1
|
Generotti A, Contreras R, Zounes B, Schade E, Kemme A, Rane Y, Liu X, Elwood D, Schultheis K, Marston J, McCoy J, Broderick K, Fisher P. Intradermal DNA vaccine delivery using vacuum-controlled, needle-free electroporation. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102070. [PMID: 38034030 PMCID: PMC10682253 DOI: 10.1016/j.omtn.2023.102070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
Intradermal delivery of DNA vaccines via electroporation (ID-EP) has shown clinical promise, but the use of needle electrodes is typically required to achieve consistent results. Here, delivery of a DNA vaccine targeting the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is achieved using noninvasive intradermal vacuum-EP (ID-VEP), which functions by pulling a small volume of skin tissue into a vacuum chamber containing noninvasive electrodes to perform EP at the injection site. Gene expression and immunogenicity correlated with EP parameters and vacuum chamber geometry in guinea pigs. ID-VEP generated potent humoral and cellular immune responses across multiple studies, while vacuum (without EP) greatly enhanced localized transfection but did not improve immunogenicity. Because EP was performed noninvasively, the only treatment site reaction observed was transient redness, and ID-VEP immune responses were comparable to a clinical needle-based ID-EP device. The ID-VEP delivery procedure is straightforward and highly repeatable, without any dependence on operator technique. This work demonstrates a novel, reliable, and needle-free delivery method for DNA vaccines.
Collapse
Affiliation(s)
| | | | | | - Eric Schade
- Inovio Pharmaceuticals, Inc., San Diego, CA 92121, USA
| | - Andrea Kemme
- Inovio Pharmaceuticals, Inc., San Diego, CA 92121, USA
| | - Yatish Rane
- Texas Tech University, Department of Chemical Engineering, Lubbock, TX 79409, USA
| | - Xinggang Liu
- Inovio Pharmaceuticals, Inc., San Diego, CA 92121, USA
| | - Dustin Elwood
- Inovio Pharmaceuticals, Inc., San Diego, CA 92121, USA
| | | | - Jeremy Marston
- Texas Tech University, Department of Chemical Engineering, Lubbock, TX 79409, USA
| | - Jay McCoy
- Inovio Pharmaceuticals, Inc., San Diego, CA 92121, USA
| | | | - Paul Fisher
- Inovio Pharmaceuticals, Inc., San Diego, CA 92121, USA
| |
Collapse
|
2
|
Kisakov DN, Kisakova LA, Borgoyakova MB, Starostina EV, Taranov OS, Ivleva EK, Pyankov OV, Zaykovskaya AV, Shcherbakov DN, Rudometov AP, Rudometova NB, Volkova NV, Gureev VN, Ilyichev AA, Karpenko LI. Optimization of In Vivo Electroporation Conditions and Delivery of DNA Vaccine Encoding SARS-CoV-2 RBD Using the Determined Protocol. Pharmaceutics 2022; 14:pharmaceutics14112259. [PMID: 36365078 PMCID: PMC9693113 DOI: 10.3390/pharmaceutics14112259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 12/02/2022] Open
Abstract
Vaccination against SARS-CoV-2 and other viral infections requires safe, effective, and inexpensive vaccines that can be rapidly developed. DNA vaccines are candidates that meet these criteria, but one of their drawbacks is their relatively weak immunogenicity. Electroporation (EP) is an effective way to enhance the immunogenicity of DNA vaccines, but because of the different configurations of the devices that are used for EP, it is necessary to carefully select the conditions of the procedure, including characteristics such as voltage, current strength, number of pulses, etc. In this study, we determined the optimal parameters for delivery DNA vaccine by electroporation using the BEX CO device. BALB/c mice were used as a model. Plasmid DNA phMGFP was intramuscular (I/M) injected into the quadriceps muscle of the left hind leg of animals using insulin syringes, followed by EP. As a result of the experiments, the following EP parameters were determined: direct and reverse polarity rectangular DC current in three pulses, 12 V voltage for 30 ms and 950 ms intervals, with a current limit of 45 mA. The selected protocol induced a low level of injury and provided a high level of GFP expression. The chosen protocol was used to evaluate the immunogenicity of the DNA vaccine encoding the receptor-binding domain (RBD) of the SARS-CoV-2 protein (pVAXrbd) injected by EP. It was shown that the delivery of pVAXrbd via EP significantly enhanced both specific humoral and cellular immune responses compared to the intramuscular injection of the DNA vaccine.
Collapse
|
3
|
Chang C, Sun J, Hayashi H, Suzuki A, Sakaguchi Y, Miyazaki H, Nishikawa T, Nakagami H, Yamashita K, Kaneda Y. Stable Immune Response Induced by Intradermal DNA Vaccination by a Novel Needleless Pyro-Drive Jet Injector. AAPS PharmSciTech 2019; 21:19. [PMID: 31820256 PMCID: PMC6901418 DOI: 10.1208/s12249-019-1564-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/20/2019] [Indexed: 11/30/2022] Open
Abstract
DNA vaccination can be applied to the treatment of various infectious diseases and cancers; however, technical difficulties have hindered the development of an effective delivery method. The efficacy of a DNA vaccine depends on optimal antigen expression by the injected plasmid DNA. The pyro-drive jet injector (PJI) is a novel system that allows for adjustment of injection depth and may, thus, provide a targeted delivery approach for various therapeutic or preventative compounds. Herein, we investigated its potential for use in delivering DNA vaccines. This study evaluated the optimal ignition powder dosage, as well as its delivery effectiveness in both rat and mouse models, while comparing the results of the PJI with that of a needle syringe delivery system. We found that the PJI effectively delivered plasmid DNA to intradermal regions in both rats and mice. Further, it efficiently transfected plasmid DNA directly into the nuclei, resulting in higher protein expression than that achieved via needle syringe injection. Moreover, results from animal ovalbumin (OVA) antigen induction models revealed that animals receiving OVA expression plasmids (pOVA) via PJI exhibited dose-dependent (10 μg, 60 μg, and 120 μg) production of anti-OVA antibodies; while only low titers (< 1/100) of OVA antibodies were detected when 120 μg of pOVA was injected via needle syringe. Thus, PJI is an effective, novel method for delivery of plasmid DNA into epidermal and dermal cells suggesting its promise as a tool for DNA vaccination.
Collapse
|
4
|
Jiang J, Ramos SJ, Bangalore P, Fisher P, Germar K, Lee BK, Williamson D, Kemme A, Schade E, McCoy J, Muthumani K, Weiner DB, Humeau LM, Broderick KE. Integration of needle-free jet injection with advanced electroporation delivery enhances the magnitude, kinetics, and persistence of engineered DNA vaccine induced immune responses. Vaccine 2019; 37:3832-3839. [DOI: 10.1016/j.vaccine.2019.05.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/14/2019] [Accepted: 05/18/2019] [Indexed: 01/08/2023]
|
5
|
Codon optimization and improved delivery/immunization regimen enhance the immune response against wild-type and drug-resistant HIV-1 reverse transcriptase, preserving its Th2-polarity. Sci Rep 2018; 8:8078. [PMID: 29799015 PMCID: PMC5967322 DOI: 10.1038/s41598-018-26281-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/01/2018] [Indexed: 02/06/2023] Open
Abstract
DNA vaccines require a considerable enhancement of immunogenicity. Here, we optimized a prototype DNA vaccine against drug-resistant HIV-1 based on a weak Th2-immunogen, HIV-1 reverse transcriptase (RT). We designed expression-optimized genes encoding inactivated wild-type and drug-resistant RTs (RT-DNAs) and introduced them into mice by intradermal injections followed by electroporation. RT-DNAs were administered as single or double primes with or without cyclic-di-GMP, or as a prime followed by boost with RT-DNA mixed with a luciferase-encoding plasmid (“surrogate challenge”). Repeated primes improved cellular responses and broadened epitope specificity. Addition of cyclic-di-GMP induced a transient increase in IFN-γ production. The strongest anti-RT immune response was achieved in a prime-boost protocol with electroporation by short 100V pulses done using penetrating electrodes. The RT-specific response, dominated by CD4+ T-cells, targeted epitopes at aa 199–220 and aa 528–543. Drug-resistance mutations disrupted the epitope at aa 205–220, while the CTL epitope at aa 202–210 was not affected. Overall, multiparametric optimization of RT strengthened its Th2- performance. A rapid loss of RT/luciferase-expressing cells in the surrogate challenge experiment revealed a lytic potential of anti-RT response. Such lytic CD4+ response would be beneficial for an HIV vaccine due to its comparative insensitivity to immune escape.
Collapse
|
6
|
Stenler S, Lundin KE, Hansen L, Petkov S, Mozafari N, Isaguliants M, Blomberg P, Smith CIE, Goldenberg DM, Chang CH, Ljungberg K, Hinkula J, Wahren B. Immunization with HIV-1 envelope T20-encoding DNA vaccines elicits cross-clade neutralizing antibody responses. Hum Vaccin Immunother 2017; 13:2849-2858. [PMID: 28696158 PMCID: PMC5718786 DOI: 10.1080/21645515.2017.1338546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background: Genetic immunization is expected to induce the expression of antigens in a native form. The encoded peptide epitopes are presented on endogenous MHC molecules, mimicking antigen presentation during a viral infection. We have explored the potential of enfuvirtide (T20), a short HIV peptide with antiviral properties, to enhance immune response to HIV antigens. To generate an expression vector, the T20 sequence was cloned into a conventional plasmid, the novel minicircle construct, and a replicon plasmid. In addition, 3 conventional plasmids that express the envelope of HIV-1 subtypes A, B and C and contain T20 in their gp41 sequences were also tested. Results: All combinations induced HIV-specific antibodies and cellular responses. The addition of T20 as a peptide and as an expression cassette in the 3 DNA vectors enhanced antibody responses. The highest anti-HIV-1 Env titers were obtained by the replicon T20 construct. This demonstrates that besides its known antiviral activity, T20 promotes immune responses. We also confirm that the combination of slightly divergent antigens improves immune responses. Conclusions: The antiretroviral T20 HIV-1 sequence can be used as an immunogen to elicit binding and neutralizing antibodies against HIV-1. These, or similarly modified gp41 genes/peptides, can be used as priming or boosting components for induction of broadly neutralizing anti-HIV antibodies. Future comparative studies will reveal the optimal mode of T20 administration.
Collapse
Affiliation(s)
- S Stenler
- a Karolinska Cell Therapy Center , Karolinska University Hospital , Stockholm , Sweden
| | - K E Lundin
- b Department of Laboratory Medicine, Clinical Research Center , Karolinska Institutet , Huddinge , Sweden
| | - L Hansen
- c Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Stockholm , Sweden
| | - S Petkov
- c Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Stockholm , Sweden
| | - N Mozafari
- b Department of Laboratory Medicine, Clinical Research Center , Karolinska Institutet , Huddinge , Sweden
| | - M Isaguliants
- c Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Stockholm , Sweden
| | - P Blomberg
- a Karolinska Cell Therapy Center , Karolinska University Hospital , Stockholm , Sweden
| | - C I E Smith
- b Department of Laboratory Medicine, Clinical Research Center , Karolinska Institutet , Huddinge , Sweden
| | - D M Goldenberg
- d Immunomedics, Inc., Morris Plains , NJ , USA.,e IBC Pharmaceuticals, Inc., Morris Plains , NJ , USA
| | - C-H Chang
- d Immunomedics, Inc., Morris Plains , NJ , USA.,e IBC Pharmaceuticals, Inc., Morris Plains , NJ , USA
| | - K Ljungberg
- c Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Stockholm , Sweden
| | - J Hinkula
- f Department of Molecular Virology , Linköping University , Linköping , Sweden
| | - B Wahren
- c Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
7
|
Hinkula J, Petkov S, Ljungberg K, Hallengärd D, Bråve A, Isaguliants M, Falkeborn T, Sharma S, Liakina V, Robb M, Eller M, Moss B, Biberfeld G, Sandström E, Nilsson C, Markland K, Blomberg P, Wahren B. HIVIS-DNA or HIVISopt-DNA priming followed by CMDR vaccinia-based boosts induce both humoral and cellular murine immune responses to HIV. Heliyon 2017; 3:e00339. [PMID: 28721397 PMCID: PMC5496381 DOI: 10.1016/j.heliyon.2017.e00339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/19/2017] [Indexed: 02/08/2023] Open
Abstract
Background In order to develop a more effective prophylactic HIV-1 vaccine it is important optimize the components, improve Envelope glycoprotein immunogenicity as well as to explore prime-boost immunization schedules. It is also valuable to include several HIV-1 subtype antigens representing the world-wide epidemic. Methods HIVIS-DNA plasmids which include Env genes of subtypes A, B and C together with Gag subtypes A and B and RTmut/Rev of subtype B were modified as follows: the Envelope sequences were shortened, codon optimized, provided with an FT4 sequence and an immunodominant region mutated. The reverse transcriptase (RT) gene was shortened to contain the most immunogenic N-terminal fragment and fused with an inactivated viral protease vPR gene. HIVISopt-DNA thus contains fewer plasmids but additional PR epitopes compared to the native HIVIS-DNA. DNA components were delivered intradermally to young Balb/c mice once, using a needle-free Biojector® immediately followed by dermal electroporation. Vaccinia-based MVA-CMDR boosts including Env gene E and Gag-RT genes A were delivered intramuscularly by needle, once or twice. Results Both HIVIS-DNA and HIVISopt-DNA primed humoral and cell mediated responses well. When boosted with heterologous MVA-CMDR (subtypes A and E) virus inhibitory neutralizing antibodies were obtained to HIV-1 subtypes A, B, C and AE. Both plasmid compositions boosted with MVA-CMDR generated HIV-1 specific cellular responses directed against HIV-1 Env, Gag and Pol, as measured by IFNγ ELISpot. It was shown that DNA priming augmented the vector MVA immunological boosting effects, the HIVISopt-DNA with a trend to improved (Env) neutralization, the HIVIS-DNA with a trend to better (Gag) cell mediated immune reponses. Conclusions HIVIS-DNA was modified to obtain HIVISopt-DNA that had fewer plasmids, and additional epitopes. Even with one DNA prime followed by two MVA-CMDR boosts, humoral and cell-mediated immune responses were readily induced by priming with either DNA construct composition. Priming by HIV-DNA augmented neutralizing antibody responses revealed by boosting with the vaccinia-based heterologous sequences. Cellular and antibody responses covered selected strains representing HIV-1 subtypes A, B, C and CRF01_AE. We assume this is related to the inclusion of heterologous full genes in the vaccine schedule.
Collapse
Affiliation(s)
- J Hinkula
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden.,Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - S Petkov
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - K Ljungberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - D Hallengärd
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - A Bråve
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - M Isaguliants
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - T Falkeborn
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
| | - S Sharma
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
| | - V Liakina
- Faculty of Medicine, Vilnius University 2, 08661 Vilnius, Lithuania
| | - M Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, 20892 MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, 20892 MD, USA
| | - M Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, 20892 MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, 20892 MD, USA
| | - B Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| | - G Biberfeld
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - E Sandström
- Department of South Hospital, Karolinska Institutet, 11883 Stockholm, Sweden
| | - C Nilsson
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - K Markland
- Clinical Research Center and Vecura, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - P Blomberg
- Clinical Research Center and Vecura, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - B Wahren
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
8
|
Golsaz-Shirazi F, Shokri F. Hepatitis B immunopathogenesis and immunotherapy. Immunotherapy 2016; 8:461-77. [PMID: 26973127 DOI: 10.2217/imt.16.3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Worldwide there are over 248 million chronic carriers of HBV of whom about a third eventually develop severe HBV-related complications. Due to the major limitations of current therapeutic approaches, the development of more effective strategies to improve therapeutic outcomes in chronic hepatitis B (CHB) patients seems crucial. Immune activation plays a critical role in spontaneous viral control; therefore, new modalities based on stimulation of the innate and adaptive immune responses could result in the resolution of infection and are promising approaches. Here, we summarize the HBV immunopathogenesis, and discuss the encouraging results obtained from the promising immune-based innovations, such as therapeutic vaccination, cytokine therapy, cell-based therapies and blocking inhibitory receptors, as current and future immunotherapeutic interventions.
Collapse
Affiliation(s)
- Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
9
|
Toll-Like Receptor 9 Activation Rescues Impaired Antibody Response in Needle-free Intradermal DNA Vaccination. Sci Rep 2016; 6:33564. [PMID: 27658623 PMCID: PMC5034244 DOI: 10.1038/srep33564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/24/2016] [Indexed: 12/12/2022] Open
Abstract
The delivery of plasmid DNA to the skin can target distinct subsets of dermal dendritic cells to confer a superior immune response. The needle-free immunization technology offers a reliable, safe and efficient means to administer intradermal (ID) injections. We report here that the ID injection of DNA vectors using an NF device (NF-ID) elicits a superior cell-mediated immune response, at much lesser DNA dosage, comparable in magnitude to the traditional intramuscular immunization. However, the humoral response is significantly impaired, possibly at the stage of B cell isotype switching. We found that the NF-ID administration deposits the DNA primarily on the epidermis resulting in a rapid loss of the DNA as well as the synthesized antigen due to the faster regeneration rate of the skin layers. Therefore, despite the immune-rich nature of the skin, the NF-ID immunization of DNA vectors may be limited by the impaired humoral response. Additional booster injections are required to augment the antibody response. As an alternative and a viable solution, we rescued the IgG response by coadministration of a Toll-like receptor 9 agonist, among other adjuvants examined. Our work has important implication for the optimization of the emerging needle-free technology for ID immunization.
Collapse
|
10
|
McCoy JR, Mendoza JM, Spik KW, Badger C, Gomez AF, Schmaljohn CS, Sardesai NY, Broderick KE. A multi-head intradermal electroporation device allows for tailored and increased dose DNA vaccine delivery to the skin. Hum Vaccin Immunother 2015; 11:746-54. [PMID: 25839221 DOI: 10.4161/21645515.2014.978223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The identification of an effective and tolerable delivery method is a necessity for the success of DNA vaccines in the clinic. This article describes the development and validation of a multi-headed intradermal electroporation device which would be applicable for delivering multiple DNA vaccine plasmids simultaneously but spatially separated. Reporter gene plasmids expressing green and red fluorescent proteins were used to demonstrate the impact of spatial separation on DNA delivery to increase the number of transfected cells and avoid interference through visible expression patterns. To investigate the impact of plasmid interference on immunogenicity, a disease target was investigated where issues with multi-valent vaccines had been previously described. DNA-based Hantaan and Puumala virus vaccines were delivered separately or as a combination and the effect of multi-valence was determined by appropriate assays. While a negative impact was observed for both antigenic vaccines when delivered together, these effects were mitigated when the vaccine was delivered using the multi-head device. We also demonstrate how the multi-head device facilitates higher dose delivery to the skin resulting in improved immune responses. This new multi-head platform device is an efficient, tolerable and non-invasive method to deliver multiple plasmid DNA constructs simultaneously allowing the tailoring of delivery sites for combination vaccines. Additionally, this device would allow the delivery of multi-plasmid vaccine formulations without risk of impacted immune responses through interference. Such a low-cost, easy to use device platform for the delivery of multi-agent DNA vaccines would have direct applications by the military and healthcare sectors for mass vaccination purposes.
Collapse
Affiliation(s)
- Jay R McCoy
- a Inovio Pharmaceuticals Inc. ; Blue Bell , PA USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Recent insights into cutaneous immunization: How to vaccinate via the skin. Vaccine 2015; 33:4663-74. [PMID: 26006087 DOI: 10.1016/j.vaccine.2015.05.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 04/21/2015] [Accepted: 05/01/2015] [Indexed: 12/24/2022]
Abstract
Technologies and strategies for cutaneous vaccination have been evolving significantly during the past decades. Today, there is evidence for increased efficacy of cutaneously delivered vaccines allowing for dose reduction and providing a minimally invasive alternative to traditional vaccination. Considerable progress has been made within the field of well-established cutaneous vaccination strategies: Jet and powder injection technologies, microneedles, microporation technologies, electroporation, sonoporation, and also transdermal and transfollicular vaccine delivery. Due to recent advances, the use of cutaneous vaccination can be expanded from prophylactic vaccination for infectious diseases into therapeutic vaccination for both infectious and non-infectious chronic conditions. This review will provide an insight into immunological processes occurring in the skin and introduce the key innovations of cutaneous vaccination technologies.
Collapse
|
12
|
Grødeland G, Bogen B. Efficient vaccine against pandemic influenza: combining DNA vaccination and targeted delivery to MHC class II molecules. Expert Rev Vaccines 2015; 14:805-14. [PMID: 25818107 DOI: 10.1586/14760584.2015.1029919] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There are two major limitations to vaccine preparedness in the event of devastating influenza pandemics: the time needed to generate a vaccine and rapid generation of sufficient amounts. DNA vaccination could represent a solution to these problems, but efficacy needs to be enhanced. In a separate line of research, it has been established that targeting of vaccine molecules to antigen-presenting cells enhances immune responses. We have combined the two principles by constructing DNA vaccines that encode bivalent fusion proteins; these target hemagglutinin to MHC class II molecules on antigen-presenting cells. Such DNA vaccines rapidly induce hemagglutinin-specific antibodies and T cell responses in immunized mice. Responses are long-lasting and protect mice against challenge with influenza virus. In a pandemic situation, targeted DNA vaccines could be produced and tested within a month. The novel DNA vaccines could represent a solution to pandemic preparedness in the advent of novel influenza pandemics.
Collapse
Affiliation(s)
- Gunnveig Grødeland
- Institute of Immunology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0027 Oslo, Norway
| | | |
Collapse
|
13
|
McCoy JR, Mendoza JM, Spik KW, Badger C, Gomez AF, Schmaljohn CS, Sardesai NY, Broderick KE. A multi-head intradermal electroporation device allows for tailored and increased dose DNA vaccine delivery to the skin. Hum Vaccin Immunother 2014; 10:3039-47. [PMID: 25483486 PMCID: PMC5443063 DOI: 10.4161/hv.29671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/09/2014] [Accepted: 06/20/2014] [Indexed: 11/19/2022] Open
Abstract
The identification of an effective and tolerable delivery method is a necessity for the success of DNA vaccines in the clinic. This manuscript describes the development and validation of a multi-headed intradermal electroporation device which would be applicable for delivering multiple DNA vaccine plasmids simultaneously but spatially separated. Reporter gene plasmids expressing green and red fluorescent proteins were used to demonstrate the impact of spatial separation on DNA delivery to increase the number of transfected cells and avoid interference through visible expression patterns. To investigate the impact of plasmid interference on immunogenicity, a disease target was investigated where issues with multi-valent vaccines had been previously described. DNA-based Hantaan and Puumala virus vaccines were delivered separately or as a combination and the effect of multi-valence was determined by appropriate assays. While a negative impact was observed for both antigenic vaccines when delivered together, these effects were mitigated when the vaccine was delivered using the multi-head device. We also demonstrate how the multi-head device facilitates higher dose delivery to the skin resulting in improved immune responses. This new multi-head platform device is an efficient, tolerable and non-invasive method to deliver multiple plasmid DNA constructs simultaneously allowing the tailoring of delivery sites for combination vaccines. Additionally, this device would allow the delivery of multi-plasmid vaccine formulations without risk of impacted immune responses through interference. Such a low-cost, easy to use device platform for the delivery of multi-agent DNA vaccines would have direct applications by the military and healthcare sectors for mass vaccination purposes.
Collapse
Affiliation(s)
- Jay R McCoy
- Inovio Pharmaceuticals Inc.; Plymouth Meeting, PA USA
| | | | - Kristin W Spik
- United States Army Medical Research Institute of Infectious Diseases; Fort Detrick, MD USA
| | - Catherine Badger
- United States Army Medical Research Institute of Infectious Diseases; Fort Detrick, MD USA
| | - Alan F Gomez
- Inovio Pharmaceuticals Inc.; Plymouth Meeting, PA USA
| | - Connie S Schmaljohn
- United States Army Medical Research Institute of Infectious Diseases; Fort Detrick, MD USA
| | | | | |
Collapse
|
14
|
Abstract
This special issue is focused on DNA vaccines, marking the two decades since the first demonstration of pre-clinical protection was published in Science (Ulmer et al.; Heterologous protection against influenza by injection of DNA encoding a viral protein. 1993). This introductory article provides an overview of the field and highlights the observations of the articles in this special issue while placing them in the context of other recent publications.
Collapse
|
15
|
Felber BK, Valentin A, Rosati M, Bergamaschi C, Pavlakis GN. HIV DNA Vaccine: Stepwise Improvements Make a Difference. Vaccines (Basel) 2014; 2:354-79. [PMID: 26344623 PMCID: PMC4494255 DOI: 10.3390/vaccines2020354] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/11/2014] [Accepted: 04/18/2014] [Indexed: 12/15/2022] Open
Abstract
Inefficient DNA delivery methods and low expression of plasmid DNA have been major obstacles for the use of plasmid DNA as vaccine for HIV/AIDS. This review describes successful efforts to improve DNA vaccine methodology over the past ~30 years. DNA vaccination, either alone or in combination with other methods, has the potential to be a rapid, safe, and effective vaccine platform against AIDS. Recent clinical trials suggest the feasibility of its translation to the clinic.
Collapse
Affiliation(s)
- Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| |
Collapse
|
16
|
Kulkarni V, Rosati M, Jalah R, Ganneru B, Alicea C, Yu L, Guan Y, LaBranche C, Montefiori DC, King AD, Valentin A, Pavlakis GN, Felber BK. DNA vaccination by intradermal electroporation induces long-lasting immune responses in rhesus macaques. J Med Primatol 2014; 43:329-40. [PMID: 24810337 PMCID: PMC4176517 DOI: 10.1111/jmp.12123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND A desirable HIV vaccine should induce protective long-lasting humoral and cellular immune responses. METHODS Macaques were immunized by env DNA, selected from a panel of recently transmitted SIVmac251 Env using intradermal electroporation as vaccine delivery method and magnitude, breadth and longevity of humoral and cellular immune responses. RESULTS The macaques developed high, long-lasting humoral immune responses with neutralizing capacity against homologous and heterologous Env. The avidity of the antibody responses was also preserved over 1-year follow-up. Analysis of cellular immune responses demonstrated induction of Env-specific memory T cells harboring granzyme B, albeit their overall levels were low. Similar to the humoral responses, the cellular immunity was persistent over the ~1-year follow-up. CONCLUSION These data show that vaccination by this intradermal DNA delivery regimen is able to induce potent and durable immune responses in macaques.
Collapse
Affiliation(s)
- Viraj Kulkarni
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Stenler S, Blomberg P, Smith CIE. Safety and efficacy of DNA vaccines: plasmids vs. minicircles. Hum Vaccin Immunother 2014; 10:1306-8. [PMID: 24553064 PMCID: PMC4896608 DOI: 10.4161/hv.28077] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/01/2014] [Indexed: 01/05/2023] Open
Abstract
While DNA vaccination using plasmid vectors is highly attractive, there is a need for further vector optimization regarding safety, stability, and efficiency. In this commentary, we review the minicircle vector (MC), which is an entity devoid of plasmid bacterial sequences, as an alternative to the traditional plasmid construct. The commentary highlights the recent discovery by Stenler et al. (2014) that the small size of an MC enables improved resistance to the shearing forces associated with e.g. pneumatic delivery methods. This observation may have implications for the regulatory agencies' requirement of plasmid integrity and quality.
Collapse
Affiliation(s)
- Sofia Stenler
- Department of Laboratory Medicine; Clinical Research Center; Karolinska Institutet; Stockholm, Sweden
| | - Pontus Blomberg
- Department of Laboratory Medicine; Clinical Research Center; Karolinska Institutet; Stockholm, Sweden
- Vecura; Clinical Research Center, Karolinska University Hospital; Stockholm, Sweden
| | - CI Edvard Smith
- Department of Laboratory Medicine; Clinical Research Center; Karolinska Institutet; Stockholm, Sweden
| |
Collapse
|
18
|
Optimization of HIV-1 Envelope DNA Vaccine Candidates within Three Different Animal Models, Guinea Pigs, Rabbits and Cynomolgus Macaques. Vaccines (Basel) 2013; 1:305-27. [PMID: 26344115 PMCID: PMC4494233 DOI: 10.3390/vaccines1030305] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/05/2013] [Accepted: 07/10/2013] [Indexed: 11/17/2022] Open
Abstract
HIV-1 DNA vaccines have many advantageous features. Evaluation of HIV-1 vaccine candidates often starts in small animal models before macaque and human trials. Here, we selected and optimized DNA vaccine candidates through systematic testing in rabbits for the induction of broadly neutralizing antibodies (bNAb). We compared three different animal models: guinea pigs, rabbits and cynomolgus macaques. Envelope genes from the prototype isolate HIV-1 Bx08 and two elite neutralizers were included. Codon-optimized genes, encoded secreted gp140 or membrane bound gp150, were modified for expression of stabilized soluble trimer gene products, and delivered individually or mixed. Specific IgG after repeated i.d. inoculations with electroporation confirmed in vivo expression and immunogenicity. Evaluations of rabbits and guinea pigs displayed similar results. The superior DNA construct in rabbits was a trivalent mix of non-modified codon-optimized gp140 envelope genes. Despite NAb responses with some potency and breadth in guinea pigs and rabbits, the DNA vaccinated macaques displayed less bNAb activity. It was concluded that a trivalent mix of non-modified gp140 genes from rationally selected clinical isolates was, in this study, the best option to induce high and broad NAb in the rabbit model, but this optimization does not directly translate into similar responses in cynomolgus macaques.
Collapse
|
19
|
Petkov SP, Heuts F, Krotova OA, Kilpelainen A, Engström G, Starodubova ES, Isaguliants MG. Evaluation of immunogen delivery by DNA immunization using non-invasive bioluminescence imaging. Hum Vaccin Immunother 2013; 9:2228-36. [PMID: 23896580 DOI: 10.4161/hv.25561] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The efficacy of DNA vaccines is highly dependent on the methods used for their delivery and the choice of delivery sites/targets for gene injection, pointing at the necessity of a strict control over the gene delivery process. Here, we have investigated the effect of the injection site on gene expression and immunogenicity in BALB/c mice, using as a model a weak gene immunogen, DNA encoding firefly luciferase (Luc) delivered by superficial or deep injection with subsequent electroporation (EP). Immunization was assessed by monitoring the in vivo expression of luciferase by 2D- and 3D-bioluminescence imaging (BLI) and by the end-point immunoassays. Anti-Luc antibodies were assessed by ELISA, and T-cell response by IFN-γ and IL-2 FluoroSpot in which mouse splenocytes were stimulated with Luc or a peptide representing its immunodominant CD8+ T-cell epitope GFQSMYTFV. Monitoring of immunization by BLI identified EP parameters supporting the highest Luc gene uptake and expression. Superficial injection of Luc DNA followed by optimal EP led to a low level Luc expression in the mouse skin, and triggered a CD8+ T-cell response characterized by the peptide-specific secretion of IFN-γ and IL-2, but no specific antibodies. Intramuscular gene delivery resulted in a several-fold higher Luc expression and anti-Luc antibody, but induced low IL-2 and virtually no specific IFN-γ. Photon flux from the sites of Luc gene injection was inversely proportional to the immune response against GFQSMYTFV (p<0.05). Thus, BLI permitted to control the accuracy of gene delivery and transfection with respect to the injection site as well as the parameters of electroporation. Further, it confirmed the critical role of the site of DNA administration for the type and magnitude of the vaccine-specific immune response. This argues for the use of luminescent reporters in the preclinical gene vaccine tests to monitor both gene delivery and the immune response development in live animals.
Collapse
Affiliation(s)
- Stefan P Petkov
- Department of Microbiology; Tumor and Cell Biology; Karolinska Institutet; Stockholm, Sweden
| | - Frank Heuts
- Department of Microbiology; Tumor and Cell Biology; Karolinska Institutet; Stockholm, Sweden
| | - Olga A Krotova
- Department of Microbiology; Tumor and Cell Biology; Karolinska Institutet; Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia; DI Ivanovsky Institute of Virology; Ministry of Health of the Russian Federation; Moscow, Russia
| | - Athina Kilpelainen
- Department of Microbiology; Tumor and Cell Biology; Karolinska Institutet; Stockholm, Sweden
| | - Gunnel Engström
- Department of Microbiology; Tumor and Cell Biology; Karolinska Institutet; Stockholm, Sweden
| | - Elizaveta S Starodubova
- Department of Microbiology; Tumor and Cell Biology; Karolinska Institutet; Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia
| | - Maria G Isaguliants
- Department of Microbiology; Tumor and Cell Biology; Karolinska Institutet; Stockholm, Sweden; DI Ivanovsky Institute of Virology; Ministry of Health of the Russian Federation; Moscow, Russia
| |
Collapse
|
20
|
Kulkarni V, Rosati M, Bear J, Pilkington GR, Jalah R, Bergamaschi C, Singh AK, Alicea C, Chowdhury B, Zhang GM, Kim EY, Wolinsky SM, Huang W, Guan Y, LaBranche C, Montefiori DC, Broderick KE, Sardesai NY, Valentin A, Felber BK, Pavlakis GN. Comparison of intradermal and intramuscular delivery followed by in vivo electroporation of SIV Env DNA in macaques. Hum Vaccin Immunother 2013; 9:2081-94. [PMID: 23811579 DOI: 10.4161/hv.25473] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A panel of SIVmac251 transmitted Env sequences were tested for expression, function and immunogenicity in mice and macaques. The immunogenicity of a DNA vaccine cocktail expressing SIVmac239 and three transmitted SIVmac251 Env sequences was evaluated upon intradermal or intramuscular injection followed by in vivo electroporation in macaques using sequential vaccination of gp160, gp120 and gp140 expressing DNAs. Both intradermal and intramuscular vaccination regimens using the gp160 expression plasmids induced robust humoral immune responses, which further improved using the gp120 expressing DNAs. The responses showed durability of binding and neutralizing antibody titers and high avidity for>1 y. The intradermal DNA delivery regimen induced higher cross-reactive responses able to neutralize the heterologous tier 1B-like SIVsmE660_CG7V. Analysis of cellular immune responses showed induction of Env-specific memory responses and cytotoxic granzyme B(+) T cells in both vaccine groups, although the magnitude of the responses were ~10x higher in the intramuscular/electroporation group. The cellular responses induced by both regimens were long lasting and could be detected ~1 y after the last vaccination. These data show that both DNA delivery methods are able to induce robust and durable immune responses in macaques.
Collapse
Affiliation(s)
- Viraj Kulkarni
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Margherita Rosati
- Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Guy R Pilkington
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Rashmi Jalah
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Ashish K Singh
- Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Bhabadeb Chowdhury
- Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Gen-Mu Zhang
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA; Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Eun-Young Kim
- Division of Infectious Diseases; The Feinberg School of Medicine; Northwestern University; Chicago, IL USA
| | - Steven M Wolinsky
- Division of Infectious Diseases; The Feinberg School of Medicine; Northwestern University; Chicago, IL USA
| | - Wensheng Huang
- Institute of Human Virology; Department of Microbiology and Immunology; University of Maryland School of Medicine; Baltimore, MD USA
| | - Yongjun Guan
- Institute of Human Virology; Department of Microbiology and Immunology; University of Maryland School of Medicine; Baltimore, MD USA
| | - Celia LaBranche
- Department of Surgery; Laboratory for AIDS Vaccine Research and Development; Duke University Medical Center; Durham, NC USA
| | - David C Montefiori
- Department of Surgery; Laboratory for AIDS Vaccine Research and Development; Duke University Medical Center; Durham, NC USA
| | | | | | - Antonio Valentin
- Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - George N Pavlakis
- Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| |
Collapse
|
21
|
Pulsawat P, Pitakpolrat P, Prompetchara E, Kaewamatawong T, Techakriengkrai N, Sirivichayakul S, Buranapraditkun S, Hannaman D, Ruxrungtham K, Jacquet A. Optimization of a Der p 2-based prophylactic DNA vaccine against house dust mite allergy. Immunol Lett 2013; 151:23-30. [PMID: 23396105 DOI: 10.1016/j.imlet.2013.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/16/2013] [Accepted: 01/29/2013] [Indexed: 12/12/2022]
Abstract
DNA vaccines encoding allergens are promising immunotherapeutics to prevent or to treat allergy through induction of allergen-specific Th1 responses. Despite anti-allergy effects observed in small rodents, DNA-based vaccines are weak immunogens in primates and humans and particularly when administered by conventional injection. The goal of the present study was to improve the immunogenicity of a prophylactic vaccine encoding the major house dust mite allergen Der p 2. In this context, we evaluated the influence of different DNA backbones including notably intron and CpG enriched sequence, the DNA dose, the in vivo delivery by electroporation as well as the heterologous prime boost regimen on the vaccine efficiency. We found that a minimal allergen expression level threshold must be reached to induce the production of specific antibodies but beyond this limit, the intensity of the immune response was independent on the DNA dose and allergen expression. The in vivo DNA delivery by electroporation drastically enhanced the production of specific antibodies but not the IFNg secretion. Vaccination of naïve mice with DNA encoding Der p 2 delivered by electroporation even at very low dose (2μg) prevented the development of house dust mite allergy through Th1-skewed immune response characterized by the drastic reduction of allergen-specific IgE, IL-5 and lung inflammation together with the induction of strong specific IgG2a titers and IFNg secretion. CpG cassette in the DNA backbone does not play a critical role in the efficient prophylaxis. Finally, comparable protective immune responses were observed when using heterologous DNA prime/protein boost or homologous DNA prime/boost. Taken together, these data suggest that the potent Th1 response induced by DNA-based vaccine encoding allergens through electroporation provides the rationale for the evaluation of DNA encoding Der p 2 into HDM allergy clinical trials.
Collapse
Affiliation(s)
- Pinya Pulsawat
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | | | | | | | | | | | |
Collapse
|