1
|
Wang Y, Yang N, Zhang J, Han W, Li X. Construction and validation of a postoperative hypothermia prediction model in elderly patients undergoing colorectal surgery. Heliyon 2024; 10:e32391. [PMID: 38975114 PMCID: PMC11225767 DOI: 10.1016/j.heliyon.2024.e32391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024] Open
Abstract
Background Postoperative hypothermia (POH) is a common issue in colorectal surgery patients, leading to complications. This study aimed to develop and validate a predictive model for identifying POH in colorectal surgery patients. Methods A retrospective analysis of 1,316 patients who underwent colorectal surgery between June 2020 and September 2022 was conducted using institutional medical records. Intraoperative core temperatures and potential influencing factors were collected, and regression analysis was used to identify risk factors for POH and create a model. The model's performance was evaluated using the receiver operating characteristic curve analysis. Results Intraoperative hypothermia occurred in 51.5 % of patients. Significant predictors of POH included gender, alcohol consumption, surgery duration, platelet count, and age. The constructed model included factors like fluid intake, platelets, cigarette use, alcohol consumption, surgery type, muscle relaxants, age, ABSI, and gender. The model showed good predictive performance with an area under the ROC curve of 0.981 and a Hosmer-Lemeshow test p-value of 0.676. The Youden index, sensitivity, specificity, and practical application rate were 0.602, 0.790, 0.812, and 98.81 %, respectively. Conclusion This study developed a predictive model for POH in colorectal surgery patients, considering individual factors and exploring underlying causes. Understanding risk factors and consequences of POH is crucial for nurses and perioperative professionals in clinical practice.
Collapse
Affiliation(s)
- Yonghong Wang
- Department of Anesthesiology and Surgery, Capital Medical University Electric Power Teaching Hospital, No. 1 West Lane Tai Ping Bridge, Fengtai District, Beijing, 100073, China
| | - Na Yang
- Department of Outpatient, First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510062, Guangdong Province, China
| | - Jiying Zhang
- Department of Anesthesiology and Surgery, Capital Medical University Electric Power Teaching Hospital, No. 1 West Lane Tai Ping Bridge, Fengtai District, Beijing, 100073, China
| | - Wenyong Han
- Department of Anesthesiology and Surgery, Capital Medical University Electric Power Teaching Hospital, No. 1 West Lane Tai Ping Bridge, Fengtai District, Beijing, 100073, China
| | - Xia Li
- Department of Anesthesiology and Surgery, Capital Medical University Electric Power Teaching Hospital, No. 1 West Lane Tai Ping Bridge, Fengtai District, Beijing, 100073, China
| |
Collapse
|
2
|
Byambaa S, Uosaki H, Ohmori T, Hara H, Endo H, Nureki O, Hanazono Y. Non-viral ex vivo genome-editing in mouse bona fide hematopoietic stem cells with CRISPR/Cas9. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 20:451-462. [PMID: 33614821 PMCID: PMC7873578 DOI: 10.1016/j.omtm.2021.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/06/2021] [Indexed: 12/26/2022]
Abstract
We conducted two lines of genome-editing experiments of mouse hematopoietic stem cells (HSCs) with the clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein 9 (Cas9). First, to evaluate the genome-editing efficiency in mouse bona fide HSCs, we knocked out integrin alpha 2b (Itga2b) with Cas9 ribonucleoprotein (Cas9/RNP) and performed serial transplantation in mice. The knockout efficiency was estimated at approximately 15%. Second, giving an example of X-linked severe combined immunodeficiency (X-SCID) as a target genetic disease, we showed a proof-of-concept of universal gene correction, allowing rescue of most of X-SCID mutations, in a completely non-viral setting. We inserted partial cDNA of interleukin-2 receptor gamma chain (Il2rg) into intron 1 of Il2rg via non-homologous end-joining (NHEJ) with Cas9/RNP and a homology-independent targeted integration (HITI)-based construct. Repaired HSCs reconstituted T lymphocytes and thymuses in SCID mice. Our results show that a non-viral genome-editing of HSCs with CRISPR/Cas9 will help cure genetic diseases.
Collapse
Affiliation(s)
- Suvd Byambaa
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Hideki Uosaki
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Tsukasa Ohmori
- Division of Medical Biochemistry, Department of Biochemistry, School of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Hiromasa Hara
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Hitoshi Endo
- Division of Functional Biochemistry, Department of Biochemistry, School of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yutaka Hanazono
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| |
Collapse
|
3
|
Saito H, Hayakawa M, Kamoshita N, Yasumoto A, Suzuki-Inoue K, Yatomi Y, Ohmori T. Establishment of a megakaryoblastic cell line for conventional assessment of platelet calcium signaling. Int J Hematol 2020; 111:786-794. [PMID: 32180119 DOI: 10.1007/s12185-020-02853-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 10/24/2022]
Abstract
Platelet function tests utilizing agonists or patient serum are generally performed to assess platelet activation ex vivo. However, inter-individual differences in platelet reactivity and donor requirements make it difficult to standardize these tests. Here, we established a megakaryoblastic cell line for the conventional assessment of platelet activation. We first compared intracellular signaling pathways using CD32 crosslinking in several megakaryoblastic cell lines, including CMK, UT-7/TPO, and MEG-01 cells. We confirmed that CD32 was abundantly expressed on the cell surface, and that intracellular calcium mobilization and tyrosine phosphorylation occurred after CD32 crosslinking. We next employed GCaMP6s, a highly sensitive calcium indicator, to facilitate the detection of calcium mobilization by transducing CMK and MEG-01 cells with a plasmid harboring GCaMP6s under the control of the human elongation factor-1α promoter. Cells that stably expressed GCaMP6s emitted enhanced green fluorescent protein fluorescence in response to intracellular calcium mobilization following agonist stimulation in the absence of pretreatment. In summary, we have established megakaryoblastic cell lines that mimic platelets by mobilizing intracellular calcium in response to several agonists. These cell lines can potentially be utilized in high-throughput screening assays for the discovery of new antiplatelet drugs or diagnosis of disorders caused by platelet-activating substances.
Collapse
Affiliation(s)
- Hiroshi Saito
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, 329-0498, Japan
| | - Morisada Hayakawa
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, 329-0498, Japan
| | - Nobuhiko Kamoshita
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, 329-0498, Japan
| | - Atsushi Yasumoto
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Tsukasa Ohmori
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, 329-0498, Japan.
| |
Collapse
|
4
|
Liu H, Zhu L, Dudiki T, Gabanic B, Good L, Podrez EA, Cherepanova OA, Qin J, Byzova TV. Macrophage Migration and Phagocytosis Are Controlled by Kindlin-3's Link to the Cytoskeleton. THE JOURNAL OF IMMUNOLOGY 2020; 204:1954-1967. [PMID: 32094207 DOI: 10.4049/jimmunol.1901134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/15/2020] [Indexed: 01/08/2023]
Abstract
Major myeloid cell functions from adhesion to migration and phagocytosis are mediated by integrin adhesion complexes, also known as adhesome. The presence of a direct integrin binding partner Kindlin-3 is crucial for these functions, and its lack causes severe immunodeficiency in humans. However, how Kindlin-3 is incorporated into the adhesome and how its function is regulated is poorly understood. In this study, using nuclear magnetic resonance spectroscopy, we show that Kindlin-3 directly interacts with paxillin (PXN) and leupaxin (LPXN) via G43/L47 within its F0 domain. Surprisingly, disruption of Kindlin-3-PXN/LPXN interactions in Raw 264.7 macrophages promoted cell spreading and polarization, resulting in upregulation of both general cell motility and directed cell migration, which is in a drastic contrast to the consequences of Kindlin-3 knockout. Moreover, disruption of Kindlin-3-PXN/LPXN binding promoted the transition from mesenchymal to amoeboid mode of movement as well as augmented phagocytosis. Thus, these novel links between Kindlin-3 and key adhesome members PXN/LPXN limit myeloid cell motility and phagocytosis, thereby providing an important immune regulatory mechanism.
Collapse
Affiliation(s)
- Huan Liu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Liang Zhu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | - Tejasvi Dudiki
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Benjamin Gabanic
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Logan Good
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Eugene A Podrez
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Olga A Cherepanova
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | - Jun Qin
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | - Tatiana V Byzova
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195;
| |
Collapse
|
5
|
Lin J, Tan Z, Yao H, Hu X, Zhang D, Zhao Y, Xiong J, Dou B, Zhu X, Wu Z, Guo Y, Kang D, Du L. Retrograde Inferior Vena caval Perfusion for Total Aortic arch Replacement Surgery (RIVP-TARS): study protocol for a multicenter, randomized controlled trial. Trials 2019; 20:232. [PMID: 31014386 PMCID: PMC6480889 DOI: 10.1186/s13063-019-3319-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/25/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND During total aortic arch replacement surgery (TARS) for patients with acute type A aortic dissection, the organs in the lower body, such as the viscera and spinal cord, are at risk of ischemia even when antegrade cerebral perfusion (ACP) is performed. Combining ACP with retrograde inferior vena caval perfusion (RIVP) during TARS may improve outcomes by providing the lower body with oxygenated blood. METHODS This study is designed as a multicenter, computer-generated, randomized controlled, assessor-blind, parallel-group study with a superiority framework in patients scheduled for TARS. A total of 636 patients will be randomized on a 1:1 basis to a moderate hypothermia circulatory arrest (MHCA) group, which will receive selective ACP with moderate hypothermia during TARS; or to an RIVP group, which will receive the combination of RIVP and selective ACP under moderate hypothermia during TARS. The primary outcome will be a composite of early mortality and major complications, including paraplegia, postoperative renal failure, severe liver dysfunction, and gastrointestinal complications. All patients will be analyzed according to the intention-to-treat protocol. DISCUSSION This study aims to assess whether RIVP combined with ACP leads to superior outcomes than ACP alone for patients undergoing TARS under moderate hypothermia. This study seeks to provide high-quality evidence for RIVP to be used in patients with acute type A aortic dissection undergoing TARS. TRIAL REGISTRATION Clinicaltrials.gov, ID: NCT03607786 . Registered on 30 July 2018.
Collapse
Affiliation(s)
- Jing Lin
- Department of Anesthesiology, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Chengdu, 610041 Sichuan Province China
| | - Zhaoxia Tan
- Department of Anesthesiology, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Chengdu, 610041 Sichuan Province China
| | - Hao Yao
- Cardiovascular Center of the Second Affiliated Hospital, Nanjing Medical University, No. 121, Jiangjiaruan Road, Gulou District, Nanjing, 210000 Jiangsu Province China
| | - Xiaolin Hu
- Department of Anesthesiology, First Affiliated Hospital of University of South China, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, 510000 Guangdong Province China
| | - Dafa Zhang
- Department of Thoracic Cardiovascular Surgery, First Affiliated Hospital, Wannan Medical University, No. 2, Chushan West Road, Jinghu District, Wuhu, 230000 Anhui Province China
| | - Yuan Zhao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, No. 139, People’s Road, Furong District, Changsha, 410000 Hunan Province China
| | - Jiyue Xiong
- Department of Anesthesiology, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Chengdu, 610041 Sichuan Province China
| | - Bo Dou
- Department of Anesthesiology, First Affiliated Hospital of University of South China, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, 510000 Guangdong Province China
| | - Xueshuang Zhu
- Department of Thoracic Cardiovascular Surgery, First Affiliated Hospital, Wannan Medical University, No. 2, Chushan West Road, Jinghu District, Wuhu, 230000 Anhui Province China
| | - Zhong Wu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041 Sichuan Province China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041 Sichuan Province China
| | - Deying Kang
- Department of Evidence-based Medicine and Clinical Epidemiology, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041 Sichuan Province China
| | - Lei Du
- Department of Anesthesiology, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Chengdu, 610041 Sichuan Province China
| |
Collapse
|
6
|
Sai C, Yunhan J, Zhao J, Yu Z, Yun Z, Zhezhe C, Fuqin T, Yingbin X, Ruiyan M. Cyclin Dependent Kinase 1 (CDK1) Activates Cardiac Fibroblasts via Directly Phosphorylating Paxillin at Ser244. Int Heart J 2019; 60:374-383. [PMID: 30745530 DOI: 10.1536/ihj.18-073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Atrial fibrillation has caused severe burden for people worldwide. Differentiation of fibroblasts into myofibroblasts, and consequent progress in atrial structural remodeling have been considered the basis for persistent atrial fibrillation, yet little is known about the molecular mechanisms underlying the process. Here, we show that cyclin-dependent kinase 1 (CDK1) is activated in atrial fibroblasts from patients with atrial fibrillation (AFPAF) and in platelet derived growth factor BB (PDGF-BB)-treated atrial fibroblasts from patients with sinus rhythm (AFPSR). We also demonstrate that inhibition of CDK1 suppresses fibroblast differentiation and focal adhesion (FA) complex formation. The FA protein paxillin is phosphorylated directly at Ser244 by CDK1. Importantly, transfection of a paxillin construct harboring a Ser to Ala mutation causes FA complex disassembly and greatly inhibits fibroblast activation. AFPSRs applied with a lentiviral vector carrying the shRNA sequence of paxillin dramatically prevents PDGF-BB induced functional activation. Taken together, all these results suggest that phosphorylation of paxillin at Ser244 by CDK1 is a key mechanism in fibroblast differentiation and could eventually assist atrial fibrosis.
Collapse
Affiliation(s)
- Chen Sai
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University
| | - Jiang Yunhan
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University
| | - Jian Zhao
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University
| | - Zhu Yu
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University
| | - Zhu Yun
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University
| | - Cao Zhezhe
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University
| | - Tang Fuqin
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University
| | - Xiao Yingbin
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University
| | - Ma Ruiyan
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University
| |
Collapse
|
7
|
Huang J, Li X, Shi X, Zhu M, Wang J, Huang S, Huang X, Wang H, Li L, Deng H, Zhou Y, Mao J, Long Z, Ma Z, Ye W, Pan J, Xi X, Jin J. Platelet integrin αIIbβ3: signal transduction, regulation, and its therapeutic targeting. J Hematol Oncol 2019; 12:26. [PMID: 30845955 PMCID: PMC6407232 DOI: 10.1186/s13045-019-0709-6] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Integrins are a family of transmembrane glycoprotein signaling receptors that can transmit bioinformation bidirectionally across the plasma membrane. Integrin αIIbβ3 is expressed at a high level in platelets and their progenitors, where it plays a central role in platelet functions, hemostasis, and arterial thrombosis. Integrin αIIbβ3 also participates in cancer progression, such as tumor cell proliferation and metastasis. In resting platelets, integrin αIIbβ3 adopts an inactive conformation. Upon agonist stimulation, the transduction of inside-out signals leads integrin αIIbβ3 to switch from a low- to high-affinity state for fibrinogen and other ligands. Ligand binding causes integrin clustering and subsequently promotes outside-in signaling, which initiates and amplifies a range of cellular events to drive essential platelet functions such as spreading, aggregation, clot retraction, and thrombus consolidation. Regulation of the bidirectional signaling of integrin αIIbβ3 requires the involvement of numerous interacting proteins, which associate with the cytoplasmic tails of αIIbβ3 in particular. Integrin αIIbβ3 and its signaling pathways are considered promising targets for antithrombotic therapy. This review describes the bidirectional signal transduction of integrin αIIbβ3 in platelets, as well as the proteins responsible for its regulation and therapeutic agents that target integrin αIIbβ3 and its signaling pathways.
Collapse
Affiliation(s)
- Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xia Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofeng Shi
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mark Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shujuan Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Ling Li
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yulan Zhou
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianhua Mao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Sino-French Research Centre for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhangbiao Long
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhixin Ma
- Clinical Prenatal Diagnosis Center, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaodong Xi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Sino-French Research Centre for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China. .,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Gao J, Huang M, Lai J, Mao K, Sun P, Cao Z, Hu Y, Zhang Y, Schulte ML, Jin C, Wang J, White GC, Xu Z, Ma YQ. Kindlin supports platelet integrin αIIbβ3 activation by interacting with paxillin. J Cell Sci 2017; 130:3764-3775. [PMID: 28954813 DOI: 10.1242/jcs.205641] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/18/2017] [Indexed: 12/30/2022] Open
Abstract
Kindlins play an important role in supporting integrin activation by cooperating with talin; however, the mechanistic details remain unclear. Here, we show that kindlins interacted directly with paxillin and that this interaction could support integrin αIIbβ3 activation. An exposed loop in the N-terminal F0 subdomain of kindlins was involved in mediating the interaction. Disruption of kindlin binding to paxillin by structure-based mutations significantly impaired the function of kindlins in supporting integrin αIIbβ3 activation. Both kindlin and talin were required for paxillin to enhance integrin activation. Interestingly, a direct interaction between paxillin and the talin head domain was also detectable. Mechanistically, paxillin, together with kindlin, was able to promote the binding of the talin head domain to integrin, suggesting that paxillin complexes with kindlin and talin to strengthen integrin activation. Specifically, we observed that crosstalk between kindlin-3 and the paxillin family in mouse platelets was involved in supporting integrin αIIbβ3 activation and in vivo platelet thrombus formation. Taken together, our findings uncover a novel mechanism by which kindlin supports integrin αIIbβ3 activation, which might be beneficial for developing safer anti-thrombotic therapies.
Collapse
Affiliation(s)
- Juan Gao
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Ming Huang
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Jingjing Lai
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Kaijun Mao
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Peisen Sun
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Zhongyuan Cao
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Youpei Hu
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Yingying Zhang
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Marie L Schulte
- Blood Research Institute, Blood Center of Wisconsin, Wisconsin, WI 53226, USA
| | - Chaozhi Jin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing 102206, China
| | - Jian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing 102206, China
| | - Gilbert C White
- Blood Research Institute, Blood Center of Wisconsin, Wisconsin, WI 53226, USA.,Department of Biochemistry, Medical College of Milwaukee, Wisconsin, WI 53226, USA
| | - Zhen Xu
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China .,Blood Research Institute, Blood Center of Wisconsin, Wisconsin, WI 53226, USA
| | - Yan-Qing Ma
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China .,Blood Research Institute, Blood Center of Wisconsin, Wisconsin, WI 53226, USA.,Department of Biochemistry, Medical College of Milwaukee, Wisconsin, WI 53226, USA
| |
Collapse
|
9
|
Abstract
Integrin αIIbβ3 is a highly abundant heterodimeric platelet receptor that can transmit information bidirectionally across the plasma membrane, and plays a critical role in hemostasis and thrombosis. Upon platelet activation, inside-out signaling pathways increase the affinity of αIIbβ3 for fibrinogen and other ligands. Ligand binding and integrin clustering subsequently stimulate outside-in signaling, which initiates and amplifies a range of cellular events driving essential platelet processes such as spreading, thrombus consolidation, and clot retraction. Integrin αIIbβ3 has served as an excellent model for the study of integrin biology, and it has become clear that integrin outside-in signaling is highly complex and involves a vast array of enzymes, signaling adaptors, and cytoskeletal components. In this review, we provide a concise but comprehensive overview of αIIbβ3 outside-in signaling, focusing on the key players involved, and how they cooperate to orchestrate this critical aspect of platelet biology. We also discuss gaps in the current understanding of αIIbβ3 outside-in signaling and highlight avenues for future investigation.
Collapse
|
10
|
Artificial MiRNA Knockdown of Platelet Glycoprotein lbα: A Tool for Platelet Gene Silencing. PLoS One 2015; 10:e0132899. [PMID: 26176854 PMCID: PMC4503784 DOI: 10.1371/journal.pone.0132899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 05/28/2015] [Indexed: 11/19/2022] Open
Abstract
In recent years, candidate genes and proteins implicated in platelet function have been identified by various genomic approaches. To elucidate their exact role, we aimed to develop a method to apply miRNA interference in platelet progenitor cells by using GPIbα as a proof-of-concept target protein. After in silico and in vitro screening of siRNAs targeting GPIbα (siGPIBAs), we developed artificial miRNAs (miGPIBAs), which were tested in CHO cells stably expressing GPIb-IX complex and megakaryoblastic DAMI cells. Introduction of siGPIBAs in CHO GPIb-IX cells resulted in 44 to 75% and up to 80% knockdown of GPIbα expression using single or combined siRNAs, respectively. Conversion of siGPIBAs to miGPIBAs resulted in reduced silencing efficiency, which could however be circumvented by tandem integration of two hairpins targeting different regions of GPIBA mRNA where 72% GPIbα knockdown was achieved. CHO GPIb-IX cells transfected with the miGPIBA construct displayed a significant decrease in their ability to aggregate characterized by lower aggregate numbers and size compared to control CHO GPIb-IX cells. More importantly, we successfully silenced GPIbα in differentiating megakaryoblastic DAMI cells that exhibited morphological changes associated with actin organization. In conclusion, we here report the successful use of miRNA technology to silence a platelet protein in megakaryoblastic cells and demonstrate its usefulness in functional assays. Hence, we believe that artificial miRNAs are suitable tools to unravel the role of a protein of interest in stem cells, megakaryocytes and platelets, thereby expanding their application to novel fields of basic and translational research.
Collapse
|
11
|
Popp M, Thielmann I, Nieswandt B, Stegner D. Normal Platelet Integrin Function in Mice Lacking Hydrogen Peroxide-Induced Clone-5 (Hic-5). PLoS One 2015; 10:e0133429. [PMID: 26172113 PMCID: PMC4501753 DOI: 10.1371/journal.pone.0133429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/26/2015] [Indexed: 11/21/2022] Open
Abstract
Integrin αIIbβ3 plays a central role in the adhesion and aggregation of platelets and thus is essential for hemostasis and thrombosis. Integrin activation requires the transmission of a signal from the small cytoplasmic tails of the α or β subunit to the large extracellular domains resulting in conformational changes of the extracellular domains to enable ligand binding. Hydrogen peroxide-inducible clone-5 (Hic-5), a member of the paxillin family, serves as a focal adhesion adaptor protein associated with αIIbβ3 at its cytoplasmic tails. Previous studies suggested Hic-5 as a novel regulator of integrin αIIbβ3 activation and platelet aggregation in mice. To assess this in more detail, we generated Hic-5-null mice and analyzed activation and aggregation of their platelets in vitro and in vivo. Surprisingly, lack of Hic-5 had no detectable effect on platelet integrin activation and function in vitro and in vivo under all tested conditions. These results indicate that Hic-5 is dispensable for integrin αIIbβ3 activation and consequently for arterial thrombosis and hemostasis in mice.
Collapse
Affiliation(s)
- Michael Popp
- Department of Experimental Biomedicine-Vascular Medicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Ina Thielmann
- Department of Experimental Biomedicine-Vascular Medicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Bernhard Nieswandt
- Department of Experimental Biomedicine-Vascular Medicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - David Stegner
- Department of Experimental Biomedicine-Vascular Medicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| |
Collapse
|