1
|
Shang D, Li G, Zhang C, Liu Y. Synergistic Inhibitory Effects of 5-Aza-2'-Deoxycytidine and Cisplatin on Urothelial Carcinoma Growth via Suppressing TGFBI-MAPK Signaling Pathways. Biochem Cell Biol 2021; 100:115-124. [PMID: 34890285 DOI: 10.1139/bcb-2021-0277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study is to reveal the gene transcriptional alteration, possible molecular mechanism, and pathways involved in the synergy of 5-aza-2'-deoxycytidine (DAC) and CDDP in UC. Two UC cell lines, 5637 and T24, were used in the study. A cDNA microarray was carried out to identify critical genes in the synergistic mechanism of both agents against UC cells. The results showed that several key regulatory genes, such as interleukin 24(IL24), fibroblast growth factor 1(FGF1), and transforming growth factor beta-induced (TGFBI), were identified and may play critical roles in the synergy of DAC and CDDP in UC. Pathway enrichment suggested that many carcinogenesis-related pathways, such as ECM-receptor interaction and MAPK signaling pathways, may participate in the synergy of both agents. Our results suggested that TGF-β1 stimulates the phosphorylation levels of ERK1/2 and p38 via increasing TGFBI expression, TGFBI-MAPK signaling pathway plays an important role in the synergy of DAC and CDDP against UC. Therefore, we revealed the synergistic mechanism of DAC and CDDP in UC, several key regulatory genes play critical roles in the synergy of combined treatment, and TGFBI-MAPK signaling pathway may be an important potential target of these two agents.
Collapse
Affiliation(s)
- Donghao Shang
- Capital Medical University, 12517, Department of Urology, Beijing, China;
| | - Gang Li
- Cancer Hospital of China Medical University, 74665, Department of Urology, Shenyang, China;
| | - Caixing Zhang
- Capital Medical University, 12517, Department of Urology, Beijing, China;
| | - Yuting Liu
- Capital Medical University, 12517, Department of Pathology, Beijing, China;
| |
Collapse
|
2
|
Accumulation of fructose 1,6-bisphosphate protects clear cell renal cell carcinoma from oxidative stress. J Transl Med 2019; 99:898-908. [PMID: 30760861 DOI: 10.1038/s41374-019-0203-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/19/2018] [Accepted: 01/04/2019] [Indexed: 01/08/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by the activation of hypoxia-inducible factors and enhanced aerobic glycolysis. In our previous study, metabolic profiling revealed a threefold increase of fructose 1,6-bisphosphate (FBP) in ccRCC tissue compared with normal kidney tissue. As an important intermediate metabolite, its role in cancer development remains unknown. We found that high levels of FBP were required for cancer growth because of its ability to affect the redox status. Mechanistically, FBP regulated the redox status partially by suppressing NADPH oxidase isoform NOX4 activity in ccRCC cells. ccRCC maintained high levels of FBP through the downregulation of aldolase B (ALDOB). Reduction of FBP levels in cancer cells by the ectopic expression of ALDOB disrupted redox homeostasis, arrested cancer proliferation, and sensitized ccRCC cells to a chemotherapy agent (paclitaxel). Furthermore, low expression of ALDOB portended significantly worse disease-free survival and overall survival in ccRCC patients. In summary, the downregulation of ALDOB and accumulation of FBP promote ccRCC growth by counteracting oxidative stress.
Collapse
|
3
|
Abstract
Renal cell carcinoma (RCC) is the most common kidney cancer and includes several molecular and histological subtypes with different clinical characteristics. While survival rates are high if RCC is diagnosed when still confined to the kidney and treated definitively, there are no specific diagnostic screening tests available and symptoms are rare in early stages of the disease. Management of advanced RCC has changed significantly with the advent of targeted therapies, yet survival is usually increased by months due to acquired resistance to these therapies. DNA methylation, the covalent addition of a methyl group to a cytosine, is essential for normal development and transcriptional regulation, but becomes altered commonly in cancer. These alterations result in broad transcriptional changes, including in tumor suppressor genes. Because DNA methylation is one of the earliest molecular changes in cancer and is both widespread and stable, its role in cancer biology, including RCC, has been extensively studied. In this review, we examine the role of DNA methylation in RCC disease etiology and progression, the preclinical use of DNA methylation alterations as diagnostic, prognostic and predictive biomarkers, and the potential for DNA methylation-directed therapies.
Collapse
Affiliation(s)
- Brittany N Lasseigne
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806-2908, USA.
| | - James D Brooks
- Department of Urology, Stanford University Medical Center, 300 Pasteur Drive, Stanford, CA, 94305-5118, USA
| |
Collapse
|
4
|
Wang J, Tan M, Ge J, Zhang P, Zhong J, Tao L, Wang Q, Tong X, Qiu J. Lysosomal acid lipase promotes cholesterol ester metabolism and drives clear cell renal cell carcinoma progression. Cell Prolif 2018; 51:e12452. [PMID: 29569766 DOI: 10.1111/cpr.12452] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/22/2018] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Clear cell renal cell carcinoma (ccRCC) is characterized histologically by accumulation of cholesterol esters, cholesterol and other neutral lipids. Lysosomal acid lipase (LAL) is a critical enzyme involved in the cholesterol ester metabolism. Here, we sought to determine whether LAL could orchestrate metabolism of cholesterol esters in order to promote ccRCC progression. MATERIALS AND METHODS Quantitative reverse-transcription PCR and western blots were conducted to assess the expression of LAL in human ccRCC tissues. We analysed the relationship between LAL levels and patient survival using tissue microarrays. We used cell proliferation assays, colony formation assays, cell death assays, metabolic assays and xenograft tumour models to evaluate the biological function and underlying mechanisms. RESULTS LAL was up-regulated in ccRCC tissue. Tissue microarray analysis revealed higher levels of LAL in advanced grades of ccRCC, and high LAL expression indicated lower patient survival. Suppressing LAL expression not only blocked the utilization of cholesterol esters but also impaired proliferation and cellular survival. Furthermore, immunohistochemistry staining showed that LAL expression was correlated with Akt phosphorylation. Suppressing LAL expression decreased the phosphorylation level of Akt and Src and reduced the level of 14,15-epoxyeicosatrienoic acids in ccRCC cells. Supplement of 14,15-epoxyeicosatrienoic acids rescued proliferation in vitro and in vivo. CONCLUSIONS LAL promoted cell proliferation and survival via metabolism of epoxyeicosatrienoic acids and activation of the Src/Akt pathway.
Collapse
Affiliation(s)
- Jun Wang
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mingyue Tan
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jifu Ge
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Zhang
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhong
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Le Tao
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qiong Wang
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Xuemei Tong
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxin Qiu
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Shang D, Bi R, Han T, Wang D, Tian Y, Liu Y. Expression and proliferation-promoting role of lymphoid enhancer-binding factor 1 in human clear cell renal carcinoma. Cancer Invest 2014; 32:368-74. [PMID: 24897388 DOI: 10.3109/07357907.2014.919307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lymphoid enhancer-binding factor 1 (LEF1) has been regarded as an important gene for carcinogenesis in many malignancies, however, the role of LEF1 in the progression of human renal cell carcinoma (RCC) has not been well studied. In this study, we investigated the expression of LEF1 in human RCC and the effect on proliferative ability of RCC cells. RCC samples from 138 patients who underwent radical nephrectomy were used in this study, the expression of LEF1 protein was determined by immunohistochemistry and Western blot, mRNA expression was analyzed by RT-PCR and real-time PCR. To investigate the effect of LEF1 on the proliferation of RCC cells, a LEF1 vector was transfected into RCC cells and LEF1 expression was also decreased by using siRNA. Proliferative ability of RCC cells was examined by WST-1 assay and a xenograft study with BALB/C nude mice. Our results indicated that LEF1 expression was significantly increased in stage III, IV and grade 3 RCC than in normal kidney, however, decreased LEF1 expression was found in low-stage and grade RCC compared to that in normal kidney, the expression of LEF1 was correlated to tumor stages, histologic grade, and tumor sizes in RCC. The effect of LEF1 on the proliferation in RCC was also analyzed, our results suggested that RCC cells expressing high levels of LEF1 had significantly increased proliferative ability compared to control cell lines, in contrast, RCC cells with a low LEF1 expression had lower proliferative ability. Moreover, LEF1 promoted proliferation of RCC cells depending on suppressing G2/M cell-cycle arrest. Our study demonstrated that the expression of LEF1 is associated with the progression of RCC and that LEF1 maybe involved in the development of RCC, these suggested LEF1 play a key role and might serve as a therapeutic target in treating advanced RCC.
Collapse
Affiliation(s)
- Donghao Shang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China1
| | | | | | | | | | | |
Collapse
|
6
|
Zhao T, Sun Q, del Rincon SV, Lovato A, Marques M, Witcher M. Gallotannin imposes S phase arrest in breast cancer cells and suppresses the growth of triple-negative tumors in vivo. PLoS One 2014; 9:e92853. [PMID: 24658335 PMCID: PMC3962455 DOI: 10.1371/journal.pone.0092853] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/27/2014] [Indexed: 12/18/2022] Open
Abstract
Triple-negative breast cancers are associated with poor clinical outcomes and new therapeutic strategies are clearly needed. Gallotannin (Gltn) has been previously demonstrated to have potent anti-tumor properties against cholangiocarcinoma in mice, but little is known regarding its capacity to suppress tumor outgrowth in breast cancer models. We tested Gltn for potential growth inhibitory properties against a variety of breast cancer cell lines in vitro. In particular, triple-negative breast cancer cells display higher levels of sensitivity to Gltn. The loss of proliferative capacity in Gltn exposed cells is associated with slowed cell cycle progression and S phase arrest, dependent on Chk2 phosphorylation and further characterized by changes to proliferation related genes, such as cyclin D1 (CcnD1) as determined by Nanostring technology. Importantly, Gltn administered orally or via intraperitoneal (IP) injections greatly reduced tumor outgrowth of triple-negative breast cells from mammary fat pads without signs of toxicity. In conclusion, these data strongly suggest that Gltn represents a novel approach to treat triple-negative breast carcinomas.
Collapse
Affiliation(s)
- Tiejun Zhao
- The Lady Davis Institute and Segal Cancer Center of the Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Qiang Sun
- The Lady Davis Institute and Segal Cancer Center of the Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Sonia V. del Rincon
- The Lady Davis Institute and Segal Cancer Center of the Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Amanda Lovato
- The Lady Davis Institute and Segal Cancer Center of the Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Maud Marques
- The Lady Davis Institute and Segal Cancer Center of the Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Michael Witcher
- The Lady Davis Institute and Segal Cancer Center of the Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
7
|
The CpG island in the murine foxl2 proximal promoter is differentially methylated in primary and immortalized cells. PLoS One 2013; 8:e76642. [PMID: 24098544 PMCID: PMC3788739 DOI: 10.1371/journal.pone.0076642] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 08/30/2013] [Indexed: 11/23/2022] Open
Abstract
Forkhead box L2 (Foxl2), a member of the forkhead transcription factor family, plays important roles in pituitary follicle-stimulating hormone synthesis and in ovarian maintenance and function. Mutations in the human FOXL2 gene cause eyelid malformations and premature ovarian failure. FOXL2/Foxl2 is expressed in pituitary gonadotrope and thyrotrope cells, the perioptic mesenchyme of the developing eyelid, and ovarian granulosa cells. The mechanisms governing this cell-restricted expression have not been described. We mapped the Foxl2 transcriptional start site in immortalized murine gonadotrope-like cells, LβT2, by 5’ rapid amplification of cDNA ends and then PCR amplified approximately 1 kb of 5’ flanking sequence from murine genomic DNA. When ligated into a reporter plasmid, the proximal promoter conferred luciferase activity in both homologous (LβT2) and, unexpectedly, heterologous (NIH3T3) cells. In silico analyses identified a CpG island in the proximal promoter and 5’ untranslated region, suggesting that Foxl2 transcription might be regulated epigenetically. Indeed, pyrosequencing and quantitative analysis of DNA methylation using real-time PCR revealed Foxl2 proximal promoter hypomethylation in homologous compared to some, though not all, heterologous cell lines. The promoter was also hypomethylated in purified murine gonadotropes. In vitro promoter methylation completely silenced reporter activity in heterologous and homologous cells. Collectively, the data suggest that differential proximal promoter DNA methylation may contribute to cell-specific Foxl2 expression in some cellular contexts. However, gonadotrope-specific expression of the gene cannot be explained by promoter hypomethylation alone.
Collapse
|