1
|
Wang Z, Sun X, Lin Y, Fu Y, Yi Z. Stealth in non-tuberculous mycobacteria: clever challengers to the immune system. Microbiol Res 2025; 292:128039. [PMID: 39752805 DOI: 10.1016/j.micres.2024.128039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025]
Abstract
Non-tuberculous Mycobacteria (NTM) are found extensively in various environments, yet most are non-pathogenic. Only a limited number of these organisms can cause various infections, including those affecting the lungs, skin, and central nervous system, particularly when the host's autoimmune function is compromised. Among these, Non-tuberculous Mycobacteria Pulmonary Diseases (NTM-PD) are the most prevalent. Currently, there is a lack of effective treatments and preventive measures for NTM infections. This article aims to deepen the comprehension of the pathogenic mechanisms linked to NTM and to formulate new intervention strategies by synthesizing current research and detailing the different tactics used by NTM to avoid elimination by the host's immune response. These intricate mechanisms not only affect the innate immune response but also successfully oppose the adaptive immune response, establishing persistent infections within the host. This includes effects on the functions of macrophages, neutrophils, dendritic cells, and T lymphocytes, as well as modulation of cytokine production. The article particularly emphasizes the survival strategies of NTM within macrophages, such as inhibiting phagosome maturation and acidification, resisting intracellular killing mechanisms, and interfering with autophagy and cell death pathways. This review aims to deepen the understanding of NTM's immune evasion mechanisms, thereby facilitating efforts to inhibit its proliferation and spread within the host, ultimately providing new methods and strategies for NTM-related treatments.
Collapse
Affiliation(s)
- Zhenghao Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Xiurong Sun
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Yuli Lin
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, China
| | - Yurong Fu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| | - Zhengjun Yi
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
2
|
Hammarén MM, Luukinen H, Sillanpää A, Remans K, Lapouge K, Custódio T, Löw C, Myllymäki H, Montonen T, Seeger M, Robertson J, Nyman TA, Savijoki K, Parikka M. In vitro and ex vivo proteomics of Mycobacterium marinum biofilms and the development of biofilm-binding synthetic nanobodies. mSystems 2023:e0107322. [PMID: 37184670 DOI: 10.1128/msystems.01073-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The antibiotic-tolerant biofilms present in tuberculous granulomas add an additional layer of complexity when treating mycobacterial infections, including tuberculosis (TB). For a more efficient treatment of TB, the biofilm forms of mycobacteria warrant specific attention. Here, we used Mycobacterium marinum (Mmr) as a biofilm-forming model to identify the abundant proteins covering the biofilm surface. We used biotinylation/streptavidin-based proteomics on the proteins exposed at the Mmr biofilm matrices in vitro to identify 448 proteins and ex vivo proteomics to detect 91 Mmr proteins from the mycobacterial granulomas isolated from adult zebrafish. In vitro and ex vivo proteomics data are available via ProteomeXchange with identifier PXD033425 and PXD039416, respectively. Data comparisons pinpointed the molecular chaperone GroEL2 as the most abundant Mmr protein within the in vitro and ex vivo proteomes, while its paralog, GroEL1, with a known role in biofilm formation, was detected with slightly lower intensity values. To validate the surface exposure of these targets, we created in-house synthetic nanobodies (sybodies) against the two chaperones and identified sybodies that bind the mycobacterial biofilms in vitro and those present in ex vivo granulomas. Taken together, the present study reports a proof-of-concept showing that surface proteomics in vitro and ex vivo proteomics combined are a valuable strategy to identify surface-exposed proteins on the mycobacterial biofilm. Biofilm-surface-binding nanobodies could be eventually used as homing agents to deliver biofilm-targeting treatments to the sites of persistent biofilm infection.
Collapse
Affiliation(s)
- Milka Marjut Hammarén
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Hanna Luukinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Alina Sillanpää
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kim Remans
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Karine Lapouge
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Tânia Custódio
- Centre for Structural Systems Biology, Hamburg, Germany
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology, Hamburg, Germany
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg, Germany
| | - Henna Myllymäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Toni Montonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Markus Seeger
- Institute for Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Joseph Robertson
- Department of Immunology, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Tuula A Nyman
- Department of Immunology, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Kirsi Savijoki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Mataleena Parikka
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
3
|
Kajiwara C, Shiozawa A, Urabe N, Yamaguchi T, Kimura S, Akasaka Y, Ishii Y, Tateda K. Apoptosis Inhibitor of Macrophages Contributes to the Chronicity of Mycobacterium avium Infection by Promoting Foamy Macrophage Formation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:431-441. [PMID: 36602769 DOI: 10.4049/jimmunol.2200306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023]
Abstract
In Mycobacterium avium infections, macrophages play a critical role in the host defense response. Apoptosis inhibitor of macrophage (AIM), also known as CD5L, may represent a novel supportive therapy against various diseases, including metabolic syndrome and infectious diseases. The mechanisms of AIM include modulating lipid metabolism in macrophages and other host cells. We investigated the role of AIM in M. avium infections in vitro and in vivo. In a mouse model of M. avium pneumonia, foamy macrophages were induced 6 wk after infection. The bacteria localized in these macrophages. Flow cytometric analysis also confirmed that the percentage of CD11chighMHCclassIIhigh interstitial and alveolar macrophages, a cell surface marker defined as foamy macrophages, increased significantly after infection. AIM in alveolar lavage fluid and serum gradually increased after infection. Administration of recombinant AIM significantly increased the number of bacteria in the lungs of mice, accompanied by the induction of inflammatory cytokine and iNOS expression. In mouse bone marrow-derived macrophages, the mRNA expression of AIM after M. avium infection and the amount of AIM in the supernatant increased prior to the increase in intracellular bacteria. Infected cells treated with anti-AIM Abs had fewer bacteria and a higher percentage of apoptosis-positive cells than infected cells treated with isotype control Abs. Finally, AIM in the sera of patients with M. avium-pulmonary disease was measured and was significantly higher than in healthy volunteers. This suggests that AIM production is enhanced in M. avium-infected macrophages, increasing macrophage resistance to apoptosis and providing a possible site for bacterial growth.
Collapse
Affiliation(s)
- Chiaki Kajiwara
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University School of Medicine, Tokyo, Japan
| | - Ayako Shiozawa
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University School of Medicine, Tokyo, Japan
| | - Naohisa Urabe
- Department of Respiratory Medicine, Toho University Omori Medical Center, Tokyo, Japan
| | - Tetsuo Yamaguchi
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University School of Medicine, Tokyo, Japan
| | - Soichiro Kimura
- Faculty of Pharmaceutical Sciences, Department of Clinical Pharmacy, Shonan University of Medical Sciences, Kanagawa, Japan; and
| | - Yoshikiyo Akasaka
- Department of Diagnostic Pathology, Saiseikai Yokohamashi Tobu Hospital, Kanagawa, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University School of Medicine, Tokyo, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
The Role of NRF2 in Mycobacterial Infection. Antioxidants (Basel) 2021; 10:antiox10121861. [PMID: 34942964 PMCID: PMC8699052 DOI: 10.3390/antiox10121861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 02/04/2023] Open
Abstract
The incidence of pulmonary nontuberculous mycobacterial (NTM) infection is increasing worldwide, and its clinical outcomes with current chemotherapies are unsatisfactory. The incidence of tuberculosis (TB) is still high in Africa, and the existence of drug-resistant tuberculosis is also an important issue for treatment. To discover and develop new efficacious anti-mycobacterial treatments, it is important to understand the host-defense mechanisms against mycobacterial infection. Nuclear erythroid 2 p45-related factor-2 (NRF2) is known to be a major regulator of various antioxidant response element (ARE)-driven cytoprotective gene expressions, and its protective role has been demonstrated in infections. However, there are not many papers or reviews regarding the role of NRF2 in mycobacterial infectious disease. Therefore, this review focuses on the role of NRF2 in the pathogenesis of Mycobacterium tuberculosis and Mycobacterium avium infection.
Collapse
|
5
|
Abukhalid N, Islam S, Ndzeidze R, Bermudez LE. Mycobacterium avium Subsp. hominissuis Interactions with Macrophage Killing Mechanisms. Pathogens 2021; 10:1365. [PMID: 34832521 PMCID: PMC8623537 DOI: 10.3390/pathogens10111365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Non-tuberculosis mycobacteria (NTM) are ubiquitously found throughout the environment. NTM can cause respiratory infections in individuals with underlying lung conditions when inhaled, or systemic infections when ingested by patients with impaired immune systems. Current therapies can be ineffective at treating NTM respiratory infections, even after a long course or with multidrug treatment regimens. NTM, such as Mycobacterium avium subspecies hominissuis (M. avium), is an opportunistic pathogen that shares environments with ubiquitous free-living amoeba and other environmental hosts, possibly their evolutionary hosts. It is highly likely that interactions between M. avium and free-living amoeba have provided selective pressure on the bacteria to acquire survival mechanisms, which are also used against predation by macrophages. In macrophages, M. avium resides inside phagosomes and has been shown to exit it to infect other cells. M. avium's adaptation to the hostile intra-phagosomal environment is due to many virulence mechanisms. M. avium is able to switch the phenotype of the macrophage to be anti-inflammatory (M2). Here, we have focused on and discussed the bacterial defense mechanisms associated with the intra-phagosome phase of infection. M. avium possesses a plethora of antioxidant enzymes, including the superoxide dismutases, catalase and alkyl hydroperoxide reductase. When these defenses fail or are overtaken by robust oxidative burst, many other enzymes exist to repair damage incurred on M. avium proteins, including thioredoxin/thioredoxin reductase. Finally, M. avium has several oxidant sensors that induce transcription of antioxidant enzymes, oxidation repair enzymes and biofilm- promoting genes. These expressions induce physiological changes that allow M. avium to survive in the face of leukocyte-generated oxidative stress. We will discuss the strategies used by M. avium to infect human macrophages that evolved during its evolution from free-living amoeba. The more insight we gain about M. avium's mode of pathogenicity, the more targets we can have to direct new anti-virulence therapies toward.
Collapse
Affiliation(s)
- Norah Abukhalid
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (N.A.); (S.I.); (R.N.)
| | - Sabrina Islam
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (N.A.); (S.I.); (R.N.)
| | - Robert Ndzeidze
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (N.A.); (S.I.); (R.N.)
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (N.A.); (S.I.); (R.N.)
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
6
|
Surface-Shaving Proteomics of Mycobacterium marinum Identifies Biofilm Subtype-Specific Changes Affecting Virulence, Tolerance, and Persistence. mSystems 2021; 6:e0050021. [PMID: 34156290 PMCID: PMC8269238 DOI: 10.1128/msystems.00500-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complex cell wall and biofilm matrix (ECM) act as key barriers to antibiotics in mycobacteria. Here, the ECM and envelope proteins of Mycobacterium marinum ATCC 927, a nontuberculous mycobacterial model, were monitored over 3 months by label-free proteomics and compared with cell surface proteins on planktonic cells to uncover pathways leading to virulence, tolerance, and persistence. We show that ATCC 927 forms pellicle-type and submerged-type biofilms (PBFs and SBFs, respectively) after 2 weeks and 2 days of growth, respectively, and that the increased CelA1 synthesis in this strain prevents biofilm formation and leads to reduced rifampicin tolerance. The proteomic data suggest that specific changes in mycolic acid synthesis (cord factor), Esx1 secretion, and cell wall adhesins explain the appearance of PBFs as ribbon-like cords and SBFs as lichen-like structures. A subpopulation of cells resisting 64× MIC rifampicin (persisters) was detected in both biofilm subtypes and already in 1-week-old SBFs. The key forces boosting their development could include subtype-dependent changes in asymmetric cell division, cell wall biogenesis, tricarboxylic acid/glyoxylate cycle activities, and energy/redox/iron metabolisms. The effect of various ambient oxygen tensions on each cell type and nonclassical protein secretion are likely factors explaining the majority of the subtype-specific changes. The proteomic findings also imply that Esx1-type protein secretion is more efficient in planktonic (PL) and PBF cells, while SBF may prefer both the Esx5 and nonclassical pathways to control virulence and prolonged viability/persistence. In conclusion, this study reports the first proteomic insight into aging mycobacterial biofilm ECMs and indicates biofilm subtype-dependent mechanisms conferring increased adaptive potential and virulence of nontuberculous mycobacteria. IMPORTANCE Mycobacteria are naturally resilient, and mycobacterial infections are notoriously difficult to treat with antibiotics, with biofilm formation being the main factor complicating the successful treatment of tuberculosis (TB). The present study shows that nontuberculous Mycobacterium marinum ATCC 927 forms submerged- and pellicle-type biofilms with lichen- and ribbon-like structures, respectively, as well as persister cells under the same conditions. We show that both biofilm subtypes differ in terms of virulence-, tolerance-, and persistence-conferring activities, highlighting the fact that both subtypes should be targeted to maximize the power of antimycobacterial treatment therapies.
Collapse
|
7
|
Shin MK, Shin SJ. Genetic Involvement of Mycobacterium avium Complex in the Regulation and Manipulation of Innate Immune Functions of Host Cells. Int J Mol Sci 2021; 22:ijms22063011. [PMID: 33809463 PMCID: PMC8000623 DOI: 10.3390/ijms22063011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium avium complex (MAC), a collection of mycobacterial species representing nontuberculous mycobacteria, are characterized as ubiquitous and opportunistic pathogens. The incidence and prevalence of infectious diseases caused by MAC have been emerging globally due to complications in the treatment of MAC-pulmonary disease (PD) in humans and the lack of understating individual differences in genetic traits and pathogenesis of MAC species or subspecies. Despite genetically close one to another, mycobacteria species belonging to the MAC cause diseases to different host range along with a distinct spectrum of disease. In addition, unlike Mycobacterium tuberculosis, the underlying mechanisms for the pathogenesis of MAC infection from environmental sources of infection to their survival strategies within host cells have not been fully elucidated. In this review, we highlight unique genetic and genotypic differences in MAC species and the virulence factors conferring the ability to MAC for the tactics evading innate immune attacks of host cells based on the recent advances in genetic analysis by exemplifying M. avium subsp. hominissuis, a major representative pathogen causing MAC-PD in humans. Further understanding of the genetic link between host and MAC may contribute to enhance host anti-MAC immunity, but also provide novel therapeutic approaches targeting the pangenesis-associated genes of MAC.
Collapse
Affiliation(s)
- Min-Kyoung Shin
- Department of Microbiology and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea;
| | - Sung Jae Shin
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: ; Tel.: +82-2-2228-1813
| |
Collapse
|
8
|
Hermann C, Karamchand L, Blackburn JM, Soares NC. Cell Envelope Proteomics of Mycobacteria. J Proteome Res 2020; 20:94-109. [PMID: 33140963 DOI: 10.1021/acs.jproteome.0c00650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The World Health Organization (WHO) estimates that Mycobacterium tuberculosis, the most pathogenic mycobacterium species to humans, has infected up to a quarter of the world's population, with the occurrence of multidrug-resistant strains on the rise. Research into the detailed composition of the cell envelope proteome in mycobacteria over the last 20 years has formed a key part of the efforts to understand host-pathogen interactions and to control the current tuberculosis epidemic. This is due to the great importance of the cell envelope proteome during infection and during the development of antibiotic resistance as well as the search of surface-exposed proteins that could be targeted by therapeutics and vaccines. A variety of experimental approaches and mycobacterial species have been used in proteomic studies thus far. Here we provide for the first time an extensive summary of the different approaches to isolate the mycobacterial cell envelope, highlight some of the limitations of the studies performed thus far, and comment on how the recent advances in membrane proteomics in other fields might be translated into the field of mycobacteria to provide deeper coverage.
Collapse
Affiliation(s)
- Clemens Hermann
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Leshern Karamchand
- National Research Council Canada, Nanotechnology Research Centre, Biomedical Nanotechnologies, 11421 Saskatchewan Drive NW, Edmonton, Alberta T6G 2M9, Canada
| | - Jonathan M Blackburn
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Nelson C Soares
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates.,College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
9
|
Tripathi P, Singh LK, Kumari S, Hakiem OR, Batra JK. ClpB is an essential stress regulator of Mycobacterium tuberculosis and endows survival advantage to dormant bacilli. Int J Med Microbiol 2020; 310:151402. [PMID: 32014406 DOI: 10.1016/j.ijmm.2020.151402] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/03/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
The ability to tolerate multiple host derived stresses, resist eradication and persist within the infected individuals is central to the pathogenicity of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB). Mycobacterial survival is contingent upon sensing environmental perturbations and initiating a fitting response to counter them. Therefore, understanding of molecular mechanisms underlying stress tolerance and sensing in Mtb is critical for devising strategies for TB control. Our study aims to delineate the role of ClpB, a heat shock protein of Hsp100 family, in the general stress response and persistence mechanisms of Mtb. We demonstrate that Mtb requires ClpB to survive under stressful conditions. Additionally, we show that ClpB is necessary for the bacteria to persist in latency-like conditions such as prolonged hypoxia and nutrient-starvation. The disruption of ClpB results in aberrant cellular morphology, impaired biofilm formation and reduced infectivity of Mtb ex vivo. Our study also reports an alternative role of ClpB as a chaperokine which elicits inflammatory response in host. We conclude that ClpB is essential for Mtb to survive within macrophages, and plays a crucial part in the maintenance of dormant Mtb bacilli in latent state. The absence of ClpB in human genome makes it an attractive choice as drug target for TB.
Collapse
Affiliation(s)
- Prajna Tripathi
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Lalit K Singh
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sujata Kumari
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Owais R Hakiem
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Janendra K Batra
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India; Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
10
|
Lewis MS, Danelishvili L, Rose SJ, Bermudez LE. MAV_4644 Interaction with the Host Cathepsin Z Protects Mycobacterium avium subsp. hominissuis from Rapid Macrophage Killing. Microorganisms 2019; 7:microorganisms7050144. [PMID: 31117286 PMCID: PMC6560410 DOI: 10.3390/microorganisms7050144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/03/2019] [Accepted: 05/10/2019] [Indexed: 01/15/2023] Open
Abstract
Mycobacterium avium subspecies hominissuis (MAH) is an opportunistic pathogen that is ubiquitous in the environment and often isolated from faucets and showerheads. MAH mostly infects humans with an underlying disease, such as chronic pulmonary disorder, cystic fibrosis, or individuals that are immunocompromised. In recent years, MAH infections in patients without concurrent disease are increasing in prevalence as well. This pathogen is resistant to many antibiotics due to the impermeability of its envelope and due to the phenotypic resistance established within the host macrophages, making difficult to treat MAH infections. By screening a MAH transposon library for mutants that are susceptible to killing by reactive nitrogen intermediaries, we identified the MAV_4644 (MAV_4644:Tn) gene knockout clone that was also significantly attenuated in growth within the host macrophages. Complementation of the mutant restored the wild-type phenotype. The MAV_4644 gene encodes a dual-function protein with a putative pore-forming function and ADP-ribosyltransferase activity. Protein binding assay suggests that MAV_4644 interacts with the host lysosomal peptidase cathepsin Z (CTSZ), a key regulator of the cell signaling and inflammation. Pathogenic mycobacteria have been shown to suppress the action of many cathepsins to establish their intracellular niche. Our results demonstrate that knocking-down the cathepsin Z in human macrophages rescues the attenuated phenotype of MAV_4644:Tn clone. Although, the purified cathepsin Z by itself does not have any killing effect on MAH, it contributes to bacterial killing in the presence of the nitric oxide (NO). Our data suggest that the cathepsin Z is involved in early macrophage killing of MAH, and the virulence factor MAV_4644 protects the pathogen from this process.
Collapse
Affiliation(s)
- Matthew S Lewis
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA.
| | - Lia Danelishvili
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA.
| | - Sasha J Rose
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA.
| | - Luiz E Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA.
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
11
|
Nantapong N, Murata R, Trakulnaleamsai S, Kataoka N, Yakushi T, Matsushita K. The effect of reactive oxygen species (ROS) and ROS-scavenging enzymes, superoxide dismutase and catalase, on the thermotolerant ability of Corynebacterium glutamicum. Appl Microbiol Biotechnol 2019; 103:5355-5366. [PMID: 31041469 DOI: 10.1007/s00253-019-09848-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 01/01/2023]
Abstract
The function of two reactive oxygen species (ROS) scavenging enzymes, superoxide dismutase (SOD) and catalase, on the thermotolerant ability of Corynebacterium glutamicum was investigated. In this study, the elevation of the growth temperature was shown to lead an increased intracellular ROS for two strains of Corynebacterium glutamicum, the wild-type (KY9002) and the temperature-sensitive mutant (KY9714). In order to examine the effects of ROS-scavenging enzymes on cell growth, either the SOD or the catalase gene was disrupted or overexpressed in KY9002 and KY9714. In the case of the KY9714 strain, it was shown that the disruption of SOD and catalase disturbs cell growth, while the over-productions of both the enzymes enhances cell growth with a growth temperature of 30 °C and 33 °C. Whereas, in the relatively thermotolerant KY9002 strain, the disruption of both enzymes exhibited growth defects more intensively at higher growth temperatures (37 °C or 39 °C), while the overexpression of at least SOD enhanced the cell growth at higher temperatures. Based on the correlation between the cell growth and ROS level, it was suggested that impairment of cell growth in SOD or catalase-disrupted strains could be a result of an increased ROS level. In contrast, the improvement in cell growth for strains with overexpressed SOD or catalase resulted from a decrease in the ROS level, especially at higher growth temperatures. Thus, SOD and catalase might play a crucial role in the thermotolerant ability of C. glutamicum by reducing ROS-induced temperature stress from higher growth temperatures.
Collapse
Affiliation(s)
- Nawarat Nantapong
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 3000, Thailand.
| | - Ryutarou Murata
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Sarvitr Trakulnaleamsai
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Naoya Kataoka
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Toshiharu Yakushi
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Kazunobu Matsushita
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8515, Japan
| |
Collapse
|
12
|
Cell wall enrichment unveils proteomic changes in the cell wall during treatment of Mycobacterium smegmatis with sub-lethal concentrations of rifampicin. J Proteomics 2019; 191:166-179. [DOI: 10.1016/j.jprot.2018.02.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/02/2018] [Accepted: 02/10/2018] [Indexed: 12/21/2022]
|
13
|
Flux Balance Analysis with Objective Function Defined by Proteomics Data-Metabolism of Mycobacterium tuberculosis Exposed to Mefloquine. PLoS One 2015. [PMID: 26218987 PMCID: PMC4517854 DOI: 10.1371/journal.pone.0134014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We present a study of the metabolism of the Mycobacterium tuberculosis after exposure to antibiotics using proteomics data and flux balance analysis (FBA). The use of FBA to study prokaryotic organisms is well-established and allows insights into the metabolic pathways chosen by the organisms under different environmental conditions. To apply FBA a specific objective function must be selected that represents the metabolic goal of the organism. FBA estimates the metabolism of the cell by linear programming constrained by the stoichiometry of the reactions in an in silico metabolic model of the organism. It is assumed that the metabolism of the organism works towards the specified objective function. A common objective is the maximization of biomass. However, this goal is not suitable for situations when the bacterium is exposed to antibiotics, as the goal of organisms in these cases is survival and not necessarily optimal growth. In this paper we propose a new approach for defining the FBA objective function in studies when the bacterium is under stress. The function is defined based on protein expression data. The proposed methodology is applied to the case when the bacterium is exposed to the drug mefloquine, but can be easily extended to other organisms, conditions or drugs. We compare our method with an alternative method that uses experimental data for adjusting flux constraints. We perform comparisons in terms of essential enzymes and agreement using enzyme abundances. Results indicate that using proteomics data to define FBA objective functions yields less essential reactions with zero flux and lower error rates in prediction accuracy. With flux variability analysis we observe that overall variability due to alternate optima is reduced with the incorporation of proteomics data. We believe that incorporating proteomics data in the objective function used in FBA may help obtain metabolic flux representations that better support experimentally observed features.
Collapse
|
14
|
Rees MA, Kleifeld O, Crellin PK, Ho B, Stinear TP, Smith AI, Coppel RL. Proteomic Characterization of a Natural Host–Pathogen Interaction: Repertoire of in Vivo Expressed Bacterial and Host Surface-Associated Proteins. J Proteome Res 2014; 14:120-32. [DOI: 10.1021/pr5010086] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | - Timothy P. Stinear
- Department
of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
15
|
Heindorf M, Kadari M, Heider C, Skiebe E, Wilharm G. Impact of Acinetobacter baumannii superoxide dismutase on motility, virulence, oxidative stress resistance and susceptibility to antibiotics. PLoS One 2014; 9:e101033. [PMID: 25000585 PMCID: PMC4085030 DOI: 10.1371/journal.pone.0101033] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 06/02/2014] [Indexed: 12/26/2022] Open
Abstract
Acinetobacter baumannii is a Gram-negative bacterium appearing as an opportunistic pathogen in hospital settings. Superoxide dismutase (SOD) contributes to virulence in several pathogenic bacteria by detoxifying reactive oxygen species released in the course of host defense reactions. However, the biological role of SODs in A. baumannii has not yet been elucidated. Here, we inactivated in A. baumannii ATCC 17978 gene A1S_2343, encoding a putative SOD of the Fe-Mn type by transposon insertion, resulting in mutant ATCC 17978 sod2343::Km. The mutation was also introduced in two naturally competent A. baumannii isolates by transformation with chromosomal DNA derived from mutant ATCC 17978 sod2343::Km. We demonstrate that inactivation of sod2343 leads to significant motility defects in all three A. baumannii strains. The mutant strains were more susceptible to oxidative stress compared to their parental strains. Susceptibility to colistin and tetracycline was increased in all mutant strains while susceptibility of the mutants to gentamicin, levofloxacin and imipenem was strain-dependent. In the Galleria mellonella infection model the mutant strains were significantly attenuated. In conclusion, sod2343 plays an important role in motility, resistance to oxidative stress, susceptibility to antibiotics and virulence in A. baumannii.
Collapse
Affiliation(s)
| | - Mahendar Kadari
- Robert Koch-Institute, Wernigerode Branch, Wernigerode, Germany
| | | | - Evelyn Skiebe
- Robert Koch-Institute, Wernigerode Branch, Wernigerode, Germany
| | - Gottfried Wilharm
- Robert Koch-Institute, Wernigerode Branch, Wernigerode, Germany
- * E-mail:
| |
Collapse
|