1
|
Wadood AA, Zhang X. The Omics Revolution in Understanding Chicken Reproduction: A Comprehensive Review. Curr Issues Mol Biol 2024; 46:6248-6266. [PMID: 38921044 PMCID: PMC11202932 DOI: 10.3390/cimb46060373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Omics approaches have significantly contributed to our understanding of several aspects of chicken reproduction. This review paper gives an overview of the use of omics technologies such as genomics, transcriptomics, proteomics, and metabolomics to elucidate the mechanisms of chicken reproduction. Genomics has transformed the study of chicken reproduction by allowing the examination of the full genetic makeup of chickens, resulting in the discovery of genes associated with reproductive features and disorders. Transcriptomics has provided insights into the gene expression patterns and regulatory mechanisms involved in reproductive processes, allowing for a better knowledge of developmental stages and hormone regulation. Furthermore, proteomics has made it easier to identify and quantify the proteins involved in reproductive physiology to better understand the molecular mechanisms driving fertility, embryonic development, and egg quality. Metabolomics has emerged as a useful technique for understanding the metabolic pathways and biomarkers linked to reproductive performance, providing vital insights for enhancing breeding tactics and reproductive health. The integration of omics data has resulted in the identification of critical molecular pathways and biomarkers linked with chicken reproductive features, providing the opportunity for targeted genetic selection and improved reproductive management approaches. Furthermore, omics technologies have helped to create biomarkers for fertility and embryonic viability, providing the poultry sector with tools for effective breeding and reproductive health management. Finally, omics technologies have greatly improved our understanding of chicken reproduction by revealing the molecular complexities that underpin reproductive processes.
Collapse
Affiliation(s)
- Armughan Ahmed Wadood
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China;
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China;
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Takata T, Masauji T, Motoo Y. Potential of the Novel Slot Blot Method with a PVDF Membrane for Protein Identification and Quantification in Kampo Medicines. MEMBRANES 2023; 13:896. [PMID: 38132900 PMCID: PMC10745123 DOI: 10.3390/membranes13120896] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Kampo is a Japanese traditional medicine modified from traditional Chinese medicine. Kampo medicines contain various traditional crude drugs with unknown compositions due to the presence of low-molecular-weight compounds and proteins. However, the proteins are generally rare and extracted with high-polarity solvents such as water, making their identification and quantification difficult. To develop methods for identifying and quantifying the proteins in Kampo medicines, in the current study we employ previous technology (e.g., column chromatography, electrophoresis, and membrane chromatography), focusing on membrane chromatography with a polyvinylidene difluoride (PVDF) membrane. Moreover, we consider slot blot analysis based on the principle of membrane chromatography, which is beneficial for analyzing the proteins in Kampo medicines as the volume of the samples is not limited. In this article, we assess a novel slot blot method developed in 2017 and using a PVDF membrane and special lysis buffer to quantify advanced glycation end products-modified proteins against other slot blots. We consider our slot blot analysis superior for identifying and quantifying proteins in Kampo medicines compared with other methods as the data obtained with our novel slot blot can be shown with both error bars and the statistically significant difference, and our operation step is simpler than those of other methods.
Collapse
Affiliation(s)
- Takanobu Takata
- Division of Molecular and Genetic Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan;
| | - Togen Masauji
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan;
| | - Yoshiharu Motoo
- Department of Internal Medicine, Fukui Saiseikai Hospital, Wadanakacho 918-8503, Fukui, Japan
| |
Collapse
|
3
|
Takata T. Is the Novel Slot Blot a Useful Method for Quantification of Intracellular Advanced Glycation End-Products? Metabolites 2023; 13:metabo13040564. [PMID: 37110222 PMCID: PMC10144988 DOI: 10.3390/metabo13040564] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Various types of advanced glycation end-products (AGEs) have been identified and studied. I have reported a novel slot blot analysis to quantify two types of AGEs, glyceraldehyde-derived AGEs, also called toxic AGEs (TAGE), and 1,5-anhydro-D-fructose AGEs. The traditional slot blot method has been used for the detection and quantification of RNA, DNA, and proteins since around 1980 and is one of the more commonly used analog technologies to date. However, the novel slot blot analysis has been used to quantify AGEs from 2017 to 2022. Its characteristics include (i) use of a lysis buffer containing tris-(hydroxymethyl)-aminomethane, urea, thiourea, and 3-[3-(cholamidopropyl)-dimetyl-ammonio]-1-propane sulfonate (a lysis buffer with a composition similar to that used in two-dimensional gel electrophoresis-based proteomics analysis); (ii) probing of AGE-modified bovine serum albumin (e.g., standard AGE aliquots); and (iii) use of polyvinylidene difluoride membranes. In this review, the previously used quantification methods of slot blot, western blot, immunostaining, enzyme-linked immunosorbent assay, gas chromatography-mass spectrometry (MS), matrix-associated laser desorption/ionization-MS, and liquid chromatography-electrospray ionization-MS are described. Lastly, the advantages and disadvantages of the novel slot blot compared to the above methods are discussed.
Collapse
Affiliation(s)
- Takanobu Takata
- Division of Molecular and Genetic Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
| |
Collapse
|
4
|
Wang L, Zhou G, Zhao S, Yang Y. Soluble Protein Content, Bioactive Compounds and the Antioxidant Activity in Seeds of Ten Rheum tanguticum Lines from Qinghai-Tibet Plateau. Chem Biodivers 2023; 20:e202200901. [PMID: 36788177 DOI: 10.1002/cbdv.202200901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/16/2023]
Abstract
Rheum tanguticum (Rh. tanguticum) is a Chinese medicinal plant traditionally used in the treatment of constipation. As a byproduct, the seeds of this plant are rich in nutrients and phytochemicals. This study aimed to determine and assess seed germination ability, seed physical characteristics, soluble protein content, chemical constituents and antioxidant capacity from different breeding lines, to promote the development and utilization of seed resources. Significant differences were observed for the soluble protein content and antioxidant assays among the ten lines. The contents of aloe-emodin, rhein and catechins accumulated in seeds were extremely low and significantly different from those in roots. In contrast, emodin and chrysophanol were abundant in seeds, and significant differences were observed between seeds and roots. It was found that associations between gallic acid and catechins were not significant for either soluble protein or antioxidant capacity. There was a significantly positive correlation between the contents of four anthraquinones (aloe-emodin, rhein, emodin and chrysophanol) and soluble protein. Seeds have potent antioxidative capacity and relatively high levels of soluble protein content. The rich chemical composition of seeds can be widely used in the medical industry for further development.
Collapse
Affiliation(s)
- Lingling Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoying Zhou
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Shuo Zhao
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Yang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Wang Y, Zhang H, Ma D, Deng X, Wu D, Li F, Wu Q, Liu H, Wang J. Hsp70 Is a Potential Therapeutic Target for Echovirus 9 Infection. Front Mol Biosci 2020; 7:146. [PMID: 32766279 PMCID: PMC7379509 DOI: 10.3389/fmolb.2020.00146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/11/2020] [Indexed: 11/13/2022] Open
Abstract
Echovirus is an important cause of viral pneumonia and encephalitis in infants, neonates, and young children worldwide. However, the exact mechanism of its pathogenesis is still not well understood. Here, we established an echovirus type 9 infection mice model, and performed two-dimensional gel electrophoresis (2DE) and tandem mass spectrometry (MS/MS)-based comparative proteomics analysis to investigate the differentially expressed host proteins in mice brain. A total of 21 differentially expressed proteins were identified by MS/MS. The annotation of the differentially expressed proteins by function using the UniProt and GO databases identified one viral protein (5%), seven cytoskeletal proteins (33%), six macromolecular biosynthesis and metabolism proteins (28%), two stress response and chaperone binding proteins (9%), and five other cellular proteins (25%). The subcellular locations of these proteins were mainly found in the cytoskeleton, cytoplasm, nucleus, mitochondria, and Golgi apparatus. The protein expression profiles and the results of quantitative RT-PCR in the detection of gene transcripts were found to complement each other. The differential protein interaction network was predicted using the STRING database. Of the identified proteins, heat shock protein 70 (Hsp70), showing consistent results in the proteomics and transcriptomic analyses, was analyzed through Western blotting to verify the reliability of differential protein expression data in this study. Further, evaluation of the function of Hsp70 using siRNA and quercetin, an inhibitor of Hsp70, showed that Hsp70 was necessary for the infection of echovirus type 9. This study revealed that echovirus infection could cause the differential expression of a series of host proteins, which is helpful to reveal the pathogenesis of viral infection and identify therapeutic drug targets. Additionally, our results suggest that Hsp70 could be a useful therapeutic host protein target for echovirus infection.
Collapse
Affiliation(s)
- Yang Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongbo Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiang Deng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongdong Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiuge Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Lau BYC, Othman A. Evaluation of sodium deoxycholate as solubilization buffer for oil palm proteomics analysis. PLoS One 2019; 14:e0221052. [PMID: 31415606 PMCID: PMC6695131 DOI: 10.1371/journal.pone.0221052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/29/2019] [Indexed: 11/29/2022] Open
Abstract
Protein solubility is a critical prerequisite to any proteomics analysis. Combination of urea/thiourea and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) have been routinely used to enhance protein solubilization for oil palm proteomics studies in recent years. The goals of these proteomics analysis are essentially to complement the knowledge regarding the regulation networks and mechanisms of the oil palm fatty acid biosynthesis. Through omics integration, the information is able to build a regulatory model to support efforts in improving the economic value and sustainability of palm oil in the global oil and vegetable market. Our study evaluated the utilization of sodium deoxycholate as an alternative solubilization buffer/additive to urea/thiourea and CHAPS. Efficiency of urea/thiourea/CHAPS, urea/CHAPS, urea/sodium deoxycholate and sodium deoxycholate buffers in solubilizing the oil palm (Elaeis guineensis var. Tenera) mesocarp proteins were compared. Based on the protein yields and electrophoretic profile, combination of urea/thiourea/CHAPS were shown to remain a better solubilization buffer and additive, but the differences with sodium deoxycholate buffer was insignificant. A deeper mass spectrometric and statistical analyses on the identified proteins and peptides from all the evaluated solubilization buffers revealed that sodium deoxycholate had increased the number of identified proteins from oil palm mesocarps, enriched their gene ontologies and reduced the number of carbamylated lysine residues by more than 67.0%, compared to urea/thiourea/CHAPS buffer. Although only 62.0% of the total identified proteins were shared between the urea/thiourea/CHAPS and sodium deoxycholate buffers, the importance of the remaining 38.0% proteins depends on the applications. The only observed limitations to the application of sodium deoxycholate in protein solubilization were the interference with protein quantitation and but it could be easily rectified through a 4-fold dilution. All the proteomics data are available via ProteomeXchange with identifier PXD013255. In conclusion, sodium deoxycholate is applicable in the solubilization of proteins extracted from oil palm mesocarps with higher efficiency compared to urea/thiourea/CHAPS buffer. The sodium deoxycholate buffer is more favorable for proteomics analysis due to its proven advantages over urea/thiourea/CHAPS buffer.
Collapse
Affiliation(s)
- Benjamin Yii Chung Lau
- Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor, Malaysia
| | - Abrizah Othman
- Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor, Malaysia
| |
Collapse
|
7
|
Evaluation of the Use of TRIzol-Based Protein Extraction Approach for Gel-Based Proteomic Analysis of Dried Seafood Products and Chinese Tonic Foods. Int J Mol Sci 2018; 19:ijms19071998. [PMID: 29987231 PMCID: PMC6073523 DOI: 10.3390/ijms19071998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/30/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022] Open
Abstract
Although the emergence of gel-free approaches has greatly enhanced proteomic studies, two-dimensional gel electrophoresis (2-DE) remains one of the most widely used proteomic techniques for its high resolving power, relatively low cost, robustness, and high resolution. Preparation of high-quality protein samples remains the key in high-quality 2-DE for proteomic analysis. Samples with high endogenous levels of interfering molecules, such as salts, nucleic acids, lipids, and polysaccharides, would yield a low-quality 2-DE gel and hinder the analysis. Recently, a TRIzol-based protein extraction method has gained prominence and has attracted attention due to its promising performance in high-quality 2-DE. The authors evaluate the use of this approach for four valuable dried food products, namely two dried seafood products (abalone slices and whelk slices) and two traditional Chinese tonic foods (ganoderma and caterpillar fungus). The results indicate that 2-DE gels obtained through the TRIzol-based method are of high-quality and are comparable to those obtained through the trichloroacetic acid⁻acetone method in terms of spot number, spot intensity, and resolution. The TRIzol-based method is generally applicable to dried food samples and is simple and fast, which greatly streamlines the protein extraction procedure. Additionally, it enables the concurrent extraction and analysis of RNA, DNA, and protein from the same sample.
Collapse
|
8
|
Proteomic analysis of the effects of lutein on mammary gland metabolism in dairy cows. J DAIRY RES 2018; 85:152-156. [PMID: 29785918 DOI: 10.1017/s0022029918000298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The aim of the research reported in this Research Communication was to identify differentially expressed proteins in dairy cows with normal and lutein diet and to elucidate the mechanisms of lutein-induced effects on bovine mammary gland metabolism using a comparative proteomic approach. Thirty-three differentially expressed proteins were identified from mammary gland of control diet-fed and lutein diet-fed dairy cows. Among these proteins, 15 were upregulated and 18 were downregulated in the lutein group. Functional analysis of the differentially expressed proteins showed that increased blood flow, depressed glycolysis, enhanced lactose anabolism, decreased fatty acid oxidation and up-regulated beta lactoglobulin expression were connected with lutein addition. These results suggested that the increased blood flow, reduced glucose catabolism, enhanced capacity for milk lactose synthesis, depressed fatty acid catabolism and increased expression of antioxidantion related protein may be the prime factors contributing to the increased milk production and enhanced immune status in lutein-fed dairy cows. This study provides molecular mechanism of dietary lutein in regulating lactation of dairy cows.
Collapse
|
9
|
Cai T, Guan X, Wang H, Fang Y, Long J, Xie X, Zhang Y. MicroRNA-26a regulates ANXA1, rather than DAL-1, in the development of lung cancer. Oncol Lett 2018; 15:5893-5902. [PMID: 29552220 DOI: 10.3892/ol.2018.8048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/26/2018] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to investigate the expression and role of microRNA-26a (miR-26a) in lung cancer, and to verify whether differentially expressed in adenocarcinoma of the lung (DAL-1) is the target protein of miR-26a. mRNA expression levels of miR-26a and DAL-1 were detected using reverse transcription-quantitative polymerase chain reaction. Protein expression levels of DAL-1 and annexin A1 (ANXA1) were evaluated by western blot analysis. Cell Counting Kit-8, Transwell and wound scratch healing assays were used to characterize the function of miR-26a in lung cancer cells. The association of DAL-1 with miR-26a or ANXA1 was determined by dual-luciferase reporter or two-dimensional gel electrophoresis assays. miR-26a revealed decreased expression levels in lung cancer tissues compared with normal lung tissues, and decreased expression levels in lung cancer cells compared with 16HBE cells. Inhibition of miR-26a promoted lung cancer cell growth, migration and invasion. The DAL-1 protein exhibited downregulated expression levels in lung cancer tissues. DAL-1 was not the direct target gene of miR-26a. The two-dimensional gel electrophoresis assay confirmed that DAL-1 and ANXA1 were associated proteins. Expression levels of the ANXA1 protein were increased following DAL-1 gene silencing. The altered expression level of miR-26a affected the expression of ANXA1, and not of DAL-1. miR-26a demonstrated decreased expression levels in lung cancer cells, and it has an important effect on the biological function of lung cancer cells. However, DAL-1 was not a target gene of miR-26a. As a DAL-1 associated protein, ANXA1 was regulated by miR-26a.
Collapse
Affiliation(s)
- Tonghui Cai
- Department of Pathology, Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China.,Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xiaoying Guan
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Hongyan Wang
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Ying Fang
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Jie Long
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xiaobin Xie
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Yajie Zhang
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| |
Collapse
|
10
|
Proteomic change by Korean Red Ginseng in the substantia nigra of a Parkinson's disease mouse model. J Ginseng Res 2017; 42:429-435. [PMID: 30337802 PMCID: PMC6187050 DOI: 10.1016/j.jgr.2017.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023] Open
Abstract
Background Recent studies have shown that Korean Red Ginseng (KRG) successfully protects against dopaminergic neuronal death in the nigrostriatal pathway of a Parkinson's disease (PD) mouse model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration; however, the mechanism has yet to be identified. Therefore, in this study we used two-dimensional electrophoresis to investigate the effects of KRG on the changes in protein expression in the substantia nigra (SN) of MPTP-treated mice. Methods Male C57BL/6 mice (9 wk old) were intraperitoneally administered MPTP (20 mg/kg) four times at 2-h intervals, after which KRG (100 mg/kg) was orally administered once a day for 5 d. Two hours after the fifth KRG administration, a pole test was conducted to evaluate motor function, after which the brains were immediately collected. Survival of dopaminergic neurons was measured by immunohistochemistry, and protein expression was measured by two-dimensional electrophoresis and Western blotting. Results KRG alleviated MPTP-induced behavioral dysfunction and neuronal toxicity in the SN. Additionally, the expression of eight proteins related to neuronal formation and energy metabolism for survival were shown to have changed significantly in response to MPTP treatment or KRG administration. KRG alleviated the downregulated protein expression following MPTP administration, indicating that it may enhance neuronal development and survival in the SN of MPTP-treated mice. Conclusion These findings indicate that KRG may have therapeutic potential for the treatment of patients with PD.
Collapse
|
11
|
Kumar M, Singh R, Meena A, Patidar BS, Prasad R, Chhabra SK, Bansal SK. An Improved 2-Dimensional Gel Electrophoresis Method for Resolving Human Erythrocyte Membrane Proteins. PROTEOMICS INSIGHTS 2017; 8:1178641817700880. [PMID: 28469466 PMCID: PMC5398320 DOI: 10.1177/1178641817700880] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 03/02/2017] [Indexed: 12/13/2022]
Abstract
The 2-dimensional gel electrophoresis (2-DE) technique is widely used for the analysis of complex protein mixtures extracted from biological samples. It is one of the most commonly used analytical techniques in proteomics to study qualitative and quantitative protein changes between different states of a cell or an organism (eg, healthy and diseased), conditionally expressed proteins, posttranslational modifications, and so on. The 2-DE technique is used for its unparalleled ability to separate thousands of proteins simultaneously. The resolution of the proteins by 2-DE largely depends on the quality of sample prepared during protein extraction which increases results in terms of reproducibility and minimizes protein modifications that may result in artifactual spots on 2-DE gels. The buffer used for the extraction and solubilization of proteins influences the quality and reproducibility of the resolution of proteins on 2-DE gel. The purification by cleanup kit is another powerful process to prevent horizontal streaking which occurs during isoelectric focusing due to the presence of contaminants such as salts, lipids, nucleic acids, and detergents. Erythrocyte membrane proteins serve as prototypes for multifunctional proteins in various erythroid and nonerythroid cells. In this study, we therefore optimized the selected major conditions of 2-DE for resolving various proteins of human erythrocyte membrane. The modification included the optimization of conditions for sample preparation, cleanup of protein sample, isoelectric focusing, equilibration, and storage of immobilized pH gradient strips, which were further carefully examined to achieve optimum conditions for improving the quality of protein spots on 2-DE gels. The present improved 2-DE analysis method enabled better detection of protein spots with higher quality and reproducibility. Therefore, the conditions established in this study may be used for the 2-DE analysis of erythrocyte membrane proteins for different diseases, which may help to identify the proteins that may serve as markers for diagnostics as well as targets for development of new therapeutic potential.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Biochemistry, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Rajendra Singh
- Department of Biochemistry, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Anil Meena
- Department of Biochemistry, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Bhagwan S Patidar
- Department of Biochemistry, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Rajendra Prasad
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India.,A28, Sector 3, Aliganj, Lucknow, UP, India
| | - Sunil K Chhabra
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India.,Department of Pulmonary, Sleep and Critical Care Medicine, Primus Super Speciality Hospital, Chanakyapuri, New Delhi, India
| | - Surendra K Bansal
- Department of Biochemistry, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| |
Collapse
|
12
|
Hao R, Adoligbe C, Jiang B, Zhao X, Gui L, Qu K, Wu S, Zan L. An Optimized Trichloroacetic Acid/Acetone Precipitation Method for Two-Dimensional Gel Electrophoresis Analysis of Qinchuan Cattle Longissimus Dorsi Muscle Containing High Proportion of Marbling. PLoS One 2015; 10:e0124723. [PMID: 25893432 PMCID: PMC4404140 DOI: 10.1371/journal.pone.0124723] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 03/04/2015] [Indexed: 11/24/2022] Open
Abstract
Longissimus dorsi muscle (LD) proteomics provides a novel opportunity to reveal the molecular mechanism behind intramuscular fat deposition. Unfortunately, the vast amounts of lipids and nucleic acids in this tissue hampered LD proteomics analysis. Trichloroacetic acid (TCA)/acetone precipitation is a widely used method to remove contaminants from protein samples. However, the high speed centrifugation employed in this method produces hard precipitates, which restrict contaminant elimination and protein re-dissolution. To address the problem, the centrifugation precipitates were first grinded with a glass tissue grinder and then washed with 90% acetone (TCA/acetone-G-W) in the present study. According to our result, the treatment for solid precipitate facilitated non-protein contaminant removal and protein re-dissolution, ultimately improving two-dimensional gel electrophoresis (2-DE) analysis. Additionally, we also evaluated the effect of sample drying on 2-DE profile as well as protein yield. It was found that 30 min air-drying did not result in significant protein loss, but reduced horizontal streaking and smearing on 2-DE gel compared to 10 min. In summary, we developed an optimized TCA/acetone precipitation method for protein extraction of LD, in which the modifications improved the effectiveness of TCA/acetone method.
Collapse
Affiliation(s)
- Ruijie Hao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China, 712100
| | - Camus Adoligbe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China, 712100
| | - Bijie Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China, 712100
| | - Xianlin Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China, 712100
| | - Linsheng Gui
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China, 712100
| | - Kaixing Qu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China, 712100
| | - Sen Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China, 712100
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China, 712100
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, P.R. China, 712100
- * E-mail:
| |
Collapse
|
13
|
Manohar M, Khan H, Sirohi VK, Das V, Agarwal A, Pandey A, Siddiqui WA, Dwivedi A. Alteration in endometrial proteins during early- and mid-secretory phases of the cycle in women with unexplained infertility. PLoS One 2014; 9:e111687. [PMID: 25405865 PMCID: PMC4236019 DOI: 10.1371/journal.pone.0111687] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 10/05/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Compromised receptivity of the endometrium is a major cause of unexplained infertility, implantation failure and subclinical pregnancy loss. In order to investigate the changes in endometrial protein profile as a cause of unexplained infertility, the current study was undertaken to analyze the differentially expressed proteins of endometrium from early-secretory (LH+2) to mid-secretory phase (LH+7), in women with unexplained infertility. METHODS 2-D gel electrophoresis was performed to analyze the proteomic changes between early- (n = 8) and mid-secretory (n = 8) phase endometrium of women with unexplained infertility. The differentially expressed protein spots were identified by LC-MS analysis and validated by immunoblotting and immuno-histochemical analysis in early- (n = 4) and mid-secretory (n = 4) phase endometrium of infertile women. Validated proteins were also analyzed in early- (n = 4) and mid-secretory (n = 4) phase endometrium of fertile women. RESULTS Nine proteins were found to be differentially expressed between early- and mid- secretory phases of endometrium of infertile women. The expression of Ras-related protein Rap-1b, Protein disulfide isomerase A3, Apolipoprotein-A1 (Apo-A1), Cofilin-1 and RAN GTP-binding nuclear protein (Ran) were found to be significantly increased, whereas, Tubulin polymerization promoting protein family member 3, Superoxide dismutase [Cu-Zn], Sorcin, and Proteasome subunit alpha type-5 were significantly decreased in mid- secretory phase endometrium of infertile women as compared to early-secretory phase endometrium of infertile women. Validation of 4 proteins viz. Sorcin, Cofilin-1, Apo-A1 and Ran were performed in separate endometrial biopsy samples from infertile women. The up-regulated expression of Sorcin and down-regulated expression of Cofilin-1 and Apolipoprotein-A1, were observed in mid-secretory phase as compared to early-secretory phase in case of fertile women. CONCLUSIONS De-regulation of the expression of Sorcin, Cofilin-1, Apo-A1 and Ran, during early- to mid-secretory phase may have physiological significance and it may be one of the causes for altered differentiation and/or maturation of endometrium, in women with unexplained infertility.
Collapse
Affiliation(s)
- Murli Manohar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Huma Khan
- Department of Obstetrics & Gynaecology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Vijay Kumar Sirohi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Vinita Das
- Department of Obstetrics & Gynaecology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Anjoo Agarwal
- Department of Obstetrics & Gynaecology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Amita Pandey
- Department of Obstetrics & Gynaecology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | | | - Anila Dwivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| |
Collapse
|
14
|
Ma R, Sun L, Chen X, Jiang R, Sun H, Zhao D. Proteomic changes in different growth periods of ginseng roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 67:20-32. [PMID: 23537955 DOI: 10.1016/j.plaphy.2013.02.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 02/27/2013] [Indexed: 06/02/2023]
Abstract
For the first time, proteomics and biochemical variables have been employed to unravel the growth strategies for the different root growth periods of ginseng (Panax ginseng CA May., Araliaceae). Enzymatic activities and cellular contents, except for starch, related to defence and metabolism were significantly increased in the slow-growth period but decreased in the fast-growth period. Proteomic characterisation by two-dimensional gel electrophoresis (2DE) showed 83 differentially expressed spots; 62 spots were up-regulated and 21 spots were down-regulated in the slow-growth period when compared to the fast-growth period. The identification of these spots indicated that the major groups of differential proteins were associated with energy metabolism (37%) and defence (17%), which was consistent with the changes observed in the biochemical measurements. These results clearly demonstrate that ginseng stores energy during its fast-growth period to promote root elongation, whereas it expends energy to improve the synthesis of secondary metabolites and stress resistance during its slow-growth period. The levels of many proteins were changed during the conversion period from fast to slow growth, providing new insights into ginseng proteome evolution. The proposed hypothetical model explains the interaction of metabolic proteins associated with the growth strategies of ginseng.
Collapse
Affiliation(s)
- Rui Ma
- Changchun University of Chinese Medicine, Jilin 130117, PR China; College of Biology and Chemistry, Beihua University, 15 Jilin Street, Jilin, Jilin Province 132013, PR China
| | - Liwei Sun
- College of Biology and Chemistry, Beihua University, 15 Jilin Street, Jilin, Jilin Province 132013, PR China.
| | - Xuenan Chen
- College of Biology and Chemistry, Beihua University, 15 Jilin Street, Jilin, Jilin Province 132013, PR China
| | - Rui Jiang
- Changchun University of Chinese Medicine, Jilin 130117, PR China; College of Biology and Chemistry, Beihua University, 15 Jilin Street, Jilin, Jilin Province 132013, PR China
| | - Hang Sun
- College of Biology and Chemistry, Beihua University, 15 Jilin Street, Jilin, Jilin Province 132013, PR China
| | - Daqing Zhao
- Changchun University of Chinese Medicine, Jilin 130117, PR China.
| |
Collapse
|
15
|
QIU FANGHUA, HUANG DEHONG, XIAO HONGGUANG, QIU FANGYING, LU LIMING, NIE JING. Detection of tyrosine-phosphorylated proteins in hepatocellular carcinoma tissues using a combination of GST-Nck1-SH2 pull-down and two-dimensional electrophoresis. Mol Med Rep 2013; 7:1209-14. [DOI: 10.3892/mmr.2013.1324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 01/22/2013] [Indexed: 11/05/2022] Open
|
16
|
Wu Y, Peng C, Xu L, Zheng X, Liao M, Yan Y, Jin Y, Zhou J. Proteome dynamics in primary target organ of infectious bursal disease virus. Proteomics 2012; 12:1844-59. [PMID: 22623289 DOI: 10.1002/pmic.201100479] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Viruses induce dramatic changes in target tissue during pathogenesis, including host cellular responses that either limit or support the pathogen. The infectious bursal disease virus (IBDV) targets primarily the bursa of Fabricius (BF) of chickens, causing severe immunodeficiency. Here, we characterized the cellular proteome changes of the BF caused by IBDV replication in vivo using 2DE followed MALDI-TOF MS identification. Comparative analysis of multiple 2DE gels revealed that the majority of protein expression changes appeared between 24 and 96 h after IBDV infection. MS identified 54 altered cell proteins, 12 of which were notably upregulated by IBDV infection. Meanwhile, the other 42 cellular proteins were considerably suppressed by IBDV infection and are involved in protein degradation, energy metabolism, stress response, host macromolecular biosynthesis, and transport process. The upregulation of β-actin and downregulation of dynamin during IBDV infection were also confirmed by Western blot and immunofluorescence analysis. These altered protein expressions provide a response profile of chicken BF to virulent IBDV infection. Further functional study on these altered proteins may lead to better understanding of pathogenic mechanisms of virulent IBDV infection and to new potential therapeutic targets.
Collapse
Affiliation(s)
- Yongping Wu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Azizi A, Mironov GG, Muharemagic D, Wehbe M, Bell JC, Berezovski MV. Viral quantitative capillary electrophoresis for counting and quality control of RNA viruses. Anal Chem 2012; 84:9585-91. [PMID: 23046075 DOI: 10.1021/ac302525y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The world of health care has witnessed an explosive boost to its capacity within the past few decades due to the introduction of viral therapeutics to its medicinal arsenal. As a result, a need for new methods of viral quantification has arisen to accommodate this rapid advancement in virology and associated requirements for efficiency, speed, and quality control. In this work, we apply viral quantitative capillary electrophoresis (viral qCE) to determine (i) the number of intact virus particles (ivp) in viral samples, (ii) the amount of DNA contamination, and (iii) the degree of viral degradation after sonication, vortexing, and freeze-thaw cycles. This quantification method is demonstrated on an RNA-based vesicular stomatitis virus (VSV) with oncolytic properties. A virus sample contains intact VSV particles as well as residual DNA from host cells, which is regulated by WHO guidelines, and may include some carried-over RNA. We use capillary zone electrophoresis with laser-induced fluorescent detection to separate intact virus particles from DNA and RNA impurities. YOYO-1 dye is used to stain all DNA and RNA in the sample. After soft lysis of VSV with proteinase K digestion of viral capsid and ribonucleoproteins, viral RNA is released. Therefore, the initial concentration of intact virus is calculated based on the gain of a nucleic acid peak and an RNA calibration curve. After additional NaOH treatment of the virus sample, RNA is hydrolyzed leaving residual DNA only, which is also calculated by a DNA calibration curve made by the same CE instrument. Viral qCE works in a wide dynamic range of virus concentrations from 10(8) to 10(13) ivp/mL. It can be completed in a few hours and requires minimum optimization of CE separation.
Collapse
Affiliation(s)
- Afnan Azizi
- Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Xavier T, Ganesan TS, Menon KN. A simple and efficient method for processing of cell lysates for two-dimensional gel electrophoresis. Electrophoresis 2010; 31:2429-35. [PMID: 20564265 DOI: 10.1002/elps.200900644] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sample preparation is one of the major issues in 2-DE for the separation of proteins. Although a 100% representation of cellular proteins onto a 2-DE is virtually impossible, maximum representation of cellular proteins compared with the original cell lysate is important in the subsequent analysis. We demonstrate that lysis of cells in urea/thiourea solution with subsequent sonication to disrupt the nucleic acids and concentration of the lysate using centri-con led to enrichment of proteins. The procedure resulted in minimal nucleic acid contamination with better resolution of spots. 2-DE spot patterns of proteins prepared using urea-thiourea solubilization/centri-con method to other protein enrichment methods such as phenol/chloroform/isoamyl alcohol extraction, methanol/ammonium acetate precipitation, acetone precipitation and ethanol precipitation were compared. Urea-thiourea solubilization combined with centri-con method of protein enrichment represented higher number/unique spots particularly in the 50-250 kDa M(r) compared with others. Lysis of cells in urea/thiourea from the beginning of lysate preparation preserves the proteins from protease activity due to denaturation of proteases. Thus, we demonstrate that the centri-con methodology is simple and effective for the preparation of high-quality sample that can be used for a qualitative representation of cellular proteins on a 2-DE for proteomic analysis.
Collapse
Affiliation(s)
- Tessy Xavier
- Division of Molecular Medicine, Amrita Research Institute, Amrita Institute for Medical Sciences, Ponekkara, Kochi, India
| | | | | | | |
Collapse
|