1
|
Huusko JM, Tiensuu H, Haapalainen AM, Pasanen A, Tissarinen P, Karjalainen MK, Zhang G, Christensen K, Ryckman KK, Jacobsson B, Murray JC, Kingsmore SF, Hallman M, Muglia LJ, Rämet M. Integrative genetic, genomic and transcriptomic analysis of heat shock protein and nuclear hormone receptor gene associations with spontaneous preterm birth. Sci Rep 2021; 11:17115. [PMID: 34429451 PMCID: PMC8384995 DOI: 10.1038/s41598-021-96374-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Heat shock proteins are involved in the response to stress including activation of the immune response. Elevated circulating heat shock proteins are associated with spontaneous preterm birth (SPTB). Intracellular heat shock proteins act as multifunctional molecular chaperones that regulate activity of nuclear hormone receptors. Since SPTB has a significant genetic predisposition, our objective was to identify genetic and transcriptomic evidence of heat shock proteins and nuclear hormone receptors that may affect risk for SPTB. We investigated all 97 genes encoding members of the heat shock protein families and all 49 genes encoding nuclear hormone receptors for their potential role in SPTB susceptibility. We used multiple genetic and genomic datasets including genome-wide association studies (GWASs), whole-exome sequencing (WES), and placental transcriptomics to identify SPTB predisposing factors from the mother, infant, and placenta. There were multiple associations of heat shock protein and nuclear hormone receptor genes with SPTB. Several orthogonal datasets supported roles for SEC63, HSPA1L, SACS, RORA, and AR in susceptibility to SPTB. We propose that suppression of specific heat shock proteins promotes maintenance of pregnancy, whereas activation of specific heat shock protein mediated signaling may disturb maternal–fetal tolerance and promote labor.
Collapse
Affiliation(s)
- Johanna M Huusko
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland.,Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
| | - Heli Tiensuu
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Antti M Haapalainen
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Anu Pasanen
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Pinja Tissarinen
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Minna K Karjalainen
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Ge Zhang
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
| | - Kaare Christensen
- Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Kelli K Ryckman
- Department of Epidemiology, College of Public Health and Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Genetics and Bioinformatics, Area of Health Data and Digitalisation, Norwegian Institute of Public Health, Oslo, Norway
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Stephen F Kingsmore
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, USA
| | - Mikko Hallman
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Louis J Muglia
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA.,Burroughs Wellcome Fund, Research Triangle Park, NC, USA
| | - Mika Rämet
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland. .,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland. .,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
2
|
Hao L, Song D, Zhuang M, Shi Y, Yu L, He Y, Wang J, Zhang T, Sun Z. Gene UCHL1 expresses specifically in mouse uterine decidual cells in response to estrogen. Histochem Cell Biol 2020; 154:275-286. [PMID: 32451617 DOI: 10.1007/s00418-020-01880-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2020] [Indexed: 12/01/2022]
Abstract
UCHL1 is expressed specifically in the brain and gonads of almost all studied model organisms including Drosophila, zebrafish, amphibians, and mammals, suggesting a high degree of evolutionary conservation in its structure and function. Although UCHL1 has been involved in spermatogenesis in mice, its specific expression in mammal placenta remains elusive. Our previous work has revealed that UCHL1 is highly expressed in oocytes, and has been involved in mouse ovarian follicular development. Here, we further examined UCHL1 expression change in endometria during early natural pregnancy, with different stages of the estrous cycle and pseudopregnancy as control. The UCHL1 gene deletion model showed that UCHL1 protein is associated with endometrial development, and its deletion leads to infertility. Notably, we demonstrate evidence showing the distinct expression pattern of UCHL1: weak expression over the uterine endometria, strong expression in decidualized stromal cells at the implantation site with a peak at pregnancy D6, and a shift with primary decidualization to secondary decidualized zones. Using the delayed implantation, the delayed implantation activation, and the artificial decidualization models, we have demonstrated that strong expression of UCHL1 occurred in response to decidualization and estrogen stimulation. These observations suggest that during the early proliferation and differentiation of mouse uterine decidua, UCHL1 expression is up-regulated, and formed an unique intracellular distribution mode. Therefore, we proposed that UCHL1 is involved in decidualization, and possibly in response to estrogen regulation.
Collapse
Affiliation(s)
- Lishuang Hao
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Medical School, Fudan University, Shanghai, 200032, People's Republic of China.,Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, People's Republic of China.,Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Shanghai, 200082, China
| | - Di Song
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Medical School, Fudan University, Shanghai, 200032, People's Republic of China
| | - Mengfei Zhuang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, People's Republic of China
| | - Yan Shi
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Medical School, Fudan University, Shanghai, 200032, People's Republic of China
| | - Lin Yu
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Medical School, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yaping He
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Medical School, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jian Wang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Medical School, Fudan University, Shanghai, 200032, People's Republic of China
| | - Tingting Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, People's Republic of China.
| | - Zhaogui Sun
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Medical School, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|