diet or fetal sex. Uteroplacental insufficiency or sham surgery was induced on embryonic day (E) 18 in Wistar-Kyoto rats. F1 offspring were fed a chow or high-fat diet from weaning and at 16 weeks were randomly allocated to an exercise protocol: sedentary, exercised prior to and during pregnancy, or exercised during pregnancy only. Females were mated with normal males (20 weeks) and F2 placentae collected at E20. Exercise during pregnancy only, reduced mTOR protein expression in all groups and increased mTOR activation in male associated placentae. Exercise during pregnancy only, decreased the expression of amino acid transporters in a diet- and sex-specific manner. Maternal growth restriction altered mTOR and system A amino acid transporter expression in a sex- and diet-specific manner. These data highlight that maternal exercise initiated during pregnancy alters placental mTOR expression, which may directly regulate amino acid transporter expression, to a greater extent than exercise initiated prior to and continued during pregnancy, in a diet- and fetal sex-dependent manner. These findings highlight that the timing of exercise initiation is important for optimal placental function.
Collapse
Affiliation(s)
- Yeukai T M Mangwiro
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3083, Australia.,Department of Physiology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - James S M Cuffe
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Dayana Mahizir
- Department of Physiology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Kristina Anevska
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3083, Australia.,Department of Physiology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Sogand Gravina
- Department of Physiology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Tania Romano
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3083, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, 4072, Australia.,Child Health Research Centre, University of Queensland, South Brisbane, Queensland, 4101, Australia
| | - Jessica F Briffa
- Department of Physiology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Mary E Wlodek
- Department of Physiology, University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
4
|
Mangwiro YT, Briffa JF, Gravina S, Mahizir D, Anevska K, Romano T, Moritz KM, Cuffe JS, Wlodek ME. Maternal exercise and growth restriction in rats alters placental angiogenic factors and blood space area in a sex-specific manner. Placenta 2018; 74:47-54. [PMID: 30638632 DOI: 10.1016/j.placenta.2018.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/07/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022]
Abstract
Fetal growth and development are dependent on adequate placental nutrient transfer. The surface area of the placental villous network is a key determinant of nutrient exchange, which is regulated by vasculogenic and angiogenic factors. These factors are altered by intrauterine growth restriction (IUGR) and maternal obesity in both the first (F1) and second (F2) generations. We investigated the impact of endurance exercise in IUGR dams fed a High-fat diet on placental vasculogenesis and angiogenesis. Uteroplacental insufficiency (Restricted) or sham (Control) surgery was induced on embryonic day (E) 18 in Wistar-Kyoto rats. F1 offspring were fed a Chow or High-fat diet from weaning, and at 16 weeks were further allocated an exercise protocol; Sedentary, Exercised prior to and during pregnancy (Exercise), or Exercised during pregnancy only (PregEx). Females were mated (20 weeks) and F2 placentae collected at E20. Maternal Restriction, High-fat feeding and Exercise had a minimal impact on placental regulators of vasculogenesis and angiogenesis. However, Restriction increased placental labyrinth tissue area in Chow-fed dams. PregEx induced overt adaptations, including increased VEGFA and decreased PLGF protein expression, and reduced blood space area. These alterations were sex-dependent and associated with alterations in miRNA27a, a known regulator of VEGF translation. These data highlight that maternal exercise initiated during pregnancy (PregEx) causes alterations in placental vasculogenesis and angiogenesis in a sex-dependent manner, with minimal Restriction and maternal diet effects. However, further investigation is required to determine if these adaptations are beneficial or harmful for maternal and fetoplacental outcomes.
Collapse
Affiliation(s)
- Yeukai Tm Mangwiro
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, 3083, Australia; Department of Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jessica F Briffa
- Department of Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Sogand Gravina
- Department of Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Dayana Mahizir
- Department of Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kristina Anevska
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Tania Romano
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia; Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, 4101, Australia
| | - James Sm Cuffe
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Mary E Wlodek
- Department of Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
5
|
Mangwiro YTM, Cuffe JSM, Briffa JF, Mahizir D, Anevska K, Jefferies AJ, Hosseini S, Romano T, Moritz KM, Wlodek ME. Maternal exercise in rats upregulates the placental insulin-like growth factor system with diet- and sex-specific responses: minimal effects in mothers born growth restricted. J Physiol 2018; 596:5947-5964. [PMID: 29953638 DOI: 10.1113/jp275758] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2017] [Accepted: 06/07/2018] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS The placental insulin-like growth factor (IGF) system is critical for normal fetoplacental growth, which is dysregulated following several pregnancy perturbations including uteroplacental insufficiency and maternal obesity. We report that the IGF system was altered in placentae of mothers born growth restricted compared to normal birth weight mothers, with maternal diet- and fetal sex-specific responses. Additionally, we report increased body weight and plasma IGF1 concentrations in fetuses from chow-fed normal birth weight mothers that exercised prior to and continued during pregnancy compared to sedentary mothers. Exercise initiated during pregnancy, on the other hand, resulted in placental morphological alterations and increased IGF1 and IGF1R protein expression, which may in part be modulated by reduced Let 7f-1 miRNA abundance. Growth restriction of mothers before birth and exercise differentially regulate the placental IGF system with diet- and sex-specific responses, probably as a means to improve fetoplacental growth and development, and hence neonatal survival. This increased neonatal survival may prevent adult disease onset. ABSTRACT The insulin-like growth factor (IGF) system regulates fetoplacental growth and plays a role in disease programming. Dysregulation of the IGF system is implicated in several pregnancy perturbations associated with altered fetal growth, including intrauterine growth restriction and maternal obesity. Limited human studies have demonstrated that maternal exercise enhances fetoplacental growth and decreases cord IGF ligands, which may restore the placental IGF system in complicated pregnancies. This study investigated the impact maternal exercise has on the placental IGF system in placentae from mothers born growth restricted and if these outcomes are dependent on maternal diet or fetal sex. Uteroplacental insufficiency (Restricted) or sham (Control) surgery was induced on embryonic day (E) 18 in Wistar-Kyoto rats. F1 offspring were fed a chow or high-fat diet from weaning, and at 16 weeks were randomly allocated an exercise protocol: Sedentary, Exercised prior to and during pregnancy (Exercise), or Exercised during pregnancy only (PregEx). Females were mated (20 weeks) with placentae associated with F2 fetuses collected at E20. The placental IGF system mRNA abundance and placental morphology was altered in mothers born growth restricted. Exercise increased fetal weight and Control plasma IGF1 concentrations, and decreased female placental weight. PregEx did not influence fetoplacental growth but increased placental IGF1 and IGF1R (potentially modulated by reduced Let 7f-1 miRNA) and decreased placental IGF2 protein. Importantly, these placental IGF system changes occurred with sex-specific responses. These data highlight that exercise differently influences fetoplacental growth and the placental IGF system depending on maternal exercise initiation, which may prevent the transgenerational transmission of deficits and dysfunction.
Collapse
Affiliation(s)
- Yeukai T M Mangwiro
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, 3083, Australia.,Department of Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - James S M Cuffe
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,School of Medical Science and Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4215, Australia
| | - Jessica F Briffa
- Department of Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Dayana Mahizir
- Department of Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kristina Anevska
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Andrew J Jefferies
- Department of Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Sogand Hosseini
- Department of Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Tania Romano
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Child Health Research Centre, The University of Queensland, South Brisbane, QLD, 4101, Australia
| | - Mary E Wlodek
- Department of Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
6
|
Briffa JF, O'Dowd R, Moritz KM, Romano T, Jedwab LR, McAinch AJ, Hryciw DH, Wlodek ME. Uteroplacental insufficiency reduces rat plasma leptin concentrations and alters placental leptin transporters: ameliorated with enhanced milk intake and nutrition. J Physiol 2017; 595:3389-3407. [PMID: 28369926 DOI: 10.1113/jp273825] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/23/2016] [Accepted: 02/08/2017] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Uteroplacental insufficiency compromises maternal mammary development, milk production and pup organ development; this is ameliorated by cross-fostering, which improves pup growth and organ development and prevents adult diseases in growth-restricted (Restricted) offspring by enhancing postnatal nutrition. Leptin is transported to the fetus from the mother by the placenta; we report reduced plasma leptin concentrations in Restricted fetuses associated with sex-specific alterations in placental leptin transporter expression. Pup plasma leptin concentrations were also reduced during suckling, which may suggest reduced milk leptin transport or leptin reabsorption. Mothers suckled by Restricted pups had impaired mammary development and changes in milk fatty acid composition with no alterations in milk leptin; cross-fostering restored pup plasma leptin concentrations, which may be correlated to improved milk composition and intake. Increased plasma leptin and altered milk fatty acid composition in Restricted pups suckling mothers with normal lactation may improve postnatal growth and prevent adult diseases. ABSTRACT Uteroplacental insufficiency reduces birth weight and adversely affects fetal organ development, increasing adult disease risk. Cross-fostering improves postnatal nutrition and restores these deficits. Mothers with growth-restricted pups have compromised milk production and composition; however, the impact cross-fostering has on milk production and composition is unknown. Plasma leptin concentrations peak during the completion of organogenesis, which occurs postnatally in rats. Leptin is transferred to the fetus via the placenta and to the pup via the lactating mammary gland. This study investigated the effect of uteroplacental insufficiency on pup plasma leptin concentrations and placental leptin transporters. We additionally examined whether cross-fostering improves mammary development, milk composition and pup plasma leptin concentrations. Fetal growth restriction was induced by bilateral uterine vessel ligation surgery on gestation day 18 in Wistar Kyoto rats (termed uteroplacental insufficiency surgery mothers). Growth-restricted (Restricted) fetuses had reduced plasma leptin concentrations, persisting throughout lactation, and sex-specific alterations in placental leptin transporters. Mothers suckled by Restricted pups had impaired mammary development, altered milk fatty acid composition and increased plasma leptin concentrations, despite no changes in milk leptin. Milk intake was reduced in Restricted pups suckling uteroplacental insufficiency surgery mothers compared to Restricted pups suckling sham-operated mothers. Cross-fostering Restricted pups onto a sham-operated mother improved postnatal growth and restored plasma leptin concentrations compared to Restricted pups suckling uteroplacental insufficiency surgery mothers. Uteroplacental insufficiency alters leptin homeostasis. This is ameliorated with cross-fostering and enhanced milk fatty acid composition and consumption, which may protect the pups from developing adverse health conditions in adulthood.
Collapse
Affiliation(s)
- Jessica F Briffa
- Department of Physiology, The University of Melbourne, Victoria, 3010, Australia
| | - Rachael O'Dowd
- Department of Physiology, The University of Melbourne, Victoria, 3010, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Tania Romano
- Department of Human Biosciences, LaTrobe University, Bundoora, VIC, 3083, Australia
| | - Lisa R Jedwab
- Department of Physiology, The University of Melbourne, Victoria, 3010, Australia
| | - Andrew J McAinch
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, St Albans, VIC, 3021, Australia
| | - Deanne H Hryciw
- Department of Physiology, The University of Melbourne, Victoria, 3010, Australia
| | - Mary E Wlodek
- Department of Physiology, The University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
7
|
Silveira JA, Michelmann K, Ridgeway ME, Park MA. Fundamentals of Trapped Ion Mobility Spectrometry Part II: Fluid Dynamics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:585-595. [PMID: 26864793 DOI: 10.1007/s13361-015-1310-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/29/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 06/05/2023]
Abstract
Trapped ion mobility spectrometry (TIMS) is a new high resolution (R up to ~300) separation technique that utilizes an electric field to hold ions stationary against a moving gas. Recently, an analytical model for TIMS was derived and, in part, experimentally verified. A central, but not yet fully explored, component of the model involves the fluid dynamics at work. The present study characterizes the fluid dynamics in TIMS using simulations and ion mobility experiments. Results indicate that subsonic laminar flow develops in the analyzer, with pressure-dependent gas velocities between ~120 and 170 m/s measured at the position of ion elution. One of the key philosophical questions addressed is: how can mobility be measured in a dynamic system wherein the gas is expanding and its velocity is changing? We noted previously that the analytically useful work is primarily done on ions as they traverse the electric field gradient plateau in the analyzer. In the present work, we show that the position-dependent change in gas velocity on the plateau is balanced by a change in pressure and temperature, ultimately resulting in near position-independent drag force. That the drag force, and related variables, are nearly constant allows for the use of relatively simple equations to describe TIMS behavior. Nonetheless, we derive a more comprehensive model, which accounts for the spatial dependence of the flow variables. Experimental resolving power trends were found to be in close agreement with the theoretical dependence of the drag force, thus validating another principal component of TIMS theory.
Collapse
Affiliation(s)
| | | | - Mark E Ridgeway
- Bruker Daltonics, 40 Manning Road, Billerica, MA, 01821, USA
| | - Melvin A Park
- Bruker Daltonics, 40 Manning Road, Billerica, MA, 01821, USA.
| |
Collapse
|
8
|
Wan-Ibrahim WI, Singh VA, Hashim OH, Abdul-Rahman PS. Biomarkers for Bone Tumors: Discovery from Genomics and Proteomics Studies and Their Challenges. Mol Med 2015; 21:861-872. [PMID: 26581086 DOI: 10.2119/molmed.2015.00183] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/07/2015] [Accepted: 11/12/2015] [Indexed: 01/07/2023] Open
Abstract
Diagnosis of bone tumor currently relies on imaging and biopsy, and hence, the need to find less invasive ways for its accurate detection. More recently, numerous promising deoxyribonucleic acid (DNA) and protein biomarkers with significant prognostic, diagnostic and/or predictive abilities for various types of bone tumors have been identified from genomics and proteomics studies. This article reviewed the putative biomarkers for the more common types of bone tumors (that is, osteosarcoma, Ewing sarcoma, chondrosarcoma [malignant] and giant cell tumor [benign]) that were unveiled from the studies. The benefits and drawbacks of these biomarkers, as well as the technology platforms involved in the research, were also discussed. Challenges faced in the biomarker discovery studies and the problems in their translation from the bench to the clinical settings were also addressed.
Collapse
Affiliation(s)
- Wan I Wan-Ibrahim
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vivek A Singh
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Onn H Hashim
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,University of Malaya Centre of Proteomics Research (UMCPR), University of Malaya, Kuala Lumpur, Malaysia
| | - Puteri S Abdul-Rahman
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,University of Malaya Centre of Proteomics Research (UMCPR), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Distler U, Kuharev J, Tenzer S. Biomedical applications of ion mobility-enhanced data-independent acquisition-based label-free quantitative proteomics. Expert Rev Proteomics 2014; 11:675-84. [DOI: 10.1586/14789450.2014.971114] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
|
10
|
Label-free quantitative proteomic analysis reveals potential biomarkers and pathways in renal cell carcinoma. Tumour Biol 2014; 36:939-51. [PMID: 25315187 DOI: 10.1007/s13277-014-2694-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2014] [Accepted: 09/30/2014] [Indexed: 01/22/2023] Open
Abstract
Renal cell carcinoma (RCC) is one of the most common malignancies in adults, and there is still no acknowledged biomarker for its diagnosis, prognosis, recurrence monitoring, and treatment stratification. Besides, little is known about the post-translational modification (PTM) of proteins in RCC. Here, we performed quantitative proteomic analysis on 12 matched pairs of clear cell RCC (ccRCC) and adjacent kidney tissues using liquid chromatography-tandem mass spectrometry (nanoLCMS/MS) and Progenesis LC-MS software (label-free) to identify and quantify the dysregulated proteins. A total of 1872 and 1927 proteins were identified in ccRCC and adjacent kidney tissues, respectively. Among these proteins, 1037 proteins were quantified by Progenesis LC-MS, and 213 proteins were identified as dysregulated proteins between ccRCC and adjacent tissues. Pathway analysis using IPA, STRING, and David tools was performed, which demonstrated the enrichment of cancer-related signaling pathways and biological processes such as mitochondrial dysfunction, metabolic pathway, cell death, and acetylation. Dysregulation of two mitochondrial proteins, acetyl-CoA acetyltransferase 1 (ACAT1) and manganese superoxide dismutase (MnSOD) were selected and confirmed by Western blotting and immunohistochemistry assays using another 6 pairs of ccRCC and adjacent tissues. Further mass spectrometry analysis indicated that both ACAT1 and MnSOD had characterized acetylation at lysine residues, which is the first time to identify acetylation of ACAT1 and MnSOD in ccRCC. Collectively, these data revealed a number of dysregulated proteins and signaling pathways by label-free quantitative proteomic approach in RCC, which shed light on potential diagnostic or prognostic biomarkers and therapeutic molecular targets for clinical intervention of RCC.
Collapse
|
11
|
Brown LM. Quantitative shotgun proteomics with data-independent acquisition and traveling wave ion mobility spectrometry: a versatile tool in the life sciences. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:79-91. [PMID: 24952179 DOI: 10.1007/978-3-319-06068-2_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023]
Abstract
Data-independent acquisition (DIA) implemented in a method called MS(E) can be performed in a massively parallel, time-based schedule rather than by sampling masses sequentially in shotgun proteomics. In MS(E) alternating low and high energy spectra are collected across the full mass range. This approach has been very successful and stimulated the development of variants modeled after the MS(E) protocol, but over narrower mass ranges. The massively parallel MS(E) and other DIA methodologies have enabled effective label-free quantitation methods that have been applied to a wide variety of samples including affinity pulldowns and studies of cells, tissues, and clinical samples. Another complementary technology matches accurate mass and retention times of precursor ions across multiple chromatographic runs. This further enhances the impact of MS(E) in counteracting the stochastic nature of mass spectrometry as applied in proteomics. Otherwise significant amounts of data in typical large-scale protein profiling experiments are missing. A variety of software packages perform this function similar in concept to matching of accurate mass tags. Another enhancement of this method involves a variation of MS(E) coupled with traveling wave ion mobility spectrometry to provide separations of peptides based on cross-sectional area and shape in addition to mass/charge (m/z) ratio. Such a two-dimensional separation in the gas phase considerably increases protein coverage as well as typically a doubling of the number of proteins detected. These developments along with advances in ultrahigh pressure liquid chromatography have resulted in the evolution of a robust and versatile platform for label-free protein profiling.
Collapse
Affiliation(s)
- Lewis M Brown
- Quantitative Proteomics Center, Department of Biological Sciences, Columbia University, New York, NY, 10027, USA,
| |
Collapse
|