1
|
Li H, Wang J, Li L, Zhao L, Wang Z. Expression of EMT-related genes in lymph node metastasis in endometrial cancer: a TCGA-based study. World J Surg Oncol 2023; 21:55. [PMID: 36814242 PMCID: PMC9945723 DOI: 10.1186/s12957-023-02893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/10/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Endometrial cancer (EC) with metastasis in pelvic/para-aortic lymph nodes suggests an unsatisfactory prognosis. Nevertheless, there is still rare literature focusing on the role of epithelial-mesenchymal transition (EMT) in lymph node metastasis (LNM) in EC. METHODS Transcriptional data were derived from the TCGA database. Patients with stage IA-IIIC2 EC were included, constituting the LN-positive and LN-negative groups. To evaluate the extent of EMT, an EMT signature composed of 315 genes was adopted. The EMT-related genes (ERGs) were obtained from the dbEMT2 database, and the differentially expressed ERGs (DEERGs) between these two groups were screened. On the basis of DEERGs, pathway analysis was carried out. We eventually adopted the logistic regression model to build an ERG-based gene signature with predictive value for LNM in EC. RESULTS A total of 498 patients were included, with 75 in the LN-positive group. Median EMT score of tumor tissues from LN-negative group was - 0.369, while that from the LN-positive group was - 0.296 (P < 0.001), which clearly exhibited a more mesenchymal phenotype for LNM cases on the EMT continuum. By comparing expression profiles, 266 genes were identified as DEERGs, in which 184 were upregulated and 82 were downregulated. In pathway analysis, various EMT-related pathways were enriched. DEERGs shared between molecular subtypes were comparatively few. The ROC curve and logistic regression analysis screened 7 genes with the best performance to distinguish between the LN-positive and LN-negative group, i.e., CIRBP, DDR1, F2RL2, HOXA10, PPARGC1A, SEMA3E, and TGFB1. A logistic regression model including the 7-gene-based risk score, age, grade, myometrial invasion, and histological subtype was built, with an AUC of 0.850 and a favorite calibration (P = 0.074). In the validation dataset composed of 83 EC patients, the model exhibited a satisfactory predictive value and was well-calibrated (P = 0.42). CONCLUSION The EMT status and expression of ERGs varied in LNM and non-LNM EC tissues, involving multiple EMT-related signaling pathways. Aside from that, the distribution of DEERGs differed among molecular subtypes. An ERG-based gene signature including 7 DEERGs exhibited a desirable predictive value for LNM in EC, which required further validation based upon clinical specimens in the future.
Collapse
Affiliation(s)
- He Li
- Department of Obstetrics and Gynecology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Junzhu Wang
- The Big Data and Public Policy Laboratory, School of Government, Peking University, Beijing, China
| | - Liwei Li
- Department of Obstetrics and Gynecology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Luyang Zhao
- Department of Obstetrics and Gynecology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Zhiqi Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| |
Collapse
|
2
|
Armando F, Ferrari L, Arcari ML, Azzali G, Dallatana D, Ferrari M, Lombardi G, Zanfabro M, Di Lecce R, Lunghi P, Cameron ER, Cantoni AM, Corradi A. Endocanalicular transendothelial crossing (ETC): A novel intravasation mode used by HEK-EBNA293-VEGF-D cells during the metastatic process in a xenograft model. PLoS One 2020; 15:e0239932. [PMID: 33085676 PMCID: PMC7577447 DOI: 10.1371/journal.pone.0239932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
In cancer metastasis, intravasation of the invasive tumor cell (TCi) represents one of the most relevant events. During the last years, models regarding cancer cell intravasation have been proposed, such as the “endocanalicular transendothelial crossing” (ETC) theory. This theory describes the interplay between two adjacent endothelial cells and the TCi or a leukocyte during intravasation. Two endothelial cells create a channel with their cell membranes, in which the cell fits in without involving endothelial cell intercellular junctions, reaching the lumen through a transendothelial passage. In the present study, ten SCID mice were subcutaneously xenotransplanted with the HEK-EBNA293-VEGF-D cell line and euthanized after 35 days. Post-mortem examinations were performed and proper specimens from tumors were collected. Routine histology and immunohistochemistry for Ki-67, pAKT, pERK, ZEB-1, TWIST-1, F-actin, E-cadherin and LYVE-1 were performed followed by ultrastructural serial sections analysis. A novel experimental approach involving Computed Tomography (CT) combined with 3D digital model reconstruction was employed. The analysis of activated transcription factors supports that tumor cells at the periphery potentially underwent an epithelial-to-mesenchymal transition (EMT)-like process. Topographical analysis of LYVE-1 immunolabeled lymphatics revealed a peritumoral localisation. TEM investigations of the lymphatic vessels combined with 3D digital modelling enhanced the understanding of the endotheliocytes behavior during TCi intravasation, clarifying the ETC theory. Serial ultrastructural analysis performed within tumor periphery revealed numerous cells during the ETC process. Furthermore, this study demonstrates that ETC is an intravasation mode more frequently used by the TCi than by leukocytes during intravasation in the HEK-EBNA293-VEGF-D xenograft model and lays down the potential basis for promising future studies regarding intravasation blocking therapy.
Collapse
Affiliation(s)
- Federico Armando
- Department of Veterinary Science, Pathology Unit, University of Parma, Parma, Italy
- * E-mail: (AMC); (FA); (LF)
| | - Luca Ferrari
- Department of Veterinary Science, Pathology Unit, University of Parma, Parma, Italy
- * E-mail: (AMC); (FA); (LF)
| | | | - Giacomo Azzali
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Davide Dallatana
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Maura Ferrari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “B. Ubertini”, Unit of Brescia, Brescia, Italy
| | - Guerino Lombardi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “B. Ubertini”, Unit of Brescia, Brescia, Italy
| | - Matteo Zanfabro
- Practitioner, 3D Veterinary Printing Project, Parma, Italy
- Department of Veterinary Science, Diagnostic Imaging Unit, University of Parma, Parma, Italy
| | - Rosanna Di Lecce
- Department of Veterinary Science, Pathology Unit, University of Parma, Parma, Italy
| | - Paolo Lunghi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma,Parma, Italy
- Centre for Molecular and Translational Oncology, University of Parma, Parma, Italy
| | - Ewan R. Cameron
- School of Veterinary Medicine, University of Glasgow, Glasgow, Scotland
| | - Anna M. Cantoni
- Department of Veterinary Science, Pathology Unit, University of Parma, Parma, Italy
- * E-mail: (AMC); (FA); (LF)
| | - Attilio Corradi
- Department of Veterinary Science, Pathology Unit, University of Parma, Parma, Italy
| |
Collapse
|
3
|
Hayashi KG, Hosoe M, Fujii S, Kanahara H, Sakumoto R. Temporal expression and localization of vascular endothelial growth factor family members in the bovine uterus during peri-implantation period. Theriogenology 2019; 133:56-64. [PMID: 31059929 DOI: 10.1016/j.theriogenology.2019.04.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/25/2018] [Accepted: 04/15/2019] [Indexed: 11/30/2022]
Abstract
The aim of this study was to determine endometrial mRNA expression patterns and uterine protein localizations of vascular endothelial growth factor (VEGF) ligands (VEGFA, VEGFB, VEGFC, and VEGFD) and their receptors (VEGFR1, soluble VEGFR1 (sVEGFR1), VEGFR2, and VEGFR3) during the peri-implantation period in cows. The number of blood and lymphatic vessels in the bovine uterus was also investigated. Bovine uterine tissues were collected from pregnant animals on days 15, 18, and 27 after artificial insemination and from non-pregnant animals on days 15 and 18 of the estrous cycle (day 0 = day of estrus). The mRNA expression level of VEGFA, VEGFR1, sVEGFR1, and VEGFR3 were higher on day 18 than on day 15 in the non-pregnant group. On day 18, the levels of mRNA expression of these genes were higher in the non-pregnant group than in the pregnant group. VEGFB mRNA expression levels was higher on day 15 than on days 18 and 27 of gestation and was higher in the pregnant group than in the non-pregnant group on day 15. Using immunohistochemistry, VEGF ligands and their receptors were found in luminal epithelium, glandular epithelium, stroma, and blood vessels of the endometrium. In addition, VEGFA, VEGFD, and VEGFR3 were also detected in the uterine myometrium. In the pregnant group, the number of blood vessels in the endometrium increased from day 15 to 18 and was greater than that of the non-pregnant group on day 18. Our results demonstrate that the VEGF family is expressed and regulated in the bovine uterus during the peri-implantation period, which may be associated with uterine functions, including vascular remodeling in maternal recognition of pregnancy and implantation.
Collapse
Affiliation(s)
- Ken-Go Hayashi
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, 305-0901, Japan
| | - Misa Hosoe
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, 305-0901, Japan
| | - Shiori Fujii
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, 305-0901, Japan
| | - Hiroko Kanahara
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, 305-0901, Japan
| | - Ryosuke Sakumoto
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, 305-0901, Japan.
| |
Collapse
|
4
|
Morfoisse F, Tatin F, Hantelys F, Adoue A, Helfer AC, Cassant-Sourdy S, Pujol F, Gomez-Brouchet A, Ligat L, Lopez F, Pyronnet S, Courty J, Guillermet-Guibert J, Marzi S, Schneider RJ, Prats AC, Garmy-Susini BH. Nucleolin Promotes Heat Shock-Associated Translation of VEGF-D to Promote Tumor Lymphangiogenesis. Cancer Res 2016; 76:4394-405. [PMID: 27280395 DOI: 10.1158/0008-5472.can-15-3140] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/24/2016] [Indexed: 11/16/2022]
Abstract
The vascular endothelial growth factor VEGF-D promotes metastasis by inducing lymphangiogenesis and dilatation of the lymphatic vasculature, facilitating tumor cell extravasion. Here we report a novel level of control for VEGF-D expression at the level of protein translation. In human tumor cells, VEGF-D colocalized with eIF4GI and 4E-BP1, which can program increased initiation at IRES motifs on mRNA by the translational initiation complex. In murine tumors, the steady-state level of VEGF-D protein was increased despite the overexpression and dephosphorylation of 4E-BP1, which downregulates protein synthesis, suggesting the presence of an internal ribosome entry site (IRES) in the 5' UTR of VEGF-D mRNA. We found that nucleolin, a nucleolar protein involved in ribosomal maturation, bound directly to the 5'UTR of VEGF-D mRNA, thereby improving its translation following heat shock stress via IRES activation. Nucleolin blockade by RNAi-mediated silencing or pharmacologic inhibition reduced VEGF-D translation along with a subsequent constriction of lymphatic vessels in tumors. Our results identify nucleolin as a key regulator of VEGF-D expression, deepening understanding of lymphangiogenesis control during tumor formation. Cancer Res; 76(15); 4394-405. ©2016 AACR.
Collapse
Affiliation(s)
- Florent Morfoisse
- UMR 1048-1I2MC, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Florence Tatin
- UMR 1048-1I2MC, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Fransky Hantelys
- UMR 1048-1I2MC, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Aurelien Adoue
- UMR 1048-1I2MC, Université de Toulouse, Inserm, UPS, Toulouse, France
| | | | | | - Françoise Pujol
- UMR 1048-1I2MC, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Anne Gomez-Brouchet
- UMR 5089-IPBS, CNRS, UPS, Toulouse, France. Department of Pathology, IUCT-Oncopole, Toulouse, France
| | - Laetitia Ligat
- Pôle Technologique du CRCT - INSERM-UMR1037, Toulouse, France
| | - Frederic Lopez
- Pôle Technologique du CRCT - INSERM-UMR1037, Toulouse, France
| | | | - Jose Courty
- Laboratoire CRRET Laboratory, Université Paris EST Créteil, Créteil, France
| | | | - Stefano Marzi
- IBMC-CNRS, Université de Strasbourg, Strasbourg, France
| | | | | | | |
Collapse
|
5
|
Targeting Interleukin-11 Receptor-α Impairs Human Endometrial Cancer Cell Proliferation and Invasion In Vitro and Reduces Tumor Growth and Metastasis In Vivo. Mol Cancer Ther 2016; 15:720-30. [DOI: 10.1158/1535-7163.mct-15-0677] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/28/2016] [Indexed: 11/16/2022]
|
6
|
Du LC, Chen XC, Wang D, Wen YJ, Wang CT, Wang XM, Kan B, Wei YQ, Zhao X. VEGF-D-induced draining lymphatic enlargement and tumor lymphangiogenesis promote lymph node metastasis in a xenograft model of ovarian carcinoma. Reprod Biol Endocrinol 2014; 12:14. [PMID: 24502459 PMCID: PMC3929486 DOI: 10.1186/1477-7827-12-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 12/29/2013] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF)-D has been shown to promote lymph node metastasis in several cancers. Although generally overexpressed in ovarian carcinoma, its role in nodal dissemination of this cancer is unclear. To clarify the role of VEGF-D and the underlying molecular mechanisms, we investigated the function of VEGF-D using a mouse xenograft model of ovarian cancer. METHODS Human ovarian serous adenocarcinoma SKOV3 cells were transfected with VEGF-D recombinant plasmid DNA, or with control vectors. The cells were injected subcutaneously into the footpads of nude mice. Tumor growth was evaluated weekly. Draining lymphatics were observed grossly with Evan's blue lymphangiography. Tumoral lymphatics were delineated with both Evan's blue and LYVE-1 immunostaining. Tumor metastases to lymph nodes were evaluated by H&E and CA125/CD40 staining. Expression of VEGF-D in primary tumors and levels of CA125 in involved lymph nodes were examined by immunohistochemistry. Tumor cell apoptosis was analyzed by Hoechst dyeing. RESULTS Mice bearing VEGF-D overexpressing xenografts showed a significantly higher rate of lymph node metastasis and markedly greater tumor volume compared with the controls. The functional lymphatic vessels were denser and enlarged in marginal and central tumor portions. Additionally, higher CA125 expression was observed in the involved lymph nodes. Mice bearing VEGF-D overexpressing xenografts also exhibited a markedly lower apoptotic index compared with the controls. CONCLUSIONS Our data demonstrate the important role of VEGF-D in promoting lymph node metastasis by increasing tumor lymphangiogenesis, stimulating draining lymphatic vessel formation, and enhancing tumor invasiveness. Our findings show that VEGF-D can be a promising therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Li-Cheng Du
- Department of Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jingwu Road, Jinan, China
| | - Xian-Cheng Chen
- Department of Gynecology and Obstetrics, Second West China Hospital, West China Medical School, Sichuan University, South Renmin Road, Chengdu, China
| | - Dong Wang
- Department of Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jingwu Road, Jinan, China
| | - Yan-Jun Wen
- National Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, South Renmin Road, Chengdu, China
| | - Chun-Ting Wang
- National Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, South Renmin Road, Chengdu, China
| | - Xue-Mei Wang
- Department of Gynecology and Obstetrics, Second West China Hospital, West China Medical School, Sichuan University, South Renmin Road, Chengdu, China
| | - Bing Kan
- National Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, South Renmin Road, Chengdu, China
| | - Yu-Quan Wei
- National Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, South Renmin Road, Chengdu, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Second West China Hospital, West China Medical School, Sichuan University, South Renmin Road, Chengdu, China
| |
Collapse
|
7
|
Abstract
The endometrium has a complex and dynamic blood and lymphatic vasculature which undergoes regular cycles of growth and breakdown. While we now have a detailed picture of the endometrial blood vasculature, our understanding of the lymphatic vasculature in the endometrium is limited. Recent studies have illustrated that the endometrium contains a population of lymphatic vessels with restricted distribution in the functional layer relative to the basal layer. The mechanisms responsible for this restricted distribution and the consequences for endometrial function are not known. This review will summarise our current understanding of endometrial lymphatics, including the mechanisms regulating their growth and function. The potential contribution of lymphatic vessels and lymphangiogenic growth factors to various endometrial disorders will be discussed.
Collapse
Affiliation(s)
- Jane E Girling
- Gynaecology Research Centre, Department of Obstetrics and Gynaecology, The University of Melbourne, The Royal Women's Hospital, Cnr Flemington Rd and Grattan St, Parkville, VIC, Australia.
| | | |
Collapse
|
8
|
Jeong JY, Park SH, Shin JW, Kang YG, Han KH, Shin JW. Effects of intermittent hydrostatic pressure magnitude on the chondrogenesis of MSCs without biochemical agents under 3D co-culture. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:2773-2781. [PMID: 22802107 DOI: 10.1007/s10856-012-4718-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 07/03/2012] [Indexed: 06/01/2023]
Abstract
Without using biochemical agents, in this study, we sought to investigate the potential of controlling the differentiation of mesenchymal stem cells (MSCs) into a specific cell type through the use of 3D co-culturing and mechanical stimuli. MSCs and primary cultured chondrocytes were separately encapsulated into alginate beads, and the two types of beads were separated by a membrane. For the investigation a computer-controllable bioreactor was designed and used to engage intermittent hydrostatic pressure (IHP). Five different magnitudes (0.20, 0.10, 0.05, 0.02 MPa and no stimulation) of IHP were applied. The stimulation pattern was the same for all groups: 2 h/day for 7 days starting at 24 h after seeding; 2 and 15 min cycles of stimulating and resting, respectively. Biochemical (DNA and GAG contents), histological (Alcian blue), and RT-PCR (Col II, SOX9, AGC) analyses were performed on days 1, 5, 10, and 20. The results from these analyses showed that stimulation with higher magnitudes of IHP (≥0.10 MPa) were more effective on the proliferation and differentiation of co-cultured MSCs. Together, these data demonstrate the potential of using mechanical stimulation and co-culturing for the proliferation and differentiation of MSCs, even without biochemical agents.
Collapse
Affiliation(s)
- Jae Young Jeong
- Department of Biomedical Engineering, Inje University, Gimhae, Gyeongnam, Republic of Korea
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Vascular endothelial growth factor-D (VEGF-D) is a secreted glycoprotein that promotes growth of blood vessels (angiogenesis) and lymphatic vessels (lymphangiogenesis), and can induce remodeling of large lymphatics. VEGF-D enhances solid tumor growth and metastatic spread in animal models of cancer, and in some human cancers VEGF-D correlates with metastatic spread, poor patient outcome, and, potentially, with resistance to anti-angiogenic drugs. Hence, VEGF-D signaling is a potential target for novel anti-cancer therapeutics designed to enhance anti-angiogenic approaches and to restrict metastasis. In the cardiovascular system, delivery of VEGF-D in animal models enhanced angiogenesis and tissue perfusion, findings which have led to a range of clinical trials testing this protein for therapeutic angiogenesis in cardiovascular diseases. Despite these experimental and clinical developments, our knowledge of the signaling mechanisms driven by VEGF-D is still evolving--here we explore the biology of VEGF-D, its signaling mechanisms, and the clinical relevance of this growth factor.
Collapse
Affiliation(s)
- Marc G Achen
- Peter MacCallum Cancer Centre, 1 Saint Andrews Place, Locked Bag 1, A'Beckett Street, East Melbourne, Victoria 3002, Australia.
| | | |
Collapse
|
10
|
Dilated thin-walled blood and lymphatic vessels in human endometrium: a potential role for VEGF-D in progestin-induced break-through bleeding. PLoS One 2012; 7:e30916. [PMID: 22383980 PMCID: PMC3284580 DOI: 10.1371/journal.pone.0030916] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 12/24/2011] [Indexed: 01/14/2023] Open
Abstract
Progestins provide safe, effective and cheap options for contraception as well as the treatment of a variety of gynaecological disorders. Episodes of irregular endometrial bleeding or breakthrough bleeding (BTB) are a major unwanted side effect of progestin treatment, such that BTB is the leading cause for discontinued use of an otherwise effective and popular medication. The cellular mechanisms leading to BTB are poorly understood. In this study, we make the novel finding that the large, dilated, thin walled vessels characteristic of human progestin-treated endometrium include both blood and lymphatic vessels. Increased blood and lymphatic vessel diameter are features of VEGF-D action in other tissues and we show by immunolocalisation and Western blotting that stromal cell decidualisation results in a significant increase in VEGF-D protein production, particularly of the proteolytically processed 21 kD form. Using a NOD/scid mouse model with xenografted human endometrium we were able to show that progestin treatment causes decidualisation, VEGF-D production and endometrial vessel dilation. Our results lead to a novel hypothesis to explain BTB, with stromal cell decidualisation rather than progestin treatment per se being the proposed causative event, and VEGF-D being the proposed effector agent.
Collapse
|
11
|
Scott CA, Eckstrum KS, Bany BM. Localization of C-Fos-Induced Growth Factor ( Figf) mRNA Expression in the Mouse Uterus during Implantation. REPRODUCTIVE SYSTEM & SEXUAL DISORDERS : CURRENT RESEARCH 2012; Suppl 1:003. [PMID: 26918199 PMCID: PMC4764100 DOI: 10.4172/2161-038x.s1-003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The purpose of this study was to characterize the localization of Figf mRNA in the mouse uterus during embryo implantation. Strong Figf mRNA hybridization signals were seen in the primary decidual zone just after the onset of implantation from Days 4.5–6.5. On Day 7.5, this expression continued around the concept us, but in addition we observed high expression of Figf mRNA in the endothelial cells that line the forming vascular sinusoids in the lateral me some trial decidua. Interestingly, on Days 8.5 this high expression continued in the endothelial cells of sinusoids in the lateral me some trial decidual tissue but not in the decidual cells surrounding the concept us. As implantation and placental development finished, Figf mRNA expression remained in the endothelial cells of the sinusoids and spiral arterioles of the decidua basalis. Interestingly, Flt4 mRNA was localized to the endothelial cells lining the sinusoids that form during implantation. Since the endothelial cells of the me some trial sinusoids exhibit a high level of proliferation, we speculate that FIGF-FLT4 signaling may play a role in their formation and function during implantation. This work will provide a basis for further research on the potential role of FIGF-FLT4 signaling in endometrial angiogenesis during implantation in mice.
Collapse
Affiliation(s)
- Charles A Scott
- Departments of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Kirsten S Eckstrum
- Departments of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Brent M Bany
- Departments of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA; Departments of Obstetrics & Gynecology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| |
Collapse
|
12
|
Tagliani E, Erlebacher A. Dendritic cell function at the maternal-fetal interface. Expert Rev Clin Immunol 2011; 7:593-602. [PMID: 21895472 DOI: 10.1586/eci.11.52] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Understanding the evolutionary adaptation of the immune system to the developing fetus and placenta represents one of the most fascinating problems in reproductive biology. Recent work has focused on how the behavior of dendritic cells (DCs) is altered at the maternal-fetal interface to suit the unique requirements of pregnancy. This work has provided a significant new perspective into the long-standing immunological paradox of fetomaternal tolerance, and has opened up a new and intriguing area of research into the potential trophic role of uterine DCs in the peri-implantation period. Further research on the biology of uterine DCs promises to give insight into the pathogenesis of many clinically important disorders of pregnancy.
Collapse
Affiliation(s)
- Elisa Tagliani
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
13
|
Blei F. Literature Watch. Lymphat Res Biol 2010. [DOI: 10.1089/lrb.2010.8402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|