1
|
Aryal S, Anand D, Huang H, Reddy AP, Wilmarth PA, David LL, Lachke SA. Proteomic profiling of retina and retinal pigment epithelium combined embryonic tissue to facilitate ocular disease gene discovery. Hum Genet 2023; 142:927-947. [PMID: 37191732 PMCID: PMC10680127 DOI: 10.1007/s00439-023-02570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
To expedite gene discovery in eye development and its associated defects, we previously developed a bioinformatics resource-tool iSyTE (integrated Systems Tool for Eye gene discovery). However, iSyTE is presently limited to lens tissue and is predominantly based on transcriptomics datasets. Therefore, to extend iSyTE to other eye tissues on the proteome level, we performed high-throughput tandem mass spectrometry (MS/MS) on mouse embryonic day (E)14.5 retina and retinal pigment epithelium combined tissue and identified an average of 3300 proteins per sample (n = 5). High-throughput expression profiling-based gene discovery approaches-involving either transcriptomics or proteomics-pose a key challenge of prioritizing candidates from thousands of RNA/proteins expressed. To address this, we used MS/MS proteome data from mouse whole embryonic body (WB) as a reference dataset and performed comparative analysis-termed "in silico WB-subtraction"-with the retina proteome dataset. In silico WB-subtraction identified 90 high-priority proteins with retina-enriched expression at stringency criteria of ≥ 2.5 average spectral counts, ≥ 2.0 fold-enrichment, false discovery rate < 0.01. These top candidates represent a pool of retina-enriched proteins, several of which are associated with retinal biology and/or defects (e.g., Aldh1a1, Ank2, Ank3, Dcn, Dync2h1, Egfr, Ephb2, Fbln5, Fbn2, Hras, Igf2bp1, Msi1, Rbp1, Rlbp1, Tenm3, Yap1, etc.), indicating the effectiveness of this approach. Importantly, in silico WB-subtraction also identified several new high-priority candidates with potential regulatory function in retina development. Finally, proteins exhibiting expression or enriched-expression in the retina are made accessible in a user-friendly manner at iSyTE ( https://research.bioinformatics.udel.edu/iSyTE/ ), to allow effective visualization of this information and facilitate eye gene discovery.
Collapse
Affiliation(s)
- Sandeep Aryal
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Hongzhan Huang
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19713, USA
| | - Ashok P Reddy
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Phillip A Wilmarth
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Larry L David
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19713, USA.
| |
Collapse
|
2
|
Aryal S, Anand D, Huang H, Reddy AP, Wilmarth PA, David LL, Lachke SA. Proteomic profiling of retina and retinal pigment epithelium combined embryonic tissue to facilitate ocular disease gene discovery. RESEARCH SQUARE 2023:rs.3.rs-2652395. [PMID: 36993571 PMCID: PMC10055508 DOI: 10.21203/rs.3.rs-2652395/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To expedite gene discovery in eye development and its associated defects, we previously developed a bioinformatics resource-tool iSyTE (integrated Systems Tool for Eye gene discovery). However, iSyTE is presently limited to lens tissue and is predominantly based on transcriptomics datasets. Therefore, to extend iSyTE to other eye tissues on the proteome level, we performed high-throughput tandem mass spectrometry (MS/MS) on mouse embryonic day (E)14.5 retina and retinal pigment epithelium combined tissue and identified an average of 3,300 proteins per sample (n=5). High-throughput expression profiling-based gene discovery approaches-involving either transcriptomics or proteomics-pose a key challenge of prioritizing candidates from thousands of RNA/proteins expressed. To address this, we used MS/MS proteome data from mouse whole embryonic body (WB) as a reference dataset and performed comparative analysis-termed "in silico WB-subtraction"-with the retina proteome dataset. In silico WB-subtraction identified 90 high-priority proteins with retina-enriched expression at stringency criteria of ³2.5 average spectral counts, ³2.0 fold-enrichment, False Discovery Rate <0.01. These top candidates represent a pool of retina-enriched proteins, several of which are associated with retinal biology and/or defects (e.g., Aldh1a1, Ank2, Ank3, Dcn, Dync2h1, Egfr, Ephb2, Fbln5, Fbn2, Hras, Igf2bp1, Msi1, Rbp1, Rlbp1, Tenm3, Yap1, etc.), indicating the effectiveness of this approach. Importantly, in silico WB-subtraction also identified several new high-priority candidates with potential regulatory function in retina development. Finally, proteins exhibiting expression or enriched-expression in the retina are made accessible in a user-friendly manner at iSyTE (https://research.bioinformatics.udel.edu/iSyTE/), to allow effective visualization of this information and facilitate eye gene discovery.
Collapse
Affiliation(s)
- Sandeep Aryal
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA
| | - Hongzhan Huang
- Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE 19713 USA
| | - Ashok P. Reddy
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR 97239, USA
| | - Phillip A. Wilmarth
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR 97239, USA
| | - Larry L. David
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA
- Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE 19713 USA
| |
Collapse
|
3
|
Integrated SWATH-based and targeted-based proteomics provide insights into the retinal emmetropization process in guinea pig. J Proteomics 2018; 181:1-15. [PMID: 29572162 DOI: 10.1016/j.jprot.2018.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 03/12/2018] [Accepted: 03/19/2018] [Indexed: 01/13/2023]
Abstract
Myopia is generally regarded as a failure of normal emmetropization process, however, its underlying molecular mechanisms are unclear. To investigate the retinal protein profile changes during emmetropization, we studied differential protein expressions of ocular growth in young guinea pigs at 3 and 21 days old respectively, when significant axial elongation was detected (P < 0.001, n = 10). Independent pooled retinal samples of both eyes were subjected to SWATH mass spectrometry (MS) followed by bioinformatics analysis using cloud-based platforms. A comprehensive retina SWATH ion-library consisting of 3138 (22,871) unique proteins (peptides) at 1% FDR was constructed. 40 proteins were found to be significantly up-regulated and 8 proteins down-regulated during emmetropization (≥log2 of 0.43 with ≥2 peptides matched per protein; P < 0.05). Using pathway analysis, the most significant pathway identifiable was 'phototransduction' (P = 1.412e-4). Expression patterns of 7 proteins identified in this pathway were further validated and confirmed (P < 0.05) with high-resolution Multiple Reaction Monitoring (MRM-HR) MS. Combining discovery and targeted proteomics approaches, this study for the first time comprehensively profiled protein changes in the guinea pig retina during normal emmetropization-associated eye growth. The findings of this study are also relevant to the myopia development, which is the result of failed emmetropization. SIGNIFICANCE Myopia is considered as a failure of emmetropization. However, the underlying biochemical mechanism of emmetropization, a visually guided process in which eye grows towards the optimal optical state of clear vision during early development, is not well understood. Retina is known as the key tissue to regulate this active eye growth. we studied eye growth of young guinea pigs and harvested their retinal tissues. A comprehensive SWATH ion library with identification of a total 3138 unique proteins were established, in which 48 proteins exhibited significant differential expressions between 3 and 21 days old. After MRM-HR confirmation, 'phototransduction' were found as the most active pathway during emmetropic eye growth. This study is the first in discovering key retinal protein players and pathways which are presumably orchestrated by biological mechanism(s) underlying emmetropization.
Collapse
|
4
|
Soulet F, Kilarski WW, Roux-Dalvai F, Herbert JMJ, Sacewicz I, Mouton-Barbosa E, Bicknell R, Lalor P, Monsarrat B, Bikfalvi A. Mapping the extracellular and membrane proteome associated with the vasculature and the stroma in the embryo. Mol Cell Proteomics 2013; 12:2293-312. [PMID: 23674615 DOI: 10.1074/mcp.m112.024075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In order to map the extracellular or membrane proteome associated with the vasculature and the stroma in an embryonic organism in vivo, we developed a biotinylation technique for chicken embryo and combined it with mass spectrometry and bioinformatic analysis. We also applied this procedure to implanted tumors growing on the chorioallantoic membrane or after the induction of granulation tissue. Membrane and extracellular matrix proteins were the most abundant components identified. Relative quantitative analysis revealed differential protein expression patterns in several tissues. Through a bioinformatic approach, we determined endothelial cell protein expression signatures, which allowed us to identify several proteins not yet reported to be associated with endothelial cells or the vasculature. This is the first study reported so far that applies in vivo biotinylation, in combination with robust label-free quantitative proteomics approaches and bioinformatic analysis, to an embryonic organism. It also provides the first description of the vascular and matrix proteome of the embryo that might constitute the starting point for further developments.
Collapse
|
5
|
Blakeley P, Siepen JA, Lawless C, Hubbard SJ. Investigating protein isoforms via proteomics: a feasibility study. Proteomics 2010; 10:1127-40. [PMID: 20077415 DOI: 10.1002/pmic.200900445] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alternative splicing (AS) and processing of pre-messenger RNAs explains the discrepancy between the number of genes and proteome complexity in multicellular eukaryotic organisms. However, relatively few alternative protein isoforms have been experimentally identified, particularly at the protein level. In this study, we assess the ability of proteomics to inform on differently spliced protein isoforms in human and four other model eukaryotes. The number of Ensembl-annotated genes for which proteomic data exists that informs on AS exceeds 33% of the alternately spliced genes in the human and worm genomes. Examining AS in chicken via proteomics for the first time, we find support for over 600 AS genes. However, although peptide identifications support only a small fraction of alternative protein isoforms that are annotated in Ensembl, many more variants are amenable to proteomic identification. There remains a sizeable gap between these existing identifications (10-52% of AS genes) and those that are theoretically feasible (90-99%). We also compare annotations between Swiss-Prot and Ensembl, recommending use of both to maximize coverage of AS. We propose that targeted proteomic experiments using selected reactions and standards are essential to uncover further alternative isoforms and discuss the issues surrounding these strategies.
Collapse
Affiliation(s)
- Paul Blakeley
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
6
|
Bon E, Steegers R, Steegers EAP, Ursem N, Charif H, Burgers PC, Luider TM, Dekker LJM. Proteomic analyses of the developing chicken cardiovascular system. J Proteome Res 2010; 9:268-74. [PMID: 19874049 DOI: 10.1021/pr900614w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Up until today, no proteomics approaches have been described for heart muscle development. We describe a proteomics method to study the proteome of different heart structures at three stages of chicken embryonic development. For this purpose, a combination of gel separation, nanoLC separation and mass spectrometry was used. With this method, we identified in total 267 proteins in different tissue structures of chicken heart. We observed differences in protein abundance for a number of proteins between the different tissue structures and time points of development using spectral counting as a semiquantitative measure of protein abundance. For myosin-heavy chain 6, myosin-heavy chain 7, titin, connectin, collagen alpha-1, and xin, differences in protein levels for the different stages and structures (great arteries, outflow tract and ventricles) have been observed. A pathway analysis is performed in which the identified proteins are related to theoretical protein networks. Most prominent was the 'cardiovascular system development and function' network with the abundantly present proteins myosin 6 and myosin 7. We showed that myosin 6 is highly regulated in a stage and heart tissue specific manner. In conclusion, this method can be used to study changes in protein levels of chicken heart tissue in a spatiotemporal manner.
Collapse
Affiliation(s)
- Els Bon
- Laboratories of Neuro-Oncology & Clinical and Cancer Proteomics, Department of Neurology, Erasmus MC, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Barnhill AE, Hecker LA, Kohutyuk O, Buss JE, Honavar VG, Greenlee HW. Characterization of the retinal proteome during rod photoreceptor genesis. BMC Res Notes 2010; 3:25. [PMID: 20181029 PMCID: PMC2843734 DOI: 10.1186/1756-0500-3-25] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 01/27/2010] [Indexed: 11/15/2022] Open
Abstract
Background The process of rod photoreceptor genesis, cell fate determination and differentiation is complex and multi-factorial. Previous studies have defined a model of photoreceptor differentiation that relies on intrinsic changes within the presumptive photoreceptor cells as well as changes in surrounding tissue that are extrinsic to the cell. We have used a proteomics approach to identify proteins that are dynamically expressed in the mouse retina during rod genesis and differentiation. Findings A series of six developmental ages from E13 to P5 were used to define changes in retinal protein expression during rod photoreceptor genesis and early differentiation. Retinal proteins were separated by isoelectric focus point and molecular weight. Gels were analyzed for changes in protein spot intensity across developmental time. Protein spots that peaked in expression at E17, P0 and P5 were picked from gels for identification. There were 239 spots that were picked for identification based on their dynamic expression during the developmental period of maximal rod photoreceptor genesis and differentiation. Of the 239 spots, 60 of them were reliably identified and represented a single protein. Ten proteins were represented by multiple spots, suggesting they were post-translationally modified. Of the 42 unique dynamically expressed proteins identified, 16 had been previously reported to be associated with the developing retina. Conclusions Our results represent the first proteomics study of the developing mouse retina that includes prenatal development. We identified 26 dynamically expressed proteins in the developing mouse retina whose expression had not been previously associated with retinal development.
Collapse
Affiliation(s)
- Alison E Barnhill
- Interdepartmental Neuroscience Program, Iowa State University, Ames, IA USA.
| | | | | | | | | | | |
Collapse
|
8
|
Finnegan S, Robson J, Hocking PM, Ali M, Inglehearn CF, Stitt A, Curry WJ. Proteomic profiling of the retinal dysplasia and degeneration chick retina. Mol Vis 2010; 16:7-17. [PMID: 20069063 PMCID: PMC2805419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 01/05/2010] [Indexed: 11/26/2022] Open
Abstract
PURPOSE In our previous paper we undertook proteomic analysis of the normal developing chick retina to identify proteins that were differentially expressed during retinal development. In the present paper we use the same proteomic approach to analyze the development and onset of degeneration in the retinal dysplasia and degeneration (rdd) chick. The pathology displayed by the rdd chick resembles that observed in some of the more severe forms of human retinitis pigmentosa. METHODS Two-dimensional gel electrophoresis (pH 4-7), gel image analysis, and mass spectrometry were used to profile the developing and degenerating retina of the rdd and wild-type (wt) chick retina. RESULTS Several proteins were identified by mass spectrometry that displayed differential expression between normal and rdd retina between embryonic day 12 (E12) and post-hatch day 1 (P1). Secernin 1 displayed the most significant variation in expression between rdd and wt retina; this may be due to differential phosphorylation in the rdd retina. Secernin 1 has dipeptidase activity and has been demonstrated to play a role in exocytosis; it has been shown to be overexpressed in certain types of cancer and has also been suggested as a potential neurotoxicologically relevant target. Its role in the retina and in particular its differential expression in the degenerate rdd retina remains unknown and will require further investigation. Other proteins that were differentially expressed in the rdd retina included valosin-containing protein, beta-synuclein, stathmin 1, nucleoside diphosphate kinase, histidine triad nucleotide-binding protein, and 40S ribosomal protein S12. These proteins are reported to be involved in several cellular processes, including the ubiquitin proteasome pathway, neuroprotection, metastatic suppression, transcriptional and translational regulation, and regulation of microtubule dynamics. CONCLUSIONS This proteomic study is the first such investigation of the rdd retina and represents a unique data set that has revealed several proteins that are differentially expressed during retinal degeneration in the rdd chick. Secernin 1 showed the most significant differences in expression during this degeneration period. Further investigation of the proteins identified may provide insight into the complex events underlying retinal degeneration in this animal model.
Collapse
Affiliation(s)
- Sorcha Finnegan
- Centre for Vision Sciences, Institute of Clinical Science, Queen’s University of Belfast, Belfast, Northern Ireland, UK
| | - Joanne Robson
- School of Biological and Biomedical Sciences, Durham University, Durham, UK
| | - Paul M. Hocking
- Division of, Genetics and Genomics, The Roslin Institute and Royal - School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| | - Manir Ali
- Molecular Medicine Unit, School of Medicine, University of Leeds, Clinical Sciences Building, St. James's University Hospital, Leeds, UK
| | - Chris F. Inglehearn
- Molecular Medicine Unit, School of Medicine, University of Leeds, Clinical Sciences Building, St. James's University Hospital, Leeds, UK
| | - Alan Stitt
- Centre for Vision Sciences, Institute of Clinical Science, Queen’s University of Belfast, Belfast, Northern Ireland, UK
| | - William J. Curry
- Centre for Vision Sciences, Institute of Clinical Science, Queen’s University of Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
9
|
Finnegan S, Robson JL, Wylie M, Healy A, Stitt AW, Curry WJ. Protein expression profiling during chick retinal maturation: a proteomics-based approach. Proteome Sci 2008; 6:34. [PMID: 19077203 PMCID: PMC2648947 DOI: 10.1186/1477-5956-6-34] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 12/10/2008] [Indexed: 11/16/2022] Open
Abstract
Background The underlying pathways that drive retinal neurogenesis and synaptogenesis are still relatively poorly understood. Protein expression analysis can provide direct insight into these complex developmental processes. The aim of this study was therefore to employ proteomic analysis to study the developing chick retina throughout embryonic (E) development commencing at day 12 through 13, 17, 19 and post-hatch (P) 1 and 33 days. Results 2D proteomic and mass spectrometric analysis detected an average of 1514 spots per gel with 15 spots demonstrating either modulation or constitutive expression identified via MS. Proteins identified included alpha and beta-tubulin, alpha enolase, B-creatine kinase, gamma-actin, platelet-activating factor (PAF), PREDICTED: similar to TGF-beta interacting protein 1, capping protein (actin filament muscle Z line), nucleophosmin 1 (NPM1), dimethylarginine dimethylaminohydrolase, triosphoaphate isomerase, DJ1, stathmin, fatty acid binding protein 7 (FABP7/B-FABP), beta-synuclein and enhancer of rudimentary homologue. Conclusion This study builds upon previous proteomic investigations of retinal development and represents the addition of a unique data set to those previously reported. Based on reported bioactivity some of the identified proteins are most likely to be important to normal retinal development in the chick. Continued analysis of the dynamic protein populations present at the early stages and throughout retinal development will increase our understanding of the molecular events underpinning retinogenesis.
Collapse
Affiliation(s)
- Sorcha Finnegan
- Centre for Vision Sciences, Queen's University of Belfast, Institute of Clinical Sciences, Royal Victoria Hospital, Belfast, Northern Ireland.
| | | | | | | | | | | |
Collapse
|
10
|
Ritorto MS, Borlak J. A simple and reliable protocol for mouse serum proteome profiling studies by use of two-dimensional electrophoresis and MALDI TOF/TOF mass spectrometry. Proteome Sci 2008; 6:25. [PMID: 18789141 PMCID: PMC2563006 DOI: 10.1186/1477-5956-6-25] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 09/12/2008] [Indexed: 11/14/2022] Open
Abstract
Background Unravelling the serum proteome is the subject of intensified research. In this regard, two-dimensional electrophoresis coupled with MALDI MS analysis is still one of the most commonly used method. Despite some improvements, there is the need for better protocols to enable comprehensive identification of serum proteins. Here we report a combination of two proteomic strategies, zoom in acidic and neutral part of 2-D gels and an application of two optimised matrix preparations for MALDI-MS analyses to simplify serum proteome mapping. Results Mouse serum proteins were separated by 2-D electrophoresis at the pH ranges 3–10 and 4–7, respectively. Then in gel tryptic digests were analysed by MALDI-MS. Notably, sample-matrix preparations consisted of either a thin-layer α-ciano-4-hydroxycinnamic acid (CHCA) matrix deposition or a matrix-layer 2,5-dihydroxybenzoic acid (DHB). This enabled an identification of 90 proteins. The herein reported method enhanced identification of proteins by 32% when compared with previously published studies of mouse serum proteins, using the same approaches. Furthermore, experimental improvements of matrix preparations enabled automatic identification of mouse proteins, even when one of the two matrices failed. Conclusion We report a simple and reliable protocol for serum proteome analysis that combines an optimized resolution of 2-D gels spots and improved sample-matrix preparations for MALDI-MS analysis. The protocol allowed automated data acquisition for both CHCA and DHB and simplified the MS data acquisition therefore avoiding time-consuming procedures. The simplicity and reliability of the developed protocol may be applied universally.
Collapse
Affiliation(s)
- Maria Stella Ritorto
- Department of Drug Research and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hanover, Germany.
| | | |
Collapse
|
11
|
Reintsch WE, Mandato CA. Deciphering animal development through proteomics: requirements and prospects. Proteome Sci 2008; 6:21. [PMID: 18652672 PMCID: PMC2516511 DOI: 10.1186/1477-5956-6-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 07/24/2008] [Indexed: 12/28/2022] Open
Abstract
In recent years proteomic techniques have started to become very useful tools in a variety of model systems of developmental biology. Applications cover many different aspects of development, including the characterization of changes in the proteome during early embryonic stages. During early animal development the embryo becomes patterned through the temporally and spatially controlled activation of distinct sets of genes. Patterning information is then translated, from gastrulation onwards, into regional specific morphogenetic cell and tissue movements that give the embryo its characteristic shape. On the molecular level, patterning is the outcome of intercellular communication via signaling molecules and the local activation or repression of transcription factors. Genetic approaches have been used very successfully to elucidate the processes behind these events. Morphogenetic movements, on the other hand, have to be orchestrated through regional changes in the mechanical properties of cells. The molecular mechanisms that govern these changes have remained much more elusive, at least in part due to the fact that they are more under translational/posttranslational control than patterning events. However, recent studies indicate that proteomic approaches can provide the means to finally unravel the mechanisms that link patterning to the generation of embryonic form. To intensify research in this direction will require close collaboration between proteome scientists and developmental researchers. It is with this aim in mind that we first give an outline of the classical questions of patterning and morphogenesis. We then summarize the proteomic approaches that have been applied in developmental model systems and describe the pioneering studies that have been done to study morphogenesis. Finally we discuss current and future strategies that will allow characterizing the changes in the embryonic proteome and ultimately lead to a deeper understanding of the cellular mechanisms that govern the generation of embryonic form.
Collapse
Affiliation(s)
- Wolfgang E Reintsch
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, H3A 2B2, Canada
| | - Craig A Mandato
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, H3A 2B2, Canada
| |
Collapse
|