1
|
Juárez-Mercado AP, Chávez-Genaro R, Fiordelisio T, González-Gallardo A, Díaz-Muñoz M, Vázquez-Cuevas FG. Functional expression of P2Y2 receptors in mouse ovarian surface epithelium (OSE). Mol Reprod Dev 2021; 88:758-770. [PMID: 34694051 DOI: 10.1002/mrd.23545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/29/2021] [Accepted: 10/18/2021] [Indexed: 11/08/2022]
Abstract
Ovarian surface epithelium (OSE) is a cell monolayer surrounding the ovary; it is involved in the regulation of the ovulatory process and the genesis of ovarian carcinoma. However, intercellular messengers regulating signaling events, like proliferation in the OSE, have not been completely described. Purines have emerged as novel intercellular messengers in the ovary, in which expression of purinergic receptors has been reported in different cell types. In the present work, we described the functional expression of P2Y2 receptor (P2Y2R), a purinergic receptor widely associated with cell proliferation, in the OSE. The expression of P2Y2R by immunofluorescence and RT-PCR, and its functionality by Ca2+ recording was demonstrated in primary cultured OSE. Functional expression of P2Y2R was also exhibited in situ, by recording of intracellular Ca2+ release and detection of ERK phosphorylation after injection of a selective agonist into the ovarian bursa. Furthermore, P2Y2R activation with UTPγS, in situ, induced cell proliferation at 24 h, whereas continuous stimulation of P2Y2R during a complete estrous cycle significantly modified the size distribution of the follicular population. This is the first evidence of the functional expression of purinergic P2Y2R in the OSE and opens new perspectives on the roles played by purines in ovarian physiology.
Collapse
Affiliation(s)
- Ana Patricia Juárez-Mercado
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Rebeca Chávez-Genaro
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Tatiana Fiordelisio
- Laboratorio de Neuroendocrinología Comparada, Departamento de Ecología y Recursos Naturales, Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, México
| | - Adriana González-Gallardo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Francisco G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
2
|
Reynolds KE, Wong CR, Scott AL. Astrocyte-mediated purinergic signaling is upregulated in a mouse model of Fragile X syndrome. Glia 2021; 69:1816-1832. [PMID: 33754385 DOI: 10.1002/glia.23997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Fragile X syndrome (FXS) is the leading monogenic cause of intellectual disability and autism spectrum disorders. With increasing investigation into the molecular mechanisms underlying FXS, there is growing evidence that perturbations in glial signaling are widely associated with neurological pathology. Purinergic signaling, which utilizes nucleoside triphosphates as signaling molecules, provides one of the most ubiquitous signaling systems for glial-neuronal and glial-glial crosstalk. Here, we sought to identify whether purinergic signaling is dysregulated within the FXS mouse cortex, and whether this dysregulation contributes to aberrant intercellular communication. In primary astrocyte cultures derived from the Fmr1 knockout (KO) mouse model of FXS, we found that application of exogenous ATP and UTP evoked elevated intracellular calcium responses compared to wildtype levels. Accordingly, purinergic P2Y2 and P2Y6 receptor expression was increased in Fmr1 KO astrocytes both in vitro and in acutely dissociated tissue, while P2Y antagonism via suramin prevented intracellular calcium elevations, suggesting a role for these receptors in aberrant FXS astrocyte activation. To investigate the impact of elevated purinergic signaling on astrocyte-mediated synaptogenesis, we quantified synaptogenic protein TSP-1, known to be regulated by P2Y activation. TSP-1 secretion and expression were both heightened in Fmr1 KO vs wildtype astrocytes following UTP application, while naïve TSP-1 cortical expression was also transiently elevated in vivo, indicating increased potential for excitatory TSP-1-mediated synaptogenesis in the FXS cortex. Together, our results demonstrate novel and significant purinergic signaling elevations in Fmr1 KO astrocytes, which may serve as a potential therapeutic target to mitigate the signaling aberrations observed in FXS.
Collapse
Affiliation(s)
- Kathryn E Reynolds
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada
| | - Chloe R Wong
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Angela L Scott
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Velázquez-Miranda E, Molina-Aguilar C, González-Gallardo A, Vázquez-Martínez O, Díaz-Muñoz M, Vázquez-Cuevas FG. Increased Purinergic Responses Dependent on P2Y2 Receptors in Hepatocytes from CCl 4-Treated Fibrotic Mice. Int J Mol Sci 2020; 21:ijms21072305. [PMID: 32225112 PMCID: PMC7177255 DOI: 10.3390/ijms21072305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/17/2020] [Indexed: 01/09/2023] Open
Abstract
Inflammatory and wound healing responses take place during liver damage, primarily in the parenchymal tissue. It is known that cellular injury elicits an activation of the purinergic signaling, mainly by the P2X7 receptor; however, the role of P2Y receptors in the onset of liver pathology such as fibrosis has not been explored. Hence, we used mice treated with the hepatotoxin CCl4 to implement a reversible model of liver fibrosis to evaluate the expression and function of the P2Y2 receptor (P2Y2R). Fibrotic livers showed an enhanced expression of P2Y2R that eliminated its zonal distribution. Hepatocytes from CCl4-treated mice showed an exacerbated ERK-phosphorylated response to the P2Y2R-specific agonist, UTP. Cell proliferation was also enhanced in the fibrotic livers. Hepatic transcriptional analysis by microarrays, upon CCl4 administration, showed that P2Y2 activation regulated diverse pathways, revealing complex action mechanisms. In conclusion, our data indicate that P2Y2R activation is involved in the onset of the fibrotic damage associated with the reversible phase of the hepatic damage promoted by CCl4.
Collapse
|
4
|
Sirotkin AV, Benčo A, Mlynček M, Harrath AH, Alwasel S, Kotwica J. The involvement of the phosphorylatable and nonphosphorylatable transcription factor CREB-1 in the control of human ovarian cell functions. C R Biol 2019; 342:90-96. [DOI: 10.1016/j.crvi.2019.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022]
|
5
|
Campos-Contreras ADR, Juárez-Mercado AP, González-Gallardo A, Chávez-Genaro R, Garay E, De Ita-Pérez DL, Díaz-Muñoz M, Vázquez-Cuevas FG. Experimental polycystic ovarian syndrome is associated with reduced expression and function of P2Y2 receptors in rat theca cells. Mol Reprod Dev 2019; 86:308-318. [PMID: 30624816 DOI: 10.1002/mrd.23106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/29/2018] [Accepted: 12/31/2018] [Indexed: 11/08/2022]
Abstract
Extracellular purines through specific receptors have been recognized as new regulators of ovarian function. It is known that P2Y2 receptor activity induces theca cell proliferation, we hypothesized that purinergic signaling controls the changes related to hyperthecosis in polycystic ovarian syndrome (PCOS). The aim of this study was to analyze the expression of UTP-sensitive P2Y receptors and their role in theca cells (TC) proliferation in experimentally-induced PCOS (EI-PCOS). In primary cultures of TC from intact rats, all the transcripts of P2Y receptors were detected by polymerase chain reaction; in these cells, UTP (10 μM) induced extracellular signal-regulated kinases (ERK) phosphorylation. Rats with EI-PCOS showed a reduced expression of P2Y2R in TC whereas P2Y4R did not change. By analyzing ERK phosphorylation, it was determined that P2Y2R is the most relevant receptor in TC. UTP promoted cell proliferation in TC from control but not from EI-PCOS rats. The in silico analysis of P2yr2 promoter indicated the presence of androgen response elements; the stimulation of TC primary cultures with testosterone promoted a significant reduction in the expression of the P2yr2 transcript. We concluded that P2Y2R participates in controlling the proliferative rate of TCs from healthy ovaries, but this regulation is lost during EI-PCOS.
Collapse
Affiliation(s)
- Anaí Del Rocío Campos-Contreras
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla Querétaro, México
| | - Ana Patricia Juárez-Mercado
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla Querétaro, México
| | - Adriana González-Gallardo
- Unidad de Proteogenómica. Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla Querétaro, México
| | - Rebeca Chávez-Genaro
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Edith Garay
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla Querétaro, México
| | - Dalia Luz De Ita-Pérez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla Querétaro, México
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla Querétaro, México
| | - Francisco Gabriel Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla Querétaro, México
| |
Collapse
|
6
|
Chaparro-Ortega A, Betancourt M, Rosas P, Vázquez-Cuevas FG, Chavira R, Bonilla E, Casas E, Ducolomb Y. Endocrine disruptor effect of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) on porcine ovarian cell steroidogenesis. Toxicol In Vitro 2018; 46:86-93. [DOI: 10.1016/j.tiv.2017.09.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 11/17/2022]
|
7
|
Sirotkin AV, Benčo A, Tandlmajerová A, Lauková M, Vašíček D, Laurinčik J, Kornhauser J, Alwasel S, Harrath AH. cAMP response element-binding protein 1 controls porcine ovarian cell proliferation, apoptosis, and FSH and insulin-like growth factor 1 response. Reprod Fertil Dev 2018; 30:1145-1153. [DOI: 10.1071/rd17508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to examine the role of cAMP response element-binding protein (CREB) and its phosphorylation in the regulation of ovarian cell proliferation and apoptosis, and of the response of proliferation and apoptosis to the upstream hormonal stimulators FSH and insulin-like growth factor (IGF) 1. In the first series of experiments, porcine ovarian granulosa cells, transfected or not with a gene construct encoding wild-type CREB1 (CREB1WT), were cultured with and without FSH (0, 1, 10 or 100 ng mL−1). In the second series of experiments, these cells were transfected or not with CREB1WT or non-phosphorylatable mutant CREB1 (CREB1M1) and cultured with and without FSH (0, 1, 10 or 100 ng mL−1) or IGF1 (0, 1, 10 and 100 ng mL−1). Levels of total and phosphorylated (p-) CREB1, proliferating cell nuclear antigen (PCNA), a marker of proliferation, and BAX, a marker of apoptosis, were evaluated by western immunoblotting and immunocytochemical analysis. Transfection of cells with CREB1WT promoted accumulation of total CREB1 within cells, but p-CREB1 was not detected in any cell group. Both CREB1WT and CREB1M1 reduced cell proliferation and apoptosis. Addition of 10 and 100 ng mL−1 FSH to non-transfected cells promoted CREB1 accumulation and apoptosis, whereas cell proliferation was promoted by all concentrations of FSH tested. FSH activity was not modified in cells transfected with either CREB1WT or CREB1M1. IGF1 at 100 ng mL−1 promoted cell proliferation, whereas all concentrations of IGF1 tested reduced apoptosis. Transfection with either CREB1WT or CREB1M1 did not modify the effects of either FSH or IGF1, although CREB1M1 reversed the effect of IGF1 on apoptosis from inhibitory to stimulatory. These observations suggest that CREB1 is involved in the downregulation of porcine ovarian cell proliferation and apoptosis. The absence of visible CREB1 phosphorylation and the similarity between the effects of CREB1WT and CREB1M1 transfection indicate that phosphorylation is not necessary for CREB1 action on these processes. Furthermore, the observations suggest that FSH promotes both ovarian cell proliferation and apoptosis, whereas IGF1 has proliferation-promoting and antiapoptotic properties. The effect of FSH on CREB1 accumulation and the ability of CREB1M1 to reverse the effects of IGF1 on apoptosis indicate that CREB1 is a mediator of hormonal activity, but the inability of either CREB1WT or CREBM1transfection to modify the primary effects of FSH and IGF1 suggest that CREB1 and its phosphorylation do not mediate the action of these hormones on ovarian cell proliferation and apoptosis.
Collapse
|
8
|
Ubba V, Soni UK, Chadchan S, Maurya VK, Kumar V, Maurya R, Chaturvedi H, Singh R, Dwivedi A, Jha RK. RHOG-DOCK1-RAC1 Signaling Axis Is Perturbed in DHEA-Induced Polycystic Ovary in Rat Model. Reprod Sci 2016; 24:738-752. [PMID: 27662902 DOI: 10.1177/1933719116669057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The function of RHOG, a RAC1 activator, was explored in the ovary during ovarian follicular development and pathological conditions. With the help of immunoblotting and immunolocalization, we determined the expression and localization of RHOG in normal (estrous cycle) and polycystic ovaries using Sprague Dawley (SD) rat model. Employing polymerase chain reaction and flow cytometry, we analyzed the transcript and expression levels of downstream molecules of RHOG, DOCK1, and RAC1 in the polycystic ovarian syndrome (PCOS) ovary along with normal antral follicular theca and granulosa cells after dehydroepiandrosterone (DHEA) supplementation. The effect of RHOG knockdown on DOCK1, VAV, and RAC1 expression was evaluated in the human ovarian cells (SKOV3), theca cells, and granulosa cells from SD rats with the help of flow cytometry. Oocyte at secondary follicles along with stromal cells showed optimal expression of RHOG. Immunoblotting of RHOG revealed its maximum expression at diestrus and proestrus, which was downregulated at estrus stage. Mild immunostaining of RHOG was also present in the theca and granulosa cells of the secondary and antral follicles. Polycystic ovary exhibited weak immunostaining for RHOG and that was corroborated by immunoblotting-based investigations. RHOG effectors DOCK1 and ELMO1 were found reduced in the ovary in PCOS condition/DHEA. RHOG silencing reduced the expression of DOCK1 and RAC1 in the theca and granulosa cells from SD rat antral follicles and that was mirrored in the human ovarian cells. Collectively, RHOG can mediate signaling through downstream effectors DOCK1 and RAC1 during ovarian follicular development (theca and granulosa cells and oocyte), but DHEA downregulated them in the PCOS ovary.
Collapse
Affiliation(s)
- Vaibhave Ubba
- 1 Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Upendra Kumar Soni
- 1 Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sangappa Chadchan
- 1 Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Vineet Kumar Maurya
- 1 Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Vijay Kumar
- 1 Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ruchika Maurya
- 1 Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Himanshu Chaturvedi
- 1 Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rajender Singh
- 1 Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Anila Dwivedi
- 1 Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rajesh Kumar Jha
- 1 Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
9
|
|
10
|
Martínez-Ramírez AS, Vázquez-Cuevas FG. Purinergic signaling in the ovary. Mol Reprod Dev 2015; 82:839-48. [PMID: 26275037 DOI: 10.1002/mrd.22537] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/05/2015] [Indexed: 01/27/2023]
Abstract
Adenosine triphosphate (ATP) is released from the cell by multiple mechanisms. The extracellular form of this purine is processed by ectonucleotidases, resulting in a variety of dephosphorylated metabolites that can bind to specific receptors found in the membrane of target cells; such purinergic signaling is important as an autocrine-paracrine intercellular communication system that influences tissue physiology. In this review, we summarize the studies analyzing purinergic activity in the ovary, which can modulate cellular physiology-including sensitivity to gonadotropins-in several ovarian cell types, including the cumulus-cell complex, granulosa cells, theca cells, and the ovarian surface epithelium. These functions support a role for ATP as an important intra-ovarian messenger, and open new lines of research that can improve our understanding of mechanisms regulating ovarian function and the fine-tuning of folliculogenesis.
Collapse
Affiliation(s)
- Angélica S Martínez-Ramírez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla Querétaro, Querétaro, México
| | - Francisco G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla Querétaro, Querétaro, México
| |
Collapse
|
11
|
Abstract
Adenosine-5'-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5'-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5'-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5'-triphosphate hydrolysis to adenosine-5'-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling.
Collapse
|
12
|
Wu CH, Chen MJ, Shieh TM, Wang KL, Wu YT, Hsia SM, Chiang W. Potential benefits of adlay on hyperandrogenism in human chorionic gonadotropin-treated theca cells and a rodent model of polycystic ovary syndrome. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
13
|
Lamarca A, Gella A, Martiañez T, Segura M, Figueiro-Silva J, Grijota-Martinez C, Trullas R, Casals N. Uridine 5'-triphosphate promotes in vitro Schwannoma cell migration through matrix metalloproteinase-2 activation. PLoS One 2014; 9:e98998. [PMID: 24905332 PMCID: PMC4048211 DOI: 10.1371/journal.pone.0098998] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/09/2014] [Indexed: 02/07/2023] Open
Abstract
In response to peripheral nerve injury, Schwann cells adopt a migratory phenotype and modify the extracellular matrix to make it permissive for cell migration and axonal re-growth. Uridine 5′-triphosphate (UTP) and other nucleotides are released during nerve injury and activate purinergic receptors expressed on the Schwann cell surface, but little is known about the involvement of purine signalling in wound healing. We studied the effect of UTP on Schwannoma cell migration and wound closure and the intracellular signaling pathways involved. We found that UTP treatment induced Schwannoma cell migration through activation of P2Y2 receptors and through the increase of extracellular matrix metalloproteinase-2 (MMP-2) activation and expression. Knockdown P2Y2 receptor or MMP-2 expression greatly reduced wound closure and MMP-2 activation induced by UTP. MMP-2 activation evoked by injury or UTP was also mediated by phosphorylation of all 3 major mitogen-activated protein kinases (MAPKs): JNK, ERK1/2, and p38. Inhibition of these MAPK pathways decreased both MMP-2 activation and cell migration. Interestingly, MAPK phosphorylation evoked by UTP exhibited a biphasic pattern, with an early transient phosphorylation 5 min after treatment, and a late and sustained phosphorylation that appeared at 6 h and lasted up to 24 h. Inhibition of MMP-2 activity selectively blocked the late, but not the transient, phase of MAPK activation. These results suggest that MMP-2 activation and late MAPK phosphorylation are part of a positive feedback mechanism to maintain the migratory phenotype for wound healing. In conclusion, our findings show that treatment with UTP stimulates in vitro Schwannoma cell migration and wound repair through a MMP-2-dependent mechanism via P2Y2 receptors and MAPK pathway activation.
Collapse
Affiliation(s)
- Aloa Lamarca
- Department of Basic Sciences, Facultat de Medicina, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Alejandro Gella
- Department of Basic Sciences, Facultat de Medicina, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
- * E-mail:
| | - Tania Martiañez
- Department of Basic Sciences, Facultat de Medicina, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Mònica Segura
- Department of Basic Sciences, Facultat de Medicina, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Joana Figueiro-Silva
- Neurobiology Unit, Institut d′Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas, Institut d′Investigacions Biomèdiques Pi i Sunyer, Barcelona, Spain
| | - Carmen Grijota-Martinez
- Department of Basic Sciences, Facultat de Medicina, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Ramón Trullas
- Neurobiology Unit, Institut d′Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas, Institut d′Investigacions Biomèdiques Pi i Sunyer, Barcelona, Spain
| | - Núria Casals
- Department of Basic Sciences, Facultat de Medicina, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Burnstock G. Purinergic signalling in endocrine organs. Purinergic Signal 2014; 10:189-231. [PMID: 24265070 PMCID: PMC3944044 DOI: 10.1007/s11302-013-9396-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 01/08/2023] Open
Abstract
There is widespread involvement of purinergic signalling in endocrine biology. Pituitary cells express P1, P2X and P2Y receptor subtypes to mediate hormone release. Adenosine 5'-triphosphate (ATP) regulates insulin release in the pancreas and is involved in the secretion of thyroid hormones. ATP plays a major role in the synthesis, storage and release of catecholamines from the adrenal gland. In the ovary purinoceptors mediate gonadotrophin-induced progesterone secretion, while in the testes, both Sertoli and Leydig cells express purinoceptors that mediate secretion of oestradiol and testosterone, respectively. ATP released as a cotransmitter with noradrenaline is involved in activities of the pineal gland and in the neuroendocrine control of the thymus. In the hypothalamus, ATP and adenosine stimulate or modulate the release of luteinising hormone-releasing hormone, as well as arginine-vasopressin and oxytocin. Functionally active P2X and P2Y receptors have been identified on human placental syncytiotrophoblast cells and on neuroendocrine cells in the lung, skin, prostate and intestine. Adipocytes have been recognised recently to have endocrine function involving purinoceptors.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
15
|
Burnstock G. Purinergic signalling in the reproductive system in health and disease. Purinergic Signal 2014; 10:157-87. [PMID: 24271059 PMCID: PMC3944041 DOI: 10.1007/s11302-013-9399-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/16/2022] Open
Abstract
There are multiple roles for purinergic signalling in both male and female reproductive organs. ATP, released as a cotransmitter with noradrenaline from sympathetic nerves, contracts smooth muscle via P2X1 receptors in vas deferens, seminal vesicles, prostate and uterus, as well as in blood vessels. Male infertility occurs in P2X1 receptor knockout mice. Both short- and long-term trophic purinergic signalling occurs in reproductive organs. Purinergic signalling is involved in hormone secretion, penile erection, sperm motility and capacitation, and mucous production. Changes in purinoceptor expression occur in pathophysiological conditions, including pre-eclampsia, cancer and pain.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
16
|
Arellano RO, Robles-Martínez L, Serrano-Flores B, Vázquez-Cuevas F, Garay E. Agonist-activated Ca2+ influx and Ca2+ -dependent Cl- channels in Xenopus ovarian follicular cells: functional heterogeneity within the cell monolayer. J Cell Physiol 2012; 227:3457-70. [PMID: 22213197 DOI: 10.1002/jcp.24046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Xenopus follicles are endowed with specific receptors for ATP, ACh, and AII, transmitters proposed as follicular modulators of gamete growth and maturation in several species. Here, we studied ion-current responses elicited by stimulation of these receptors and their activation mechanisms using the voltage-clamp technique. All agonists elicited Cl(-) currents that depended on coupling between oocyte and follicular cells and on an increase in intracellular Ca(2+) concentration ([Ca(2+) ](i)), but they differed in their activation mechanisms and in the localization of the molecules involved. Both ATP and ACh generated fast Cl(-) (F(Cl)) currents, while AII activated an oscillatory response; a robust Ca(2+) influx linked specifically to F(Cl) activation elicited an inward current (I(iw,Ca)) which was carried mainly by Cl(-) ions, through channels with a sequence of permeability of SCN(-) > I(-) > Br(-) > Cl(-). Like F(Cl), I(iw,Ca) was not dependent on oocyte [Ca(2+) ](i) ; instead both were eliminated by preventing [Ca(2+) ](i) increase in the follicular cells, and also by U73122 and 2-APB, drugs that inhibit the phospolipase C (PLC) pathway. The results indicated that F(Cl) and I(iw,Ca) were produced by the expected, PLC-stimulated Ca(2+) -release and Ca(2+) -influx, respectively, and by the opening of I(Cl(Ca)) channels located in the follicular cells. Given their pharmacological characteristics and behavior in conditions of divalent cation deprivation, Ca(2+) -influx appeared to be driven through store-operated, calcium-like channels. The AII response, which is also known to require PLC activation, did not activate I(iw,Ca) and was strictly dependent on oocyte [Ca(2+) ](i) increase; thus, ATP and ACh receptors seem to be expressed in a population of follicular cells different from that expressing AII receptors, which were coupled to the oocyte through distinct gap-junction channels.
Collapse
Affiliation(s)
- Rogelio O Arellano
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla Querétaro, México.
| | | | | | | | | |
Collapse
|