1
|
Sidorova OA, Sayed S, Paszkowski-Rogacz M, Seifert M, Camgöz A, Roeder I, Bornhäuser M, Thiede C, Buchholz F. RNAi-Mediated Screen of Primary AML Cells Nominates MDM4 as a Therapeutic Target in NK-AML with DNMT3A Mutations. Cells 2022; 11:cells11050854. [PMID: 35269477 PMCID: PMC8909053 DOI: 10.3390/cells11050854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 12/22/2022] Open
Abstract
DNA-methyltransferase 3A (DNMT3A) mutations belong to the most frequent genetic aberrations found in adult acute myeloid leukemia (AML). Recent evidence suggests that these mutations arise early in leukemogenesis, marking leukemic progenitors and stem cells, and persist through consolidation chemotherapy, providing a pool for AML relapse. Currently, there are no therapeutic approaches directed specifically against this cell population. To unravel therapeutically actionable targets in mutant DNMT3A-driven AML cells, we have performed a focused RNAi screen in a panel of 30 primary AML samples, all carrying a DNMT3A R882 mutation. As one of the strongest hits, we identified MDM4 as a gene essential for proliferation of primary DNMT3AWT/R882X AML cells. We analyzed a publicly available RNA-Seq dataset of primary normal karyotype (NK) AML samples and found a trend towards MDM4 transcript overexpression particularly in DNMT3A-mutant samples. Moreover, we found that the MDM2/4 inhibitor ALRN-6924 impairs growth of DNMT3AWT/R882X primary cells in vitro by inducing cell cycle arrest through upregulation of p53 target genes. Our results suggest that MDM4 inhibition is a potential target in NK-AML patients bearing DNMT3A R882X mutations.
Collapse
Affiliation(s)
- Olga Alexandra Sidorova
- Medical Systems Biology, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (O.A.S.); (S.S.); (M.P.-R.)
| | - Shady Sayed
- Medical Systems Biology, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (O.A.S.); (S.S.); (M.P.-R.)
| | - Maciej Paszkowski-Rogacz
- Medical Systems Biology, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (O.A.S.); (S.S.); (M.P.-R.)
| | - Michael Seifert
- Institute for Medical Informatics and Biometry (IMB), Technische Universität Dresden, 01307 Dresden, Germany; (M.S.); (I.R.)
| | - Aylin Camgöz
- Hopp Children’s Cancer Center Heidelberg, 69120 Heidelberg, Germany;
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.B.); (C.T.)
| | - Ingo Roeder
- Institute for Medical Informatics and Biometry (IMB), Technische Universität Dresden, 01307 Dresden, Germany; (M.S.); (I.R.)
| | - Martin Bornhäuser
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.B.); (C.T.)
- National Center for Tumor Diseases (NCT/UCC), 01307 Dresden, Germany
- Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), 01328 Dresden, Germany
- Medical Clinic and Polyclinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
| | - Christian Thiede
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.B.); (C.T.)
- National Center for Tumor Diseases (NCT/UCC), 01307 Dresden, Germany
- Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), 01328 Dresden, Germany
- Medical Clinic and Polyclinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
| | - Frank Buchholz
- Medical Systems Biology, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (O.A.S.); (S.S.); (M.P.-R.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.B.); (C.T.)
- National Center for Tumor Diseases (NCT/UCC), 01307 Dresden, Germany
- Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), 01328 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
- Correspondence:
| |
Collapse
|
2
|
Abstract
Resting tumor cells represent a huge challenge during anticancer therapy due to their increased treatment resistance. TNF-related apoptosis-inducing ligand (TRAIL) is a putative future anticancer drug, currently in phases I and II clinical studies. We recently showed that TRAIL is able to target leukemia stem cell surrogates. Here, we tested the ability of TRAIL to target cell cycle-arrested tumor cells. Cell cycle arrest was induced in tumor cell lines and xenografted tumor cells in G0, G1 or G2 using cytotoxic drugs, phase-specific inhibitors or RNA interference against cyclinB and E. Biochemical or molecular arrest at any point of the cell cycle increased TRAIL-induced apoptosis. Accordingly, when cell cycle arrest was disabled by addition of caffeine, the antitumor activity of TRAIL was reduced. Most important for clinical translation, tumor cells from three children with B precursor or T cell acute lymphoblastic leukemia showed increased TRAIL-induced apoptosis upon knockdown of either cyclinB or cyclinE, arresting the cell cycle in G2 or G1, respectively. Taken together and in contrast to most conventional cytotoxic drugs, TRAIL exerts enhanced antitumor activity against cell cycle-arrested tumor cells. Therefore, TRAIL might represent an interesting drug to treat static-tumor disease, for example, during minimal residual disease.
Collapse
|
3
|
Impact of the p53 status of tumor cells on extrinsic and intrinsic apoptosis signaling. Cell Commun Signal 2013; 11:27. [PMID: 23594441 PMCID: PMC3641951 DOI: 10.1186/1478-811x-11-27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 04/03/2013] [Indexed: 12/19/2022] Open
Abstract
Background The p53 protein is the best studied target in human cancer. For decades, p53 has been believed to act mainly as a tumor suppressor and by transcriptional regulation. Only recently, the complex and diverse function of p53 has attracted more attention. Using several molecular approaches, we studied the impact of different p53 variants on extrinsic and intrinsic apoptosis signaling. Results We reproduced the previously published results within intrinsic apoptosis induction: while wild-type p53 promoted cell death, different p53 mutations reduced apoptosis sensitivity. The prediction of the impact of the p53 status on the extrinsic cell death induction was much more complex. The presence of p53 in tumor cell lines and primary xenograft tumor cells resulted in either augmented, unchanged or reduced cell death. The substitution of wild-type p53 by mutant p53 did not affect the extrinsic apoptosis inducing capacity. Conclusions In summary, we have identified a non-expected impact of p53 on extrinsic cell death induction. We suggest that the impact of the p53 status of tumor cells on extrinsic apoptosis signaling should be studied in detail especially in the context of therapeutic approaches that aim to restore p53 function to facilitate cell death via the extrinsic apoptosis pathway.
Collapse
|
4
|
Ehrhardt H, Höfig I, Wachter F, Obexer P, Fulda S, Terziyska N, Jeremias I. NOXA as critical mediator for drug combinations in polychemotherapy. Cell Death Dis 2012; 3:e327. [PMID: 22717582 PMCID: PMC3388227 DOI: 10.1038/cddis.2012.53] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
During polychemotherapy, cytotoxic drugs are given in combinations to enhance their anti-tumor effectiveness. For most drug combinations, underlying signaling mechanisms responsible for positive drug-drug interactions remain elusive. Here, we prove a decisive role for the Bcl-2 family member NOXA to mediate cell death by certain drug combinations, even if drugs were combined which acted independently from NOXA, when given alone. In proof-of-principle studies, betulinic acid, doxorubicin and vincristine induced cell death in a p53- and NOXA-independent pathway involving mitochondrial pore formation, release of cytochrome c and caspase activation. In contrast, when betulinic acid was combined with either doxorubicine or vincristine, cell death signaling changed considerably; the drug combinations clearly depended on both p53 and NOXA. Similarly and of high clinical relevance, in patient-derived childhood acute leukemia samples the drug combinations, but not the single drugs depended on p53 and NOXA, as shown by RNA interference studies in patient-derived cells. Our data emphasize that NOXA represents an important target molecule for combinations of drugs that alone do not target NOXA. NOXA might have a special role in regulating apoptosis sensitivity in the complex interplay of polychemotherapy. Deciphering the differences in signaling of single drugs and drug combinations might enable designing highly effective novel polychemotherapy regimens.
Collapse
Affiliation(s)
- H Ehrhardt
- Helmholtz Center Munich – German Research Center for Environmental Health, Marchioninistrasse 25, 81377 Munich, Germany
- Division of Neonatology, University Children's Hospital, Ludwig-Maximilian-University, Marchioninistr 15, 81377 Munich, Germany
| | - I Höfig
- Helmholtz Center Munich – German Research Center for Environmental Health, Marchioninistrasse 25, 81377 Munich, Germany
| | - F Wachter
- Helmholtz Center Munich – German Research Center for Environmental Health, Marchioninistrasse 25, 81377 Munich, Germany
| | - P Obexer
- Department of Pediatrics IV, Medical University Innsbruck, Innrain 66, 6020 Innsbruck, Austria
| | - S Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
| | - N Terziyska
- Helmholtz Center Munich – German Research Center for Environmental Health, Marchioninistrasse 25, 81377 Munich, Germany
| | - I Jeremias
- Helmholtz Center Munich – German Research Center for Environmental Health, Marchioninistrasse 25, 81377 Munich, Germany
- Department of Oncology/Hematology, Dr. von Haunersches Kinderspital, Lindwurmstr 4, 80337 München, Germany
- Department of Gene Vectors, Helmholtz Center Munich – German Research Center for Environmental Health, Marchioninistrasse 25, D-81377 München, Germany. Tel: +49 89 7099 424; Fax: +49 89 7099 225; E-mail:
| |
Collapse
|