1
|
Friese-Hamim M, Ortiz Ruiz MJ, Bogatyrova O, Keil M, Rohdich F, Blume B, Leuthner B, Czauderna F, Hahn D, Jabs J, Jaehrling F, Heinrich T, Kellner R, Chan K, Tong AH, Wienke D, Moffat J, Blaukat A, Zenke FT. Novel Methionine Aminopeptidase 2 Inhibitor M8891 Synergizes with VEGF Receptor Inhibitors to Inhibit Tumor Growth of Renal Cell Carcinoma Models. Mol Cancer Ther 2024; 23:159-173. [PMID: 37940144 PMCID: PMC10831447 DOI: 10.1158/1535-7163.mct-23-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/05/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
N-terminal processing by methionine aminopeptidases (MetAP) is a crucial step in the maturation of proteins during protein biosynthesis. Small-molecule inhibitors of MetAP2 have antiangiogenic and antitumoral activity. Herein, we characterize the structurally novel MetAP2 inhibitor M8891. M8891 is a potent, selective, reversible small-molecule inhibitor blocking the growth of human endothelial cells and differentially inhibiting cancer cell growth. A CRISPR genome-wide screen identified the tumor suppressor p53 and MetAP1/MetAP2 as determinants of resistance and sensitivity to pharmacologic MetAP2 inhibition. A newly identified substrate of MetAP2, translation elongation factor 1-alpha-1 (EF1a-1), served as a pharmacodynamic biomarker to follow target inhibition in cell and mouse studies. Robust angiogenesis and tumor growth inhibition was observed with M8891 monotherapy. In combination with VEGF receptor inhibitors, tumor stasis and regression occurred in patient-derived xenograft renal cell carcinoma models, particularly those that were p53 wild-type, had Von Hippel-Landau gene (VHL) loss-of-function mutations, and a mid/high MetAP1/2 expression score.
Collapse
Affiliation(s)
- Manja Friese-Hamim
- Research Unit Oncology, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Maria J. Ortiz Ruiz
- Research Unit Oncology, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Olga Bogatyrova
- Research Unit Oncology, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Marina Keil
- Research Unit Oncology, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Felix Rohdich
- Discovery Technologies, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Beatrix Blume
- Discovery Technologies, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Birgitta Leuthner
- Discovery Technologies, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Frank Czauderna
- Research Unit Oncology, EMD Serono Research & Development Institute Inc., Billerica, Massachusetts
| | - Diane Hahn
- Research Unit Oncology, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Julia Jabs
- Research Unit Oncology, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Frank Jaehrling
- Research Unit Oncology, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Timo Heinrich
- Discovery Technologies, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Roland Kellner
- Discovery Technologies, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Katherine Chan
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Amy H.Y. Tong
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Dirk Wienke
- Research Unit Oncology, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Andree Blaukat
- Research Unit Oncology, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Frank T. Zenke
- Research Unit Oncology, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| |
Collapse
|
2
|
Izumi H, Ishimoto T, Yamamoto H, Mori H. Application of hairless mouse strain to bioluminescence imaging of Arc expression in mouse brain. BMC Neurosci 2017; 18:18. [PMID: 28114886 PMCID: PMC5260114 DOI: 10.1186/s12868-017-0335-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 01/12/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Bioluminescence imaging (BLI) is a powerful technique for monitoring the temporal and spatial dynamics of gene expression in the mouse brain. However, the black fur, skin pigmentation and hair regrowth after depilation of mouse interfere with BLI during developmental and daily examination. The aim of this study was to extend the application of Arc-Luc transgenic (Tg) mice to the BLI of neuronal activity in the mouse brain by introducing the hairless (HL) gene and to examine Arc-Luc expression at various developmental stages without interference from black fur, skin pigmentation, and hair regrowth. RESULTS The Arc-Luc Tg HL mice were established by crossing the Tg C57BL/6 mouse strain with the HL mouse strain. Under physiological and pathological conditions, BLI was performed to detect the signal intensity changes at various developmental stages and at an interval of <7 days. The established Arc-Luc Tg HL mice exhibited clear and stable photon signals from the brain without interference during development. After surgical monocular deprivation during visual-critical period, large signal intensity changes in bioluminescence were observed in the mouse visual cortex. Exposure of mice to a novel object changed the photon distribution in the caudal and rostral cerebral areas. The temporal pattern of kainic-acid-induced Arc-Luc expression showed biphasic changes in signal intensity over 24 h. CONCLUSIONS This study showed the advantages of using the mutant HL gene in BLI of Arc expression in the mouse brain at various developmental stages. Thus, the use of the Arc-Luc Tg HL mice enabled the tracking of neuronal-activity-dependent processes over a wide range from a focal area to the entire brain area with various time windows.
Collapse
Affiliation(s)
- Hironori Izumi
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Tetsuya Ishimoto
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Hiroshi Yamamoto
- Division of Animal Resources and Development, Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
3
|
Shahsavari S, Noormohammadi Z, Zare Karizi S. Association of kinase insert domain-containing receptor (KDR) gene polymorphism/ haplotypes with recurrent spontaneous abortion and genetic structure. Int J Reprod Biomed 2015; 13:755-64. [PMID: 27141535 PMCID: PMC4827512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Recurrent spontaneous abortion is one of the diseases that can lead to physical, psychological, and, economical problems for both individuals and society. Recently a few numbers of genetic polymorphisms in kinase insert domain-containing receptor (KDR) gene are examined that can endanger the life of the fetus in pregnant women. OBJECTIVE The risk of KDR gene polymorphisms was investigated in Iranian women with idiopathic recurrent spontaneous abortion (RSA). MATERIALS AND METHODS A case controlled study was performed. One hundred idiopathic recurrent spontaneous abortion patients with at least two consecutive pregnancy losses before 20 weeks of gestational age with normal karyotypes were included in the study. Also, 100 healthy women with at least one natural pregnancy were studied as control group. Two functional SNPs located in KDR gene; rs1870377 (Q472H), and rs2305948 (V297I) as well as one tag SNP in the intron region (rs6838752) were genotyped by using PCR based restriction fragment length polymorphism (PCR-RFLP) technique. Haplotype frequency was determined for these three SNPs' genotypes. Analysis of genetic STRUCTURE and K means clustering were performed to study genetic variation. RESULTS Functional SNP (rs1870377) was highly linked to tag SNP (rs6838752) (D´ value=0. 214; χ(2) = 16.44, p<0. 001). K means clustering showed that k = 8 as the best fit for the optimal number of genetic subgroups in our studied materials. This result was in agreement with Neighbor Joining cluster analysis. CONCLUSION In our study, the allele and genotype frequencies were not associated with RSA between patient and control individuals. Inconsistent results in different populations with different allele frequencies among RSA patients and controls may be due to ethnic variation and used sample size.
Collapse
|
4
|
Shahsavari S, Noormohammadi Z, Zare Karizi S. Association of kinase insert domain-containing receptor (KDR) gene polymorphism/ haplotypes with recurrent spontaneous abortion and genetic structure. Int J Reprod Biomed 2015. [DOI: 10.29252/ijrm.13.12.755] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
5
|
Vascular endothelial growth factor: therapeutic possibilities and challenges for the treatment of ischemia. Cytokine 2014; 71:385-93. [PMID: 25240960 DOI: 10.1016/j.cyto.2014.08.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/02/2014] [Accepted: 08/19/2014] [Indexed: 12/16/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a notable chemokine that plays critical roles in angiogenesis and vasculogenesis. The contemporary body of literature contains a substantial amount of information regarding its chemical properties as well as its fundamental role in vascular development. Studies strongly indicate its potential use as a therapeutic agent, especially in the vascular restoration of injured and ischemic tissues. VEGF therapy could be most beneficial for diseases whose pathologies revolve around tissue inflammation and necrosis, such as myocardial infarction and stroke, as well as ischemic bowel diseases such as acute mesenteric ischemia and necrotizing enterocolitis. However, a delicate balance exists between the therapeutic benefits of VEGF and the hazards of tumor growth and neo-angiogenesis. Effective future research surrounding VEGF may allow for the development of effective therapies for ischemia which simultaneously limit its more deleterious side effects. This review will: (1) summarize the current understanding of the molecular aspects and function of VEGF, (2) review potential benefits of its use in medical therapy, (3) denote its role in tumorigenesis and inflammation when overexpressed, and (4) elucidate the qualities which make it a viable compound of study for diagnostic and therapeutic applications.
Collapse
|
6
|
Escudero C, Roberts JM, Myatt L, Feoktistov I. Impaired adenosine-mediated angiogenesis in preeclampsia: potential implications for fetal programming. Front Pharmacol 2014; 5:134. [PMID: 24926270 PMCID: PMC4046493 DOI: 10.3389/fphar.2014.00134] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/16/2014] [Indexed: 01/24/2023] Open
Abstract
Preeclampsia is a pregnancy-specific syndrome, defined by such clinical hallmarks as the onset of maternal hypertension and proteinuria after 20 weeks of gestation. The syndrome is also characterized by impaired blood flow through the utero-placental circulation and relative placental ischemia, which in turn, may generate feto-placental endothelial dysfunction. Endothelial dysfunction in offspring born from preeclamptic pregnancies has been associated with an increased risk of cardiovascular disease, including hypertension, later in life. Interestingly, diminished endothelial function, manifested by low angiogenic capacity, leads to hypertension in animal studies. Recently, we have shown that the adenosine receptor A2A/nitric oxide/vascular endothelial growth factor axis is reduced in human umbilical vein endothelial cells derived from preeclamptic pregnancies, an effect correlated with gestational age at onset of preeclampsia. We and others suggested that impaired vascular function might be associated with high cardiovascular risk in offspring exposed to pregnancy diseases. However, we are not aware of any studies that examine impaired adenosine-mediated angiogenesis as a possible link to hypertension in offspring born from preeclamptic pregnancies. In this review, we present evidence supporting the hypothesis that reduced adenosine-mediated angiogenesis during preeclamptic pregnancies might be associated with development of hypertension in the offspring.
Collapse
Affiliation(s)
- Carlos Escudero
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis, Group of Research and Innovation in Vascular Health, Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío Chillán, Chile
| | - James M Roberts
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, Department of Epidemiology and Clinical and Translational Science Institute, University of Pittsburgh Pittsburgh, PA, USA
| | - Leslie Myatt
- Center for Pregnancy and Newborn Research, University of Texas Health Science Center San Antonio, TX, USA
| | - Igor Feoktistov
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Nashville, TN, USA ; Department of Pharmacology, School of Medicine, Vanderbilt University Nashville, TN, USA
| |
Collapse
|
7
|
Denbeigh JM, Nixon BA, Hudson JM, Puri MC, Foster FS. VEGFR2-targeted molecular imaging in the mouse embryo: an alternative to the tumor model. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:389-99. [PMID: 24342913 DOI: 10.1016/j.ultrasmedbio.2013.09.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 05/13/2023]
Abstract
As a tumor surrogate, the mouse embryo presents as an excellent alternative for examining the binding of angiogenesis-targeting microbubbles and assessing the quantitative nature of molecular ultrasound. We establish the validity of this model by developing a robust method to study microbubble kinetic behavior and investigate the reproducibility of targeted binding in the murine embryo. Vascular endothelial growth factor receptor 2 (VEGFR2)-targeted (MBV), rat immunoglobulin G2 (IgG2) control antibody-targeted (MBC) and untargeted (MBU) microbubbles were introduced into vasculature of living mouse embryos. Non-linear contrast-specific and B-mode ultrasound imaging, performed at 21 MHz with a Vevo-2100 scanner, was used to collect basic perfusion parameters and contrast mean power ratios for all bubble types. We observed a twofold increase (p < 0.001) in contrast mean power ratios for MBV (4.14 ± 1.78) compared with those for MBC (1.95 ± 0.78) and MBU (1.79 ± 0.45). Targeted imaging of endogenous endothelial cell surface markers in mouse embryos is possible with labeled microbubbles. The mouse embryo thus presents as a versatile model for testing the performance of ultrasound molecular targeting, where further development of quantitative imaging techniques may enable rapid evaluations of biomarker expression in studies of vascular development, disease and angiogenesis.
Collapse
Affiliation(s)
- Janet M Denbeigh
- Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Brian A Nixon
- Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John M Hudson
- Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mira C Puri
- Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - F Stuart Foster
- Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Rah H, Jeon YJ, Lee BE, Choi DH, Yoon TK, Lee WS, Kim NK. Association of kinase insert domain-containing receptor (KDR) gene polymorphisms with idiopathic recurrent spontaneous abortion in Korean women. Fertil Steril 2012; 99:753-760.e8. [PMID: 23158831 DOI: 10.1016/j.fertnstert.2012.10.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 10/11/2012] [Accepted: 10/23/2012] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate whether kinase insert domain-containing receptor (KDR) gene polymorphisms are risk factors for recurrent spontaneous abortion (RSA) in Korean women. DESIGN Case-control study. SETTING University hospital. PATIENT(S) Three hundred twenty-seven idiopathic RSA patients and 230 controls with Korean ethnicity. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) The KDR -604T→C (rs2071559), 1192G→A (rs2305948), and 1719A→T (rs1870377) polymorphisms were assessed. RESULT(S) KDR -604TC and TC+CC genotypes were more prevalent in RSA patients than in controls (adjusted odds ratio [AOR] = 2.091 and 2.076, respectively). KDR -604TC+CC/1192GG, -604TC+CC/1719AA, and -604TC+CC/1719TA+TT combined genotypes exhibited higher frequencies in RSA patients (AOR = 2.422, 2.611, and 2.216, respectively). KDR -604C/1192G/1719A, -604C/1192G/1719T, -604C/1192G, -604C/1719A, and -604C/1719T haplotype frequencies were higher in RSA patients (OR = 1.778, 2.659, 2.089, 1.678, and 1.806, respectively), whereas -604T/1192G/1719A, -604T/1192G, and -604T/1719A haplotype frequencies were lower in RSA patients (OR = 2.422, 2.611, and 2.216, respectively). No association was found between RSA and KDR 1192G→A or 1719A→T. CONCLUSION(S) An association between the KDR -604T→C polymorphism and RSA was found in Korean women. Carriers of the -604C variant allele were more frequent among RSA patients than among controls, suggesting that KDR -604C may confer RSA risk. The association of 1719A→T with RSA that was found in Taiwanese Han women was not observed in Korean women.
Collapse
Affiliation(s)
- Hyungchul Rah
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, South Korea
| | | | | | | | | | | | | |
Collapse
|
9
|
Greene JM, Dunaway CW, Bowers SD, Rude BJ, Feugang JM, Ryan PL. Dietary L-arginine supplementation during gestation in mice enhances reproductive performance and Vegfr2 transcription activity in the fetoplacental unit. J Nutr 2012; 142:456-60. [PMID: 22279135 DOI: 10.3945/jn.111.154823] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Regarded as one of the most versatile amino acids, arginine serves as a precursor for many molecules and has been reported to improve the reproductive performance of rats and pigs. To this end, we sought to determine if dietary L-arginine alters fetoplacental vascular endothelial growth factor receptor-2 (Vegfr2) transcription activity. Eighteen wild-type FVB/N female mice were bred to homozygous FVB/N-Tg(Vegfr2-luc)-Xen male mice. Bred female mice received 1 of 2 experimental diets: one supplemented with 2.00% (wt:wt) L-arginine (+Arg) or 1 supplemented with 4.10% (wt:wt) alanine (+Ala) to serve as an isonitrogenous control for +Arg. In addition, 6 mice were fed a nonsupplemented control (Con) diet to normalize bioluminescent imaging data. All data were analyzed using ANOVA followed by Fisher's least significant difference. Total feed intake did not differ between groups; however, mice in the +Arg group consumed more arginine (P < 0.05). Arginine supplementation increased weight gain during the latter one-third of gestation (d 12- 18), total litter size, number of pups born alive, number of placental attachment sites, litter birth weight, and litter weight of pups born alive but decreased the individual birth weights (P < 0.05). During d 12-18, arginine supplementation increased (P < 0.05) the mean total Vegfr2 transcription activity and Vegfr2 transcription activity corrected for fetoplacental mass. Moreover, mice in the +Arg group had an earlier rise in Vegfr2 transcription activity. In conclusion, our results demonstrate that the beneficial effect of dietary L-arginine supplementation on mammalian reproduction is associated with enhanced Vegfr2 transcription activity in fetoplacental tissues.
Collapse
Affiliation(s)
- Jonathan M Greene
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | | | | | | | | | | |
Collapse
|