1
|
Mesenchymal Stem Cells in Embryo-Maternal Communication under Healthy Conditions or Viral Infections: Lessons from a Bovine Model. Cells 2022; 11:cells11121858. [PMID: 35740987 PMCID: PMC9221285 DOI: 10.3390/cells11121858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Bovine mesenchymal stem cells are a relevant cell population found in the maternal reproductive tract that exhibits the immunomodulation capacity required to prevent embryo rejection. The phenotypic plasticity showed by both endometrial mesenchymal stem cells (eMSC) and embryonic trophoblast through mesenchymal to epithelial transition and epithelial to mesenchymal transition, respectively, is essential for embryo implantation. Embryonic trophoblast maintains active crosstalk via EVs and soluble proteins with eMSC and peripheral blood MSC (pbMSC) to ensure the retention of eMSC in case of pregnancy and induce the chemotaxis of pbMSC, critical for successful implantation. Early pregnancy-related proteins and angiogenic markers are detected as cargo in EVs and the soluble fraction of the embryonic trophectoderm secretome. The pattern of protein secretion in trophectoderm-EVs changes depending on their epithelial or mesenchymal phenotype and due to the uptake of MSC EVs. However, the changes in this EV-mediated communication between maternal and embryonic MSC populations infected by viruses that cause abortions in cattle are poorly understood. They are critical in the investigation of reproductive viral pathologies.
Collapse
|
2
|
Cardoso TC, Okamura LH, Baptistella JC, Borsanelli AC, Baptistiolli L, Ferreira HL, Gameiro R, Flores EF. RETRACTED: Bovine Herpesvirus 5 promotes mitochondrial dysfunction in cultured bovine monocyte-derived macrophages and not affect virus replication. Vet Microbiol 2019; 229:153-158. [PMID: 30642592 DOI: 10.1016/j.vetmic.2019.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 10/27/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
This article has been retracted at the request of the Editors-in-Chief and Authors.
Fig 1A is a duplicate of a figure that has already been published in da Silva SEL et al. Archives of Virology 2018;163:1043-1049; 10.1007/s00705-018-3704-2. These two papers report studies performed with cells from two different animal species (bovine cells for the Veterinary Microbiology paper and chicken cells for the Archives of Virology paper). The reuse of the same figure in the Veterinary Microbiology paper to describe cells that were supposed to be from a different species is thus inappropriate and also puts into question the reliability of the other results presented in this paper.
In addition, the Editors-in-Chief have remaining concerns about the strong similarities of other data presented in the two papers.
Even if these concerns were addressed, the re-use of any data has to be clearly indicated and appropriately cited. As such this article represents a misuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.
Collapse
Affiliation(s)
- Tereza C Cardoso
- UNESP- University of São Paulo State, College of Veterinary Medicine, Araçatuba, SP, Brazil.
| | - Lucas H Okamura
- UNESP- University of São Paulo State, College of Veterinary Medicine, Araçatuba, SP, Brazil
| | - Jamila C Baptistella
- UNESP- University of São Paulo State, College of Veterinary Medicine, Araçatuba, SP, Brazil
| | | | - Lillian Baptistiolli
- Department of Veterinary Medicine, FZEA- USP- University of Sao Paulo, Pirassununga, SP, Brazil
| | - Helena L Ferreira
- Department of Veterinary Medicine, FZEA- USP- University of Sao Paulo, Pirassununga, SP, Brazil
| | - Roberto Gameiro
- UNESP- University of São Paulo State, College of Veterinary Medicine, Araçatuba, SP, Brazil
| | - Eduardo F Flores
- Virology Section, Department of Preventive Veterinary Medicine, Federal University of Santa Maria, RS, Brazil
| |
Collapse
|
3
|
da Silva SEL, Ferreira HL, Garcia AF, Silva FES, Gameiro R, Fabri CUF, Vieira DS, Cardoso TC. Mitochondrial bioenergy alterations in avian HD11 macrophages infected with infectious bronchitis virus. Arch Virol 2018; 163:1043-1049. [PMID: 29302792 DOI: 10.1007/s00705-018-3704-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/22/2017] [Indexed: 01/05/2023]
Abstract
To establish an association between mitochondrial dysfunction and apoptosis following infectious bronchitis virus (IBV) infection, HD11 avian macrophage cells were infected with the Massachusetts 41 (M41) strain. Our results show that the M41 strain of IBV induced cytopathic effects followed by the release of new viral particles. Elevated numbers of apoptotic cells were observed at 24, 48 and 72 h post-infection (p.i.). Viral infection was associated with mitochondrial membrane depolarization and reactive oxygen species (ROS) production at all of the examined timepoints p.i. In summary, IBV M41 replication in infected HD11 macrophages seems to induce mitochondrial bioenergy failure, acting as a respiratory chain uncoupler, without compromising viral replication.
Collapse
Affiliation(s)
- Sergio E L da Silva
- Faculdade de Medicina Veterinária (FAMEV), Universidade Federal Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Helena L Ferreira
- Department of Veterinary Medicine, FZEA-USP-University of Sao Paulo, Pirassununga, SP, Brazil
| | - Andrea F Garcia
- Centro Universitário Católico Salesiano Auxilium, UniSLESIANO, Araçatuba, SP, Brazil
| | - Felipe E S Silva
- College of Veterinary Medicine, UNESP-University of São Paulo State, Araçatuba, SP, Brazil
| | - Roberto Gameiro
- College of Veterinary Medicine, UNESP-University of São Paulo State, Araçatuba, SP, Brazil
| | - Carolina U F Fabri
- College of Veterinary Medicine, UNESP-University of São Paulo State, Araçatuba, SP, Brazil
| | - Dielson S Vieira
- College of Veterinary Medicine, UNESP-University of São Paulo State, Araçatuba, SP, Brazil
| | - Tereza C Cardoso
- College of Veterinary Medicine, UNESP-University of São Paulo State, Araçatuba, SP, Brazil.
| |
Collapse
|
4
|
Cardoso TC, Rosa ACG, Ferreira HL, Okamura LH, Oliveira BRSM, Vieira FV, Silva-Frade C, Gameiro R, Flores EF. Bovine herpesviruses induce different cell death forms in neuronal and glial-derived tumor cell cultures. J Neurovirol 2016; 22:725-735. [PMID: 27311457 DOI: 10.1007/s13365-016-0444-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/29/2016] [Accepted: 04/04/2016] [Indexed: 12/14/2022]
Abstract
Oncolytic viruses have the ability to infect tumor cells and leave healthy cells intact. In this study, bovine herpesvirus 1 (BHV1; Los Angeles, Cooper, and SV56/90 strains) and bovine herpesvirus 5 (BHV5; SV507/99 and GU9457818 strains) were used to infect two neuronal tumor cell lineages: neuro2a (mouse neuroblastoma cells) and C6 (rat glial cells). BHV1 and BHV5 strains infected both cell lines and positively correlated with viral antigen detection (p < 0.005). When neuro2a cells were infected by Los Angeles, SV507/99, and GU9457818 strains, 40 % of infected cells were under early apoptosis and necroptosis pathways. Infected C6 cells were >40 % in necroptosis phase when infected by BHV5 (GU9457818 strain). Blocking caspase activation did not interfere with cell death. However, when necroptosis was blocked, 60-80 % of both infected cells with either virus switched to early apoptosis pathway with no interference with virus replication. Moreover, reactive oxygen species production and mitochondrial membrane dysfunction were detected at high levels in both infected cell lines. In spite of apoptosis and necroptosis blockage, tumor necrosis factor alpha (TNFA) and virus transcription were positively correlated for all viral strains studied. Thus, these results contribute to the characterization of BHV1 and BHV5 as potential oncolytic viruses for non-human cells. Nonetheless, the mechanisms underlying their oncolytic activity in human cells are still to be determined.
Collapse
Affiliation(s)
- Tereza C Cardoso
- DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, Universidade Estadual Paulista, Araçatuba, São Paulo, 16050-680, Brazil.
| | - Ana Carolina G Rosa
- DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, Universidade Estadual Paulista, Araçatuba, São Paulo, 16050-680, Brazil
| | - Helena L Ferreira
- DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, Universidade Estadual Paulista, Araçatuba, São Paulo, 16050-680, Brazil
- FZEA-USP, Departamento de Medicina Veterinária, Av. Duque de Caxias Norte, 225, Pirassununga, SP, CEP 13635-900, Brazil
| | - Lucas H Okamura
- DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, Universidade Estadual Paulista, Araçatuba, São Paulo, 16050-680, Brazil
| | - Bruna R S M Oliveira
- DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, Universidade Estadual Paulista, Araçatuba, São Paulo, 16050-680, Brazil
| | - Flavia V Vieira
- DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, Universidade Estadual Paulista, Araçatuba, São Paulo, 16050-680, Brazil
| | - Camila Silva-Frade
- DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, Universidade Estadual Paulista, Araçatuba, São Paulo, 16050-680, Brazil
| | - Roberto Gameiro
- DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, Universidade Estadual Paulista, Araçatuba, São Paulo, 16050-680, Brazil
| | - Eduardo F Flores
- Virology Section, Federal University of Santa Maria, Santa Maria, 97115-900, RS, Brazil
| |
Collapse
|
5
|
Cardoso TC, Ferreira HL, Okamura LH, Oliveira BRSM, Rosa ACG, Gameiro R, Flores EF. RETRACTED ARTICLE: Comparative analysis of the replication of bovine herpesvirus 1 (BHV1) and BHV5 in bovine-derived neuron-like cells. Arch Virol 2015; 160:2683-91. [DOI: 10.1007/s00705-015-2537-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/17/2015] [Indexed: 11/28/2022]
|
6
|
González Altamiranda E, Manrique JM, Pérez SE, Ríos GL, Odeón AC, Leunda MR, Jones LR, Verna A. Molecular Characterization of the First Bovine Herpesvirus 4 (BoHV-4) Strains Isolated from In Vitro Bovine Embryos production in Argentina. PLoS One 2015; 10:e0132212. [PMID: 26177382 PMCID: PMC4503683 DOI: 10.1371/journal.pone.0132212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 06/12/2015] [Indexed: 11/19/2022] Open
Abstract
Bovine herpesvirus 4 (BoHV-4) is increasingly considered as responsible for various problems of the reproductive tract. The virus infects mainly blood mononuclear cells and displays specific tropism for vascular endothelia, reproductive and fetal tissues. Epidemiological studies suggest its impact on reproductive performance, and its presence in various sites in the reproductive tract highlights its potential transmission in transfer-stage embryos. This work describes the biological and genetic characterization of BoHV-4 strains isolated from an in vitro bovine embryo production system. BoHV-4 strains were isolated in 2011 and 2013 from granulosa cells and bovine oocytes from ovary batches collected at a local abattoir, used as "starting material" for in vitro production of bovine embryos. Compatible BoHV-4-CPE was observed in the co-culture of granulosa cells and oocytes with MDBK cells. The identity of the isolates was confirmed by PCR assays targeting three ORFs of the viral genome. The phylogenetic analyses of the strains suggest that they were evolutionary unlinked. Therefore it is possible that BoHV-4 ovary infections occurred regularly along the evolution of the virus, at least in Argentina, which can have implications in the systems of in vitro embryo production. Thus, although BoHV-4 does not appear to be a frequent risk factor for in vitro embryo production, data are still limited. This study reveals the potential of BoHV-4 transmission via embryo transfer. Moreover, the high variability among the BoHV-4 strains isolated from aborted cows in Argentina highlights the importance of further research on the role of this virus as an agent with the potential to cause reproductive disease in cattle. The genetic characterization of the isolated strains provides data to better understand the pathogenesis of BoHV-4 infections. Furthermore, it will lead to fundamental insights into the molecular aspects of the virus and the means by which these strains circulate in the herds.
Collapse
Affiliation(s)
- Erika González Altamiranda
- Laboratorio de Virología, Departamento de Producción Animal, Instituto Nacional de Tecnología Agropecuaria (INTA), Balcarce, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Julieta M. Manrique
- Laboratorio de Virología y Genética Molecular, Facultad de Ciencias Naturales Sede Trelew, Universidad Nacional de la Patagonia San Juan Bosco, Chubut, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sandra E. Pérez
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Sede Tandil, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Glenda L. Ríos
- Laboratorio de Producción de Embriones, Departamento de Producción Animal, Instituto Nacional de Tecnología Agropecuaria (INTA), Balcarce, Buenos Aires, Argentina
| | - Anselmo C. Odeón
- Laboratorio de Virología, Departamento de Producción Animal, Instituto Nacional de Tecnología Agropecuaria (INTA), Balcarce, Buenos Aires, Argentina
| | - María R. Leunda
- Laboratorio de Virología, Departamento de Producción Animal, Instituto Nacional de Tecnología Agropecuaria (INTA), Balcarce, Buenos Aires, Argentina
| | - Leandro R. Jones
- Laboratorio de Virología y Genética Molecular, Facultad de Ciencias Naturales Sede Trelew, Universidad Nacional de la Patagonia San Juan Bosco, Chubut, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrea Verna
- Laboratorio de Virología, Departamento de Producción Animal, Instituto Nacional de Tecnología Agropecuaria (INTA), Balcarce, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
7
|
Jiang R, Cai J, Zhu Z, Chen D, Wang J, Wang Q, Teng Y, Huang Y, Tao M, Xia A, Xue M, Zhou S, Chen AF. Hypoxic Trophoblast HMGB1 Induces Endothelial Cell Hyperpermeability via the TRL-4/Caveolin-1 Pathway. THE JOURNAL OF IMMUNOLOGY 2014; 193:5000-12. [DOI: 10.4049/jimmunol.1303445] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Silva-Frade C, Gameiro R, Okamura LH, Flores EF, Cardoso TC. Programmed cell death-associated gene transcripts in bovine embryos exposed to bovine Herpesvirus type 5. Mol Cell Probes 2014; 28:113-7. [DOI: 10.1016/j.mcp.2013.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/25/2013] [Accepted: 10/02/2013] [Indexed: 11/28/2022]
|
9
|
Validation of a reference control for an SYBR-Green fluorescence assay-based real-time PCR for detection of bovine herpesvirus 5 in experimentally exposed bovine embryos. Mol Cell Probes 2013; 27:237-42. [PMID: 23831485 DOI: 10.1016/j.mcp.2013.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/12/2013] [Accepted: 06/17/2013] [Indexed: 11/22/2022]
Abstract
The objective of this study was to optimize an internal control to improve SYBR-Green-based qPCR to amplify/detect the BoHV-5 US9 gene in bovine embryos produced in vitro and experimentally exposed to the virus. We designed an SYBR-Green-based binding assay that is quick to perform, reliable, easily optimized and compares well with the published assay. Herein we demonstrated its general applicability to detect BoHV-5 US9 gene in bovine embryos produced in vitro experimentally exposed to BoHV-5. In order to validate the assay, three different reference genes were tested; and the histone 2a gene was shown to be the most adequate for normalizing the qPCR reaction, by considering melting and standard curves (p < 0.05). On the other hand, no differences were found in the development of bovine embryos in vitro whether they were exposed to BoHV-5 reference and field strains comparing to unexposed embryos. The developed qPCR assay may have important field applications as it provides an accurate BoHV-5 US9 gene detection using a proven reference gene and is considerably less expensive than the TaqMan qPCR currently employed in sanitary programs.
Collapse
|