1
|
Shariati A, Khezrpour A, Shariati F, Afkhami H, Yarahmadi A, Alavimanesh S, Kamrani S, Modarressi MH, Khani P. DNA vaccines as promising immuno-therapeutics against cancer: a new insight. Front Immunol 2025; 15:1498431. [PMID: 39872522 PMCID: PMC11769820 DOI: 10.3389/fimmu.2024.1498431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025] Open
Abstract
Cancer is one of the leading causes of mortality around the world and most of our conventional treatments are not efficient enough to combat this deadly disease. Harnessing the power of the immune system to target cancer cells is one of the most appealing methods for cancer therapy. Nucleotide-based cancer vaccines, especially deoxyribonucleic acid (DNA) cancer vaccines are viable novel cancer treatments that have recently garnered significant attention. DNA cancer vaccines are made of plasmid molecules that encode tumor-associated or tumor-specific antigens (TAAs or TSAs), and possibly some other immunomodulatory adjuvants such as pro-inflammatory interleukins. Following the internalization of plasmids into cells, their genes are expressed and the tumor antigens are loaded on major histocompatibility molecules to be presented to T-cells. After the T-cells have been activated, they will look for tumor antigens and destroy the tumor cells upon encountering them. As with any other treatment, there are pros and cons associated with using these vaccines. They are relatively safe, usually well-tolerated, stable, easily mass-produced, cost-effective, and easily stored and transported. They can induce a systemic immune response effective on both the primary tumor and metastases. The main disadvantage of DNA vaccines is their poor immunogenicity. Several approaches including structural modification, combination therapy with conventional and novel cancer treatments (such as chemotherapy, radiotherapy, and immune checkpoint blockade (ICB)), and the incorporation of adjuvants into the plasmid structure have been studied to enhance the vaccine's immunogenicity and improve the clinical outcome of cancer patients. In this review, we will discuss some of the most promising optimization strategies and examine some of the important trials regarding these vaccines.
Collapse
Affiliation(s)
- Alireza Shariati
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Arya Khezrpour
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fatemeh Shariati
- Department of Genetics, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Sajad Alavimanesh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sina Kamrani
- Department of Orthopedic, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Hossein Modarressi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Pouria Khani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
2
|
Oelkrug C. Analysis of physical and biological delivery systems for DNA cancer vaccines and their translation to clinical development. Clin Exp Vaccine Res 2024; 13:73-82. [PMID: 38752006 PMCID: PMC11091436 DOI: 10.7774/cevr.2024.13.2.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 03/30/2024] [Indexed: 05/18/2024] Open
Abstract
DNA cancer vaccines as an approach in tumor immunotherapy are still being investigated in preclinical and clinical settings. Nevertheless, only a small number of clinical studies have been published so far and are still active. The investigated vaccines show a relatively stable expression in in-vitro transfected cells and may be favorable for developing an immunologic memory in patients. Therefore, DNA vaccines could be suitable as a prophylactic or therapeutic approach against cancer. Due to the low efficiency of these vaccines, the administration technique plays an important role in the vaccine design and its efficacy. These DNA cancer vaccine delivery systems include physical, biological, and non-biological techniques. Although the pre-clinical studies show promising results in the application of the different delivery systems, further studies in clinical trials have not yet been successfully proven.
Collapse
|
3
|
Kozak M, Hu J. DNA Vaccines: Their Formulations, Engineering and Delivery. Vaccines (Basel) 2024; 12:71. [PMID: 38250884 PMCID: PMC10820593 DOI: 10.3390/vaccines12010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
The concept of DNA vaccination was introduced in the early 1990s. Since then, advancements in the augmentation of the immunogenicity of DNA vaccines have brought this technology to the market, especially in veterinary medicine, to prevent many diseases. Along with the successful COVID mRNA vaccines, the first DNA vaccine for human use, the Indian ZyCovD vaccine against SARS-CoV-2, was approved in 2021. In the current review, we first give an overview of the DNA vaccine focusing on the science, including adjuvants and delivery methods. We then cover some of the emerging science in the field of DNA vaccines, notably efforts to optimize delivery systems, better engineer delivery apparatuses, identify optimal delivery sites, personalize cancer immunotherapy through DNA vaccination, enhance adjuvant science through gene adjuvants, enhance off-target and heritable immunity through epigenetic modification, and predict epitopes with bioinformatic approaches. We also discuss the major limitations of DNA vaccines and we aim to address many theoretical concerns.
Collapse
Affiliation(s)
- Michael Kozak
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
- The Department of Pathology and Laboratory Medicine, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
- The Department of Pathology and Laboratory Medicine, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
4
|
Fotoran WL, Silva JRD, Glitz C, Ferreira LCDS, Wunderlich G. Establishment of an Antiplasmodial Vaccine Based on PfRH5-Encoding RNA Replicons Stabilized by Cationic Liposomes. Pharmaceutics 2023; 15:pharmaceutics15041223. [PMID: 37111706 PMCID: PMC10145066 DOI: 10.3390/pharmaceutics15041223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Nucleic acid-based vaccines have been studied for the past four decades, but the approval of the first messenger RNA (mRNA) vaccines during the COVID-19 pandemic opened renewed perspectives for the development of similar vaccines against different infectious diseases. Presently available mRNA vaccines are based on non-replicative mRNA, which contains modified nucleosides encased in lipid vesicles, allowing for entry into the host cell cytoplasm, and reducing inflammatory reactions. An alternative immunization strategy employs self-amplifying mRNA (samRNA) derived from alphaviruses, but lacks viral structural genes. Once incorporated into ionizable lipid shells, these vaccines lead to enhanced gene expression, and lower mRNA doses are required to induce protective immune responses. In the present study, we tested a samRNA vaccine formulation based on the SP6 Venezuelan equine encephalitis (VEE) vector incorporated into cationic liposomes (dimethyldioctadecyl ammonium bromide and a cholesterol derivative). Three vaccines were generated that encoded two reporter genes (GFP and nanoLuc) and the Plasmodium falciparum reticulocyte binding protein homologue 5 (PfRH5). METHODS Transfection assays were performed using Vero and HEK293T cells, and the mice were immunized via the intradermal route using a tattooing device. RESULTS The liposome-replicon complexes showed high transfection efficiencies with in vitro cultured cells, whereas tattooing immunization with GFP-encoding replicons demonstrated gene expression in mouse skin up to 48 h after immunization. Mice immunized with liposomal PfRH5-encoding RNA replicons elicited antibodies that recognized the native protein expressed in P. falciparum schizont extracts, and inhibited the growth of the parasite in vitro. CONCLUSION Intradermal delivery of cationic lipid-encapsulated samRNA constructs is a feasible approach for developing future malaria vaccines.
Collapse
Affiliation(s)
- Wesley L Fotoran
- Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo 05508-000, SP, Brazil
| | - Jamile Ramos da Silva
- Department of Microbiology, Institute for Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo 05508-000, SP, Brazil
| | - Christiane Glitz
- Department of Molecular Physiology, Institute of Animal Physiology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany
| | - Luís Carlos de Souza Ferreira
- Department of Microbiology, Institute for Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo 05508-000, SP, Brazil
- Scientific Platform Pasteur-USP, University of São Paulo, Avenida Lucio Martins Rodrigues 370, São Paulo 05508-020, SP, Brazil
| | - Gerhard Wunderlich
- Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
5
|
Kozak M, Hu J. The Integrated Consideration of Vaccine Platforms, Adjuvants, and Delivery Routes for Successful Vaccine Development. Vaccines (Basel) 2023; 11:vaccines11030695. [PMID: 36992279 DOI: 10.3390/vaccines11030695] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/31/2023] Open
Abstract
Vaccines have proven to be the most cost-efficient and reasonable way to fight and exterminate virulent pathogens. Vaccines can be designed using a variety of platforms including inactivated/attenuated pathogen or subunits of it. The most recent COVID mRNA vaccines have employed nucleic acid sequences for the antigen of interest to combat the pandemic. Different vaccine platforms have been chosen for different licensed vaccines which all have shown their ability to induce durable immune responses and protection. In addition to platforms, different adjuvants have been used to strengthen the immunogenicity of vaccines. Among the delivery routes, intramuscular injection has been the most common for vaccination. In this review, we present a historical overview of the integrated consideration of vaccine platforms, adjuvants, and delivery routes in the success of vaccine development. We also discuss the advantages and limitations of each choice in the efficacy of vaccine development.
Collapse
Affiliation(s)
- Michael Kozak
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
6
|
Gomez AM, Babuadze G(G, Plourde-Campagna MA, Azizi H, Berger A, Kozak R, de La Vega MA, XIII A, Naghibosadat M, Nepveu-Traversy ME, Ruel J, Kobinger GP. A novel intradermal tattoo-based injection device enhances the immunogenicity of plasmid DNA vaccines. NPJ Vaccines 2022; 7:172. [PMID: 36543794 PMCID: PMC9771775 DOI: 10.1038/s41541-022-00581-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, tattooing technology has shown promising results toward evaluating vaccines in both animal models and humans. However, this technology has some limitations due to variability of experimental evaluations or operator procedures. The current study evaluated a device (intradermal oscillating needle array injection device: IONAID) capable of microinjecting a controlled dose of any aqueous vaccine into the intradermal space. IONAID-mediated administration of a DNA-based vaccine encoding the glycoprotein (GP) from the Ebola virus resulted in superior T- and B-cell responses with IONAID when compared to single intramuscular (IM) or intradermal (ID) injection in mice. Moreover, humoral immune responses, induced after IONAID vaccination, were significantly higher to those obtained with traditional passive DNA tattooing in guinea pigs and rabbits. This device was well tolerated and safe during HIV vaccine delivery in non-human primates (NHPs), while inducing robust immune responses. In summary, this study shows that the IONAID device improves vaccine performance, which could be beneficial to the animal and human health, and importantly, provide a dose-sparing approach (e.g., monkeypox vaccine).
Collapse
Affiliation(s)
- Alejandro M. Gomez
- grid.23856.3a0000 0004 1936 8390Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6 Canada
| | - George (Giorgi) Babuadze
- grid.17063.330000 0001 2157 2938Biological Sciences Platform, University Toronto, Sunnybrook Research Institute at Sunnybrook Health Sciences Centre, Toronto, ON Canada
| | | | - Hiva Azizi
- grid.23856.3a0000 0004 1936 8390Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6 Canada
| | - Alice Berger
- grid.23856.3a0000 0004 1936 8390Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6 Canada
| | - Robert Kozak
- grid.17063.330000 0001 2157 2938Biological Sciences Platform, University Toronto, Sunnybrook Research Institute at Sunnybrook Health Sciences Centre, Toronto, ON Canada
| | - Marc-Antoine de La Vega
- grid.176731.50000 0001 1547 9964Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555 USA
| | - Ara XIII
- grid.176731.50000 0001 1547 9964Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555 USA
| | - Maedeh Naghibosadat
- grid.17063.330000 0001 2157 2938Biological Sciences Platform, University Toronto, Sunnybrook Research Institute at Sunnybrook Health Sciences Centre, Toronto, ON Canada
| | | | - Jean Ruel
- grid.23856.3a0000 0004 1936 8390Département de Génie Mécanique, Université Laval, Québec, QC G1V 0A6 Canada
| | - Gary P. Kobinger
- grid.176731.50000 0001 1547 9964Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555 USA
| |
Collapse
|
7
|
Microneedle patch tattoos. iScience 2022; 25:105014. [DOI: 10.1016/j.isci.2022.105014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/24/2022] [Accepted: 08/19/2022] [Indexed: 11/20/2022] Open
|
8
|
Fotoran WL, Kleiber N, Glitz C, Wunderlich G. A DNA Vaccine Encoding Plasmodium falciparum PfRH5 in Cationic Liposomes for Dermal Tattooing Immunization. Vaccines (Basel) 2020; 8:vaccines8040619. [PMID: 33092277 PMCID: PMC7711581 DOI: 10.3390/vaccines8040619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022] Open
Abstract
Vaccines are the primary means of controlling and preventing pandemics and outbreaks of pathogens such as bacteria, viruses, and parasites. However, a major drawback of naked DNA-based vaccines is their low immunogenicity and the amount of plasmid DNA necessary to elicit a response. Nano-sized liposomes can overcome this limitation, enhancing both nucleic acid stability and targeting to cells after administration. We tested two different DNA vaccines in cationic liposomes to improve the immunogenic properties. For this, we cloned the coding sequences of the Plasmodium falciparum reticulocyte binding protein homologue 5 (PfRH5) either alone or fused with small the small hepatitis virus (HBV) envelope antigen (HBsAg) encoding sequences, potentially resulting in HBsAg particles displaying PfRH5 on their outside. Instead of invasive intraperitoneal or intramuscular immunization, we employed intradermal immunization by tattooing nano-encapsulated DNA. Mice were immunized with 10 μg encapsulated DNA encoding PfRH5 alone or in fusion with HBsAg and this elicited antibodies against schizont extracts (titer of 104). Importantly, only IgG from animals immunized with PfRH5-HBs demonstrated sustained IgG-mediated inhibition in in vitro growth assays showing 58% and 39% blocking activity after 24 and 48 h, respectively. Intradermal tattoo-vaccination of encapsulated PfRH5-HBsAg coding plasmid DNA is effective and superior compared with an unfused PfRH5-DNA vaccine, suggesting that the HBsAg fusion may be advantageous with other vaccine antigens.
Collapse
Affiliation(s)
- Wesley Luzetti Fotoran
- Departamento de Parasitologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo 05508-000, Brazil; (W.L.F.); (N.K.)
| | - Nicole Kleiber
- Departamento de Parasitologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo 05508-000, Brazil; (W.L.F.); (N.K.)
| | - Christiane Glitz
- Department of Molecular Physiology, Institute of Animal Physiology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany;
| | - Gerhard Wunderlich
- Departamento de Parasitologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo 05508-000, Brazil; (W.L.F.); (N.K.)
- Correspondence: ; Tel.: +55-11-3091-7265
| |
Collapse
|
9
|
Hettinga J, Carlisle R. Vaccination into the Dermal Compartment: Techniques, Challenges, and Prospects. Vaccines (Basel) 2020; 8:E534. [PMID: 32947966 PMCID: PMC7564253 DOI: 10.3390/vaccines8030534] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 01/06/2023] Open
Abstract
In 2019, an 'influenza pandemic' and 'vaccine hesitancy' were listed as two of the top 10 challenges to global health by the WHO. The skin is a unique vaccination site, due to its immune-rich milieu, which is evolutionarily primed to respond to challenge, and its ability to induce both humoral and cellular immunity. Vaccination into this dermal compartment offers a way of addressing both of the challenges presented by the WHO, as well as opening up avenues for novel vaccine formulation and dose-sparing strategies to enter the clinic. This review will provide an overview of the diverse range of vaccination techniques available to target the dermal compartment, as well as their current state, challenges, and prospects, and touch upon the formulations that have been developed to maximally benefit from these new techniques. These include needle and syringe techniques, microneedles, DNA tattooing, jet and ballistic delivery, and skin permeabilization techniques, including thermal ablation, chemical enhancers, ablation, electroporation, iontophoresis, and sonophoresis.
Collapse
Affiliation(s)
| | - Robert Carlisle
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK;
| |
Collapse
|
10
|
Lynn CD, Howells M, Herdrich D, Ioane J, Hudson D, Fitiao STU. The evolutionary adaptation of body art: Tattooing as costly honest signaling of enhanced immune response in American Samoa. Am J Hum Biol 2019; 32:e23347. [DOI: 10.1002/ajhb.23347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
| | - Michaela Howells
- Department of AnthropologyUniversity of North Carolina Wilmington Wilmington North Carolina
| | - David Herdrich
- American Samoa Historic Preservation Office (ASHPO) American Samoa
| | | | | | | |
Collapse
|
11
|
Arciola CR, Speziale P, Montanaro L. Perspectives on DNA Vaccines. Targeting Staphylococcal Adhesins to Prevent Implant Infections. Int J Artif Organs 2018; 32:635-41. [DOI: 10.1177/039139880903200913] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA vaccines consist of a plasmid DNA genetically engineered to produce one or more proteins able to elicit protective immune responses against virulence factors of infectious pathogens. Once introduced into the cells of the host, a DNA vaccine induces a high production of antigens by the endogenous presence of the peptide codifying gene; improves antigen processing and presentation; may be able to simultaneously co-express multiple antigenic molecules; and, lastly, switches on both humoral and cellular immune responses. In this mini-review, we underscore the advantageous characteristics of DNA vaccines compared with traditional ones and provide summaries of some of the more recent studies on them, mainly focusing the possibility of their use in targeting the staphylococcal adhesins that play a key role in the first adhesive phase of implant infections.
Collapse
Affiliation(s)
- Carla Renata Arciola
- Research Unit on Implant Infections, Rizzoli Orthopedic Institute, Bologna - Italy
- Experimental Pathology Department, University of Bologna, Bologna - Italy
| | - Pietro Speziale
- Department of Biochemistry, University of Pavia, Pavia - Italy
| | - Lucio Montanaro
- Research Unit on Implant Infections, Rizzoli Orthopedic Institute, Bologna - Italy
- Experimental Pathology Department, University of Bologna, Bologna - Italy
| |
Collapse
|
12
|
Tiptiri-Kourpeti A, Spyridopoulou K, Pappa A, Chlichlia K. DNA vaccines to attack cancer: Strategies for improving immunogenicity and efficacy. Pharmacol Ther 2016; 165:32-49. [DOI: 10.1016/j.pharmthera.2016.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Lynn CD, Dominguez JT, DeCaro JA. Tattooing to “Toughen up”: Tattoo experience and secretory immunoglobulin A. Am J Hum Biol 2016; 28:603-9. [DOI: 10.1002/ajhb.22847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 12/23/2015] [Accepted: 02/12/2016] [Indexed: 11/11/2022] Open
Affiliation(s)
| | | | - Jason A. DeCaro
- Department of Anthropology; University of Alabama; Tuscaloosa Alabama 35487
| |
Collapse
|
14
|
Abstract
Decorative tattoo is a popular practice that is generally safe when performed in the professional setting but can be associated with a variety of inflammatory, infectious, and neoplastic complications, risks that may be increased with current trends in home tattooing. Modern tattoo inks contain azo dyes and are often of unknown composition and not currently regulated for content or purity. Biopsy of most (if not all) tattoo reactions presenting to the dermatologist is recommended, given recent clusters of nontuberculous mycobacterial infections occurring within tattoo, as well as associations between tattoo reactions and systemic diseases such as sarcoidosis.
Collapse
Affiliation(s)
- Michi M Shinohara
- Divisions of Dermatology and Dermatopathology, University of Washington School of Medicine, Seattle, Washington.
| |
Collapse
|
15
|
Kinnear E, Caproni LJ, Tregoning JS. A Comparison of Red Fluorescent Proteins to Model DNA Vaccine Expression by Whole Animal In Vivo Imaging. PLoS One 2015; 10:e0130375. [PMID: 26091084 PMCID: PMC4475043 DOI: 10.1371/journal.pone.0130375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/19/2015] [Indexed: 11/19/2022] Open
Abstract
DNA vaccines can be manufactured cheaply, easily and rapidly and have performed well in pre-clinical animal studies. However, clinical trials have so far been disappointing, failing to evoke a strong immune response, possibly due to poor antigen expression. To improve antigen expression, improved technology to monitor DNA vaccine transfection efficiency is required. In the current study, we compared plasmid encoded tdTomato, mCherry, Katushka, tdKatushka2 and luciferase as reporter proteins for whole animal in vivo imaging. The intramuscular, subcutaneous and tattooing routes were compared and electroporation was used to enhance expression. We observed that overall, fluorescent proteins were not a good tool to assess expression from DNA plasmids, with a highly heterogeneous response between animals. Of the proteins used, intramuscular delivery of DNA encoding either tdTomato or luciferase gave the clearest signal, with some Katushka and tdKatushka2 signal observed. Subcutaneous delivery was weakly visible and nothing was observed following DNA tattooing. DNA encoding haemagglutinin was used to determine whether immune responses mirrored visible expression levels. A protective immune response against H1N1 influenza was induced by all routes, even after a single dose of DNA, though qualitative differences were observed, with tattooing leading to high antibody responses and subcutaneous DNA leading to high CD8 responses. We conclude that of the reporter proteins used, expression from DNA plasmids can best be assessed using tdTomato or luciferase. But, the disconnect between visible expression level and immunogenicity suggests that in vivo whole animal imaging of fluorescent proteins has limited utility for predicting DNA vaccine efficacy.
Collapse
Affiliation(s)
- Ekaterina Kinnear
- Mucosal Infection & Immunity Group, Section of Virology, Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Lisa J. Caproni
- Touchlight Genetics Ltd., Leatherhead, Surrey, United Kingdom
| | - John S. Tregoning
- Mucosal Infection & Immunity Group, Section of Virology, Imperial College London, St Mary’s Campus, London, United Kingdom
| |
Collapse
|
16
|
Recent insights into cutaneous immunization: How to vaccinate via the skin. Vaccine 2015; 33:4663-74. [PMID: 26006087 DOI: 10.1016/j.vaccine.2015.05.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 04/21/2015] [Accepted: 05/01/2015] [Indexed: 12/24/2022]
Abstract
Technologies and strategies for cutaneous vaccination have been evolving significantly during the past decades. Today, there is evidence for increased efficacy of cutaneously delivered vaccines allowing for dose reduction and providing a minimally invasive alternative to traditional vaccination. Considerable progress has been made within the field of well-established cutaneous vaccination strategies: Jet and powder injection technologies, microneedles, microporation technologies, electroporation, sonoporation, and also transdermal and transfollicular vaccine delivery. Due to recent advances, the use of cutaneous vaccination can be expanded from prophylactic vaccination for infectious diseases into therapeutic vaccination for both infectious and non-infectious chronic conditions. This review will provide an insight into immunological processes occurring in the skin and introduce the key innovations of cutaneous vaccination technologies.
Collapse
|
17
|
Tattoo Delivery of a Semliki Forest Virus-Based Vaccine Encoding Human Papillomavirus E6 and E7. Vaccines (Basel) 2015; 3:221-38. [PMID: 26343186 PMCID: PMC4494346 DOI: 10.3390/vaccines3020221] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/13/2015] [Indexed: 12/05/2022] Open
Abstract
The skin is an attractive organ for immunization because of the presence of antigen-presenting cells. Intradermal delivery via tattooing has demonstrated superior vaccine immunogenicity of DNA vaccines in comparison to conventional delivery methods. In this study, we explored the efficacy of tattoo injection of a tumor vaccine based on recombinant Semliki Forest virus replicon particles (rSFV) targeting human papillomavirus (HPV). Tattoo injection of rSFV particles resulted in antigen expression in both the skin and draining lymph nodes. In comparison with intramuscular injection, the overall antigen expression determined at the site of administration and draining lymph nodes was 10-fold lower upon tattoo injection. Delivery of SFV particles encoding the E6 and E7 antigens of human papillomavirus type 16 (SFVeE6,7) via tattooing resulted in HPV-specific cytotoxic T cells and in vivo therapeutic antitumor response. Strikingly, despite the observed lower overall transgene expression, SFVeE6,7 delivered via tattoo injection resulted in higher or equal levels of immune responses as compared to intramuscular injection. The intrinsic immunogenic potential of tattooing provides a benefit for immunotherapy based on an alphavirus.
Collapse
|
18
|
Grunwald T, Ulbert S. Improvement of DNA vaccination by adjuvants and sophisticated delivery devices: vaccine-platforms for the battle against infectious diseases. Clin Exp Vaccine Res 2015; 4:1-10. [PMID: 25648133 PMCID: PMC4313101 DOI: 10.7774/cevr.2015.4.1.1] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 11/30/2014] [Accepted: 12/31/2014] [Indexed: 01/24/2023] Open
Abstract
Advantages of DNA vaccination against infectious diseases over more classical immunization methods include the possibilities for rapid manufacture, fast adaptation to newly emerging pathogens and high stability at ambient temperatures. In addition, upon DNA immunization the antigen is produced by the cells of the vaccinated individual, which leads to activation of both cellular and humoral immune responses due to antigen presentation via MHC I and MHC II molecules. However, so far DNA vaccines have shown most efficient immunogenicity mainly in small rodent models, whereas in larger animals including humans there is still the need to improve effectiveness. This is mostly due to inefficient delivery of the DNA plasmid into cells and nuclei. Here, we discuss technologies used to overcome this problem, including physical means such as in vivo electroporation and co-administration of adjuvants. Several of these methods have already entered clinical testing in humans.
Collapse
Affiliation(s)
- Thomas Grunwald
- Department of Immunology, Fraunhofer-Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Sebastian Ulbert
- Department of Immunology, Fraunhofer-Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
19
|
Levin Y, Kochba E, Hung I, Kenney R. Intradermal vaccination using the novel microneedle device MicronJet600: Past, present, and future. Hum Vaccin Immunother 2015; 11:991-7. [PMID: 25745830 PMCID: PMC4514308 DOI: 10.1080/21645515.2015.1010871] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 12/24/2014] [Accepted: 01/06/2015] [Indexed: 02/08/2023] Open
Abstract
Intradermal immunization has become a forefront of vaccine improvement, both scientifically and commercially. Newer technologies are being developed to address the need to reduce the dose required for vaccination and to improve the reliability and ease of injection, which have been major hurdles in expanding the number of approved vaccines using this route of administration. In this review, 7 y of clinical experience with a novel intradermal delivery device, the MicronJet600, which is a registered hollow microneedle that simplifies the delivery of liquid vaccines, are summarized. This device has demonstrated both significant dose-sparing and superior immunogenicity in various vaccine categories, as well as in diverse subject populations and age groups. These studies have shown that intradermal delivery using this device is safe, effective, and preferred by the subjects. Comparison with other intradermal devices and potential new applications for intradermal delivery that could be pursued in the future are also discussed.
Collapse
Key Words
- AE, adverse event
- BCG, Bacillus Calmette–Guérin
- BD, Becton Dickinson
- CDC, Center of Disease Control
- DTP, diphtheria, pertussis and tetanus
- EMEA, European Medicines Agency
- FDA, Food and Drug Administration
- GMT, geometric mean titer
- HA, hemagglutinin
- HBV, hepatitis B virus
- HIV, Human immunodeficiency virus
- HPV, human papilloma virus
- ID, intradermal
- IM, Intramuscular
- IPV, inactivated polio vaccine
- MEMS, Micro Electro Mechanical System
- Mantoux
- PPD, Purified protein derivative
- SAGE, Strategic Advisory Group of Experts
- SQ, subcutaneous
- WHO, World Health Organization
- dose-sparing
- icddr,b, International Center for Diarrheal Disease Research, Bangladesh
- immunogenicity
- influenza vaccine
- intradermal
- microneedles
- vaccine delivery
- vaccine device
Collapse
Affiliation(s)
| | | | - Ivan Hung
- State Key Laboratory for Emerging Infectious Diseases; Carol Yu's Center for Infection and Division of Infectious Diseases; The University of Hong Kong; Queen Mary Hospital;Hong Kong Special Administrative Region; Hong Kong, China
| | | |
Collapse
|
20
|
Abstract
Human papillomaviruses (HPV) are the causative agents of cervical cancer, the third most common cancer in women. The development of prophylactic HPV vaccines Gardasil® and Cervarix® targeting the major oncogenic HPV types is now the frontline of cervical cancer prevention. Both vaccines have been proven to be highly effective and safe although there are still open questions about their target population, cross-protection, and long-term efficacy. The main limitation for a worldwide implementation of Gardasil® and Cervarix® is their high cost. To develop more affordable vaccines research groups are concentrated in new formulations with different antigens including capsomeres, the minor capsid protein L2 and DNA. In this article we describe the vaccines' impact on HPV-associated disease, the main open questions about the marketed vaccines, and current efforts for the development of second-generation vaccines.
Collapse
|
21
|
Rapid outer-surface protein C DNA tattoo vaccination protects against Borrelia afzelii infection. Gene Ther 2014; 21:1051-7. [PMID: 25273355 DOI: 10.1038/gt.2014.87] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/23/2014] [Accepted: 08/26/2014] [Indexed: 02/02/2023]
Abstract
Borrelia afzelii is the predominant Borrelia species causing Lyme borreliosis in Europe. Currently there is no human vaccine against Lyme borreliosis, and most research focuses on recombinant protein vaccines against Borrelia burgdorferi sensu stricto. DNA tattooing is a novel vaccination method that can be applied in a rapid vaccination schedule. We vaccinated C3H/HeN mice with B. afzelii strain PKo OspC (outer-surface protein C) using a codon-optimized DNA vaccine tattoo and compared this with recombinant protein vaccination in a 0-2-4 week vaccination schedule. We also assessed protection by DNA tattoo in a 0-3-6 day schedule. DNA tattoo and recombinant OspC vaccination induced comparable total IgG responses, with a lower IgG1/IgG2a ratio after DNA tattoo. Two weeks after syringe-challenge with 5 × 10(5) B. afzelii spirochetes most vaccinated mice had negative B. afzelii tissue DNA loads and all were culture negative. Furthermore, DNA tattoo vaccination in a 0-3-6 day regimen also resulted in negative Borrelia loads and cultures after challenge. To conclude, DNA vaccination by tattoo was fully protective against B. afzelii challenge in mice in a rapid vaccination protocol, and induces a favorable humoral immunity compared to recombinant protein vaccination. Rapid DNA tattoo is a promising vaccination strategy against spirochetes.
Collapse
|
22
|
Depelsenaire ACI, Meliga SC, McNeilly CL, Pearson FE, Coffey JW, Haigh OL, Flaim CJ, Frazer IH, Kendall MAF. Colocalization of cell death with antigen deposition in skin enhances vaccine immunogenicity. J Invest Dermatol 2014; 134:2361-2370. [PMID: 24714201 PMCID: PMC4216316 DOI: 10.1038/jid.2014.174] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 01/31/2023]
Abstract
Vaccines delivered to the skin by microneedles – with and without adjuvants – have increased immunogenicity with lower doses than standard vaccine delivery techniques such as intramuscular (i.m.) or intradermal (i.d.) injection. However, the mechanisms behind this skin-mediated ‘adjuvant’ effect are not clear. Here, we show that the dynamic application of a microprojection array (the Nanopatch) to skin generates localized transient stresses invoking cell death around each projection. Nanopatch application caused significantly higher levels (~65-fold) of cell death in murine ear skin than i.d. injection using a hypodermic needle. Measured skin cell death is associated with modeled stresses ~1–10 MPa. Nanopatch-immunized groups also yielded consistently higher anti-IgG endpoint titers (up to 50-fold higher) than i.d. groups after delivery of a split virion influenza vaccine. Importantly, co-localization of cell death with nearby live skin cells and delivered antigen was necessary for immunogenicity enhancement. These results suggest a correlation between cell death caused by the Nanopatch with increased immunogenicity. We propose that the localized cell death serves as a ‘physical immune enhancer’ for the adjacent viable skin cells, which also receive antigen from the projections. This natural immune enhancer effect has the potential to mitigate or replace chemical-based adjuvants in vaccines.
Collapse
Affiliation(s)
- Alexandra C I Depelsenaire
- D2G2, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Stefano C Meliga
- D2G2, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Celia L McNeilly
- D2G2, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Frances E Pearson
- D2G2, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Jacob W Coffey
- D2G2, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Oscar L Haigh
- D2G2, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Christopher J Flaim
- D2G2, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Ian H Frazer
- The University of Queensland, Diamantina Institute for Cancer, Brisbane, Queensland, Australia
| | - Mark A F Kendall
- D2G2, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia; The University of Queensland, Diamantina Institute for Cancer, Brisbane, Queensland, Australia; Faculty of Medicine and Biomedical Sciences, The University of Queensland, Centre for Clinical Research, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.
| |
Collapse
|
23
|
Drug delivery by tattooing to treat cutaneous leishmaniasis. Sci Rep 2014; 4:4156. [PMID: 24561704 PMCID: PMC3932479 DOI: 10.1038/srep04156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/03/2014] [Indexed: 11/08/2022] Open
Abstract
This study establishes a proof-of-concept that a tattoo device can target intra-dermal drug delivery against cutaneous leishmaniasis (CL). The selected drug is oleylphosphocholine (OlPC) formulated as liposomes, particles known to be prone to macrophage ingestion. We first show that treatment of cultured Leishmania-infected macrophages with OlPC-liposomes results in a direct dose-dependent killing of intracellular parasites. Based on this, in vivo efficacy is demonstrated using a 10 day tattooing-mediated treatment in mice infected with L. major and L. mexicana. In both models this regimen results in rapid clinical recovery with complete regression of skin lesions by Day 28. Parasite counts and histopathology examination confirm high treatment efficacy at the parasitic level. Low amount of drug required for tattooing combined with fast clinical recovery may have a positive impact on CL patient management. This first example of tattoo-mediated drug delivery could open to new therapeutic interventions in the treatment of skin diseases.
Collapse
|
24
|
Enhancing DNA delivery into the skin with a motorized microneedle device. Eur J Pharm Sci 2014; 52:215-22. [DOI: 10.1016/j.ejps.2013.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 11/18/2022]
|
25
|
Villarreal DO, Talbott KT, Choo DK, Shedlock DJ, Weiner DB. Synthetic DNA vaccine strategies against persistent viral infections. Expert Rev Vaccines 2013; 12:537-54. [PMID: 23659301 DOI: 10.1586/erv.13.33] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The human body has developed an elaborate defense system against microbial pathogens and foreign antigens. However, particular microbes have evolved sophisticated mechanisms to evade immune surveillance, allowing persistence within the human host. In an effort to combat such infections, intensive research has focused on the development of effective prophylactic and therapeutic countermeasures to suppress or clear persistent viral infections. To date, popular therapeutic strategies have included the use of live-attenuated microbes, viral vectors and dendritic-cell vaccines aiming to help suppress or clear infection. In recent years, improved DNA vaccines have now re-emerged as a promising candidate for therapeutic intervention due to the development of advanced optimization and delivery technologies. For instance, genetic optimization of synthetic plasmid constructs and their encoded antigens, in vivo electroporation-mediated vaccine delivery, as well as codelivery with molecular adjuvants have collectively enhanced both transgene expression and the elicitation of vaccine-induced immunity. In addition, the development of potent heterologous prime-boost regimens has also provided significant contributions to DNA vaccine immunogenicity. Herein, the authors will focus on these recent improvements to this synthetic platform in relation to their application in combating persistent virus infection.
Collapse
Affiliation(s)
- Daniel O Villarreal
- University of Pennsylvania, Perelman School of Medicine, Department of Pathology & Laboratory Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
26
|
Saroja C, Lakshmi P, Bhaskaran S. Recent trends in vaccine delivery systems: A review. Int J Pharm Investig 2012; 1:64-74. [PMID: 23071924 PMCID: PMC3465129 DOI: 10.4103/2230-973x.82384] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/14/2011] [Accepted: 02/21/2011] [Indexed: 12/17/2022] Open
Abstract
Vaccines are the preparations given to patients to evoke immune responses leading to the production of antibodies (humoral) or cell-mediated responses that will combat infectious agents or noninfectious conditions such as malignancies. Alarming safety profile of live vaccines, weak immunogenicity of sub-unit vaccines and immunization, failure due to poor patient compliance to booster doses which should potentiate prime doses are few strong reasons, which necessitated the development of new generation of prophylactic and therapeutic vaccines to promote effective immunization. Attempts are being made to deliver vaccines through carriers as they control the spatial and temporal presentation of antigens to immune system thus leading to their sustained release and targeting. Hence, lower doses of weak immunogens can be effectively directed to stimulate immune responses and eliminate the need for the administration of prime and booster doses as a part of conventional vaccination regimen. This paper reviews carrier systems such as liposomes, microspheres, nanoparticles, dendrimers, micellar systems, ISCOMs, plant-derived viruses which are now being investigated and developed as vaccine delivery systems. This paper also describes various aspects of "needle-free technologies" used to administer the vaccine delivery systems through different routes into the human body.
Collapse
Affiliation(s)
- Ch Saroja
- Department of Pharmaceutics, G. Pulla Reddy College of Pharmacy, Hyderabad, Andhra Pradesh, India
| | | | | |
Collapse
|
27
|
Liu HF, Li W, Lu MB, Yu LJ. Pharmacokinetics and risk evaluation of DNA vaccine against Schistosoma japonicum. Parasitol Res 2012; 112:59-67. [PMID: 22990210 DOI: 10.1007/s00436-012-3104-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/24/2012] [Indexed: 02/03/2023]
Abstract
DNA plasmid immunization is a novel approach of preventive and therapeutic vaccine. More than 100 DNA vaccines have been on preclinical or clinical phase trials, and four kinds of DNA vaccines for livestock have been approved by USDA, CFIA, and APVMA. Schistosomiasis is a worldwide parasitic disease, and vaccine immunization is supposed to be a promising approach to control the health crisis. On the basis of former preclinical studies, we further focused on the pharmacokinetics and risk evaluation of DNA vaccine in vivo. In the present study, enhanced green fluorescent protein (EGFP) report gene was fused with Schistosoma japonicum 23 kDa transmembrane protein antigen gene (Sj23) and constructed into DNA vaccine pVIVO2-Sj23.EGFP. After intramuscularly injecting 100 μg of purified DNA vaccine plasmid to immunizate BALB/c mice, we studied the tissue distribution of DNA plasmid and expressed Sj23.EGFP antigen, the persistence time of elicited antibodies, and the risk of DNA vaccine transferred into intestinal microorganisms. The results showed that DNA vaccine plasmid could be distributed into all tissues of the body after injection; however, only few organs including the injected muscle were detected DNA vaccine at postimmunization until the 100 days by PCR technology; the detection of green fluorescence protein displayed that DNA vaccine could be expressed in almost every tissue and organs; the ELISA assay indicated the immune antibody against Sj23 could persist over 70 days; and the DNA vaccine transferring intestinal flora results was negative. The results indicated that the DNA vaccine has systemic protection and long-lasting effectivity and is safe to intestinal flora.
Collapse
Affiliation(s)
- Hai-Feng Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China.
| | | | | | | |
Collapse
|
28
|
Moulin V, Morgan ME, Eleveld-Trancikova D, Haanen JBAG, Wielders E, Looman MWG, Janssen RAJ, Figdor CG, Jansen BJH, Adema GJ. Targeting dendritic cells with antigen via dendritic cell-associated promoters. Cancer Gene Ther 2012; 19:303-11. [PMID: 22361816 DOI: 10.1038/cgt.2012.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The induction of tumor-specific immune responses is largely dependent on the ability of dendritic cells (DCs) to present tumor-associated antigens to T lymphocytes. Therefore, we investigated the use of DC-associated promoter-driven genetic vaccines to specifically target DC in vivo. Restricted expression of vaccine-encoding genes in DC should enhance specificity and improves their safety for clinical applications. Hereto, 3-5 kb upstream sequences of the murine genes encoding CD11c, DC-SIGN, DC-STAMP and Langerin were isolated, characterized and subcloned into enhanced green fluorescent protein (EGFP) reporter constructs. Upon electroporation, EGFP was expressed in DC cell lines, but not in other cell lines, confirming DC-restricted promoter activity. When these promoters were cloned into a construct upstream of the gene for ovalbumin (OVA), it appeared that DC-STAMP promoter-driven expression of OVA (pDCSTAMP/OVA) in DC yielded the most efficient OVA-specific CD4+ and CD8+ T-cell responses in vitro. Administration of pDC-STAMP/OVA in vivo, using the tattoo gun vaccination system, evoked specific immune responses as evidenced in a mouse tumor model. Adoptively transferred pDC-STAMP/OVA-transfected DCs induced strong CD8+ T-cell proliferation in vivo. These experiments demonstrate that our DC-directed promoter constructs are potential tools to restrict antigen expression in DC and could be implemented to modulate DC function by the introduction of relevant proteins.
Collapse
Affiliation(s)
- V Moulin
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kis EE, Winter G, Myschik J. Devices for intradermal vaccination. Vaccine 2012; 30:523-38. [DOI: 10.1016/j.vaccine.2011.11.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 11/02/2011] [Accepted: 11/06/2011] [Indexed: 01/26/2023]
|
30
|
Diniz M, Ferreira L. Enhanced anti-tumor effect of a gene gun-delivered DNA vaccine encoding the human papillomavirus type 16 oncoproteins genetically fused to the herpes simplex virus glycoprotein D. Braz J Med Biol Res 2011; 44:421-7. [DOI: 10.1590/s0100-879x2011007500039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 03/10/2011] [Indexed: 11/22/2022] Open
|
31
|
Bolhassani A, Safaiyan S, Rafati S. Improvement of different vaccine delivery systems for cancer therapy. Mol Cancer 2011; 10:3. [PMID: 21211062 PMCID: PMC3024302 DOI: 10.1186/1476-4598-10-3] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 01/07/2011] [Indexed: 12/18/2022] Open
Abstract
Cancer vaccines are the promising tools in the hands of the clinical oncologist. Many tumor-associated antigens are excellent targets for immune therapy and vaccine design. Optimally designed cancer vaccines should combine the best tumor antigens with the most effective immunotherapy agents and/or delivery strategies to achieve positive clinical results. Various vaccine delivery systems such as different routes of immunization and physical/chemical delivery methods have been used in cancer therapy with the goal to induce immunity against tumor-associated antigens. Two basic delivery approaches including physical delivery to achieve higher levels of antigen production and formulation with microparticles to target antigen-presenting cells (APCs) have demonstrated to be effective in animal models. New developments in vaccine delivery systems will improve the efficiency of clinical trials in the near future. Among them, nanoparticles (NPs) such as dendrimers, polymeric NPs, metallic NPs, magnetic NPs and quantum dots have emerged as effective vaccine adjuvants for infectious diseases and cancer therapy. Furthermore, cell-penetrating peptides (CPP) have been known as attractive carrier having applications in drug delivery, gene transfer and DNA vaccination. This review will focus on the utilization of different vaccine delivery systems for prevention or treatment of cancer. We will discuss their clinical applications and the future prospects for cancer vaccine development.
Collapse
Affiliation(s)
- Azam Bolhassani
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Shima Safaiyan
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Rafati
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
32
|
Ferreira KS, Maranhão AQ, Garcia MCC, Brígido MM, Santos SS, Lopes JD, Almeida SR. Dendritic cells transfected with scFv from Mab 7.B12 mimicking original antigen gp43 induces protection against experimental Paracoccidioidomycosis. PLoS One 2011; 6:e15935. [PMID: 21249212 PMCID: PMC3017565 DOI: 10.1371/journal.pone.0015935] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 12/02/2010] [Indexed: 11/25/2022] Open
Abstract
Paracoccidioidomycosis (PCM), endemic in Latin America, is a progressive systemic mycosis caused by Paracoccidioides brasiliensis (P. brasiliensis), which primarily attacks lung tissue. Dendritic cells (DCs) are able to initiate a response in naïve T cells, and they also participate in Th-cell education. Furthermore, these cells have been used for therapy in several disease models. Here we transfected DCs with a plasmid (pMAC/PS-scFv) encoding a single chain variable fragment (scFv) of an anti-Id antibody that is capable of mimicking gp43, the main antigenic component of P. brasiliensis. First, Balb/c mice were immunized subcutaneously with pMAC/PS-scFv and, after seven days, scFv protein was presented to the regional lymph nodes cells. Moreover, we showed that the DCs transfected with scFv were capable of efficiently activating proliferation of total lymph node cells and inducing a decrease in lung infection. Therefore, our results suggested that the use of scFv-transfected DCs may be a promising therapy in the paracoccidioidomycosis (PCM) model.
Collapse
Affiliation(s)
- Karen S Ferreira
- Departamento de Ciências Biológicas do Instituto de Ciências Ambientais, Químicas e Farmacêuticas da Universidade Federal de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
33
|
Kwak K, Yemelyanova A, Roden RBS. Prevention of cancer by prophylactic human papillomavirus vaccines. Curr Opin Immunol 2010; 23:244-51. [PMID: 21185706 DOI: 10.1016/j.coi.2010.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 11/22/2010] [Indexed: 01/12/2023]
Abstract
Oncogenic human papillomaviruses (HPVs) are exclusively mucosal pathogens that are noncytopathic and the basal epithelial cells harboring and maintaining an infection do not produce either capsid antigen or virus. The efficacy of the licensed L1 virus-like particle (VLP) vaccines has encouraged development of several second generation vaccines aimed at expanding the coverage to all oncogenic HPV types and reducing barriers to global implementation. Currently there is no defined immune correlate of protection that can be used to determine if an individual patient is protected and for the evaluation of these second generation vaccines. Surprisingly, passive transfer of neutralizing serum antibody is protective in animal models. Recent studies suggest how neutralizing antibody mediates immunity against mucosal HPV and the possible impact of memory B cells.
Collapse
Affiliation(s)
- Kihyuck Kwak
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | |
Collapse
|
34
|
van den Berg JH, Nuijen B, Schumacher TN, Haanen JBAG, Storm G, Beijnen JH, Hennink WE. Synthetic vehicles for DNA vaccination. J Drug Target 2010; 18:1-14. [PMID: 19814658 DOI: 10.3109/10611860903278023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
DNA vaccination is an attractive immunization method able to induce robust cellular immune responses in pre-clinical models. However, clinical DNA vaccination trials performed thus far have resulted in marginal responses. Consequently, strategies are currently under development to improve the efficacy of DNA vaccines. A promising strategy is the use of synthetic particle formulations as carrier systems for DNA vaccines. This review discusses commonly used synthetic carriers for DNA vaccination and provides an overview of in vivo studies that use this strategy. Future recommendations on particle characteristics, target cell types and evaluation models are suggested for the potential improvement of current and novel particle delivery systems. Finally, hurdles which need to be tackled for clinical evaluation of these systems are discussed.
Collapse
Affiliation(s)
- Joost H van den Berg
- Department of Pharmacy & Pharmacology, Slotervaart Hospital, Louwesweg 6, 1066 EC Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
It is now well established that most cervical cancers are causally associated with HPV infection. This realization has led to efforts to control HPV-associated malignancy through prevention or treatment of HPV infection. Currently, commercially available HPV vaccines are not designed to control established HPV infection and associated premalignant and malignant lesions. To treat and eradicate pre-existing HPV infections and associated lesions which remain prevalent in the U.S. and worldwide, effective therapeutic HPV vaccines are needed. DNA vaccination has emerged as a particularly promising form of therapeutic HPV vaccines due to its safety, stability and ability to induce antigen-specific immunity. This review focuses on improving the potency of therapeutic HPV vaccines through modification of dendritic cells (DCs) by [1] increasing the number of antigen-expressing/antigen-loaded DCs, [2] improving HPV antigen expression, processing and presentation in DCs, and [3] enhancing DC and T cell interaction. Continued improvement in therapeutic HPV DNA vaccines may ultimately lead to an effective DNA vaccine for the treatment of HPV-associated malignancies.
Collapse
|
36
|
Faurez F, Dory D, Le Moigne V, Gravier R, Jestin A. Biosafety of DNA vaccines: New generation of DNA vectors and current knowledge on the fate of plasmids after injection. Vaccine 2010; 28:3888-95. [DOI: 10.1016/j.vaccine.2010.03.040] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 03/09/2010] [Accepted: 03/21/2010] [Indexed: 12/16/2022]
|
37
|
Oosterhuis K, van den Berg JH, Schumacher TN, Haanen JBAG. DNA vaccines and intradermal vaccination by DNA tattooing. Curr Top Microbiol Immunol 2010; 351:221-50. [PMID: 21107792 DOI: 10.1007/82_2010_117] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past two decades, DNA vaccination has been developed as a method for the induction of immune responses. However, in spite of high expectations based on their efficacy in preclinical models, immunogenicity of first generation DNA vaccines in clinical trials was shown to be poor, and no DNA vaccines have yet been licensed for human use. In recent years significant progress has been made in the development of second generation DNA vaccines and DNA vaccine delivery methods. Here we review the key characteristics of DNA vaccines as compared to other vaccine platforms, and recent insights into the prerequisites for induction of immune responses by DNA vaccines will be discussed. We illustrate the development of second generation DNA vaccines with the description of DNA tattooing as a novel DNA delivery method. This technique has shown great promise both in a small animal model and in non-human primates and is currently under clinical evaluation.
Collapse
Affiliation(s)
- K Oosterhuis
- Division of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
38
|
Quaak SGL, van den Berg JH, Oosterhuis K, Beijnen JH, Haanen JBAG, Nuijen B. DNA tattoo vaccination: effect on plasmid purity and transfection efficiency of different topoisoforms. J Control Release 2009; 139:153-9. [PMID: 19580829 DOI: 10.1016/j.jconrel.2009.06.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 06/24/2009] [Accepted: 06/29/2009] [Indexed: 02/06/2023]
Abstract
Recently, DNA tattooing was introduced as novel intradermal administration technique for plasmid DNA (pDNA) vaccines. The aim of this study was to determine if tattooing affects the integrity of pDNA (reduction in supercoiled (SC) content) and whether a change in pDNA topology would affect antigen expression and immune response. We show that 1.) in vitro tattooing of pDNA solutions results in minor damage to pDNA (<or=3% SC pDNA reduction) and only open circular (OC) pDNA formation, 2.) antigen expression and T-cell responses upon tattoo administration of SC and OC pDNA are equal in a murine model, 3.) SC pDNA gives a significantly higher antigen expression than OC and linear pDNA in ex vivo human skin, 4.) pDNA topology does not influence antigen expression when formulated as PEGylated polyplexes. We conclude that a 3% reduction in SC purity most likely will have little or no effect on clinical antigen expression and T-cell responses. For intradermal tattoo administration the ex vivo skin model might be more suitable than the standard murine model for distinguishing subtle alterations in antigen expression of clinical pDNA formulations. The results from this study enable justification of release and shelf-life specifications of pDNA products applied by this specific route of administration, as requested by the regulatory authorities (>or=80% SC).
Collapse
Affiliation(s)
- S G L Quaak
- Department of Pharmacy & Pharmacology, Slotervaart Hospital/The Netherlands Cancer Institute, Louwesweg 6, 1066 EC Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
39
|
Alekseeva E, Sominskaya I, Skrastina D, Egorova I, Starodubova E, Kushners E, Mihailova M, Petrakova N, Bruvere R, Kozlovskaya T, Isaguliants M, Pumpens P. Enhancement of the expression of HCV core gene does not enhance core-specific immune response in DNA immunization: advantages of the heterologous DNA prime, protein boost immunization regimen. GENETIC VACCINES AND THERAPY 2009; 7:7. [PMID: 19505299 PMCID: PMC2702340 DOI: 10.1186/1479-0556-7-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 06/08/2009] [Indexed: 01/17/2023]
Abstract
BACKGROUND Hepatitis C core protein is an attractive target for HCV vaccine aimed to exterminate HCV infected cells. However, although highly immunogenic in natural infection, core appears to have low immunogenicity in experimental settings. We aimed to design an HCV vaccine prototype based on core, and devise immunization regimens that would lead to potent anti-core immune responses which circumvent the immunogenicity limitations earlier observed. METHODS Plasmids encoding core with no translation initiation signal (pCMVcore); with Kozak sequence (pCMVcoreKozak); and with HCV IRES (pCMVcoreIRES) were designed and expressed in a variety of eukaryotic cells. Polyproteins corresponding to HCV 1b amino acids (aa) 1-98 and 1-173 were expressed in E. coli. C57BL/6 mice were immunized with four 25-microg doses of pCMVcoreKozak, or pCMV (I). BALB/c mice were immunized with 100 microg of either pCMVcore, or pCMVcoreKozak, or pCMVcoreIRES, or empty pCMV (II). Lastly, BALB/c mice were immunized with 20 microg of core aa 1-98 in prime and boost, or with 100 microg of pCMVcoreKozak in prime and 20 microg of core aa 1-98 in boost (III). Antibody response, [3H]-T-incorporation, and cytokine secretion by core/core peptide-stimulated splenocytes were assessed after each immunization. RESULTS Plasmids differed in core-expression capacity: mouse fibroblasts transfected with pCMVcore, pCMVcoreIRES and pCMVcoreKozak expressed 0.22 +/- 0.18, 0.83 +/- 0.5, and 13 +/- 5 ng core per cell, respectively. Single immunization with highly expressing pCMVcoreKozak induced specific IFN-gamma and IL-2, and weak antibody response. Single immunization with plasmids directing low levels of core expression induced similar levels of cytokines, strong T-cell proliferation (pCMVcoreIRES), and antibodies in titer 103(pCMVcore). Boosting with pCMVcoreKozak induced low antibody response, core-specific T-cell proliferation and IFN-gamma secretion that subsided after the 3rd plasmid injection. The latter also led to a decrease in specific IL-2 secretion. The best was the heterologous pCMVcoreKozak prime/protein boost regiment that generated mixed Th1/Th2-cellular response with core-specific antibodies in titer >or= 3 x 10(3). CONCLUSION Thus, administration of highly expressed HCV core gene, as one large dose or repeated injections of smaller doses, may suppress core-specific immune response. Instead, the latter is induced by a heterologous DNA prime/protein boost regiment that circumvents the negative effects of intracellular core expression.
Collapse
Affiliation(s)
- Ekaterina Alekseeva
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga, LV-1067, Latvia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
van den Berg JH, Nujien B, Beijnen JH, Vincent A, van Tinteren H, Kluge J, Woerdeman LAE, Hennink WE, Storm G, Schumacher TN, Haanen JBAG. Optimization of intradermal vaccination by DNA tattooing in human skin. Hum Gene Ther 2009; 20:181-9. [PMID: 19301471 DOI: 10.1089/hum.2008.073] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The intradermal administration of DNA vaccines by tattooing is a promising delivery technique for genetic immunization, with proven high immunogenicity in mice and in nonhuman primates. However, the parameters that result in optimal expression of DNA vaccines that are applied by this strategy to human skin are currently unknown. To address this issue we set up an ex vivo human skin model in which DNA vaccine-induced expression of reporter proteins could be monitored longitudinally. Using this model we demonstrate the following: First, the vast majority of cells that express DNA vaccine-encoded antigen in human skin are formed by epidermal keratinocytes, with only a small fraction (about 1%) of antigen-positive epidermal Langerhans cells. Second, using full randomization of DNA tattoo variables we show that an increase in DNA concentration,needle depth, and tattoo time all significantly increase antigen expression ( p < 0.001), with DNA concentration forming the most critical variable influencing the level of antigen expression. Finally, in spite of the marked immunogenicity of this vaccination method in animal models, transfection efficiency of the technique is shown to be extremely low, estimated at approximately 2 to 2000 out of 1 x 10(10) copies of plasmid applied. This finding, coupled with the observed dependency of antigen expression on DNA concentration, suggests that the development of strategies that can enhance in vivo transfection efficacy would be highly valuable. Collectively, this study shows that an ex vivo human skin model can be used to determine the factors that control vaccine-induced antigen expression and define the optimal parameters for the evaluation of DNA tattoo or other dermal delivery techniques in phase 1 clinical trials.
Collapse
Affiliation(s)
- Joost H van den Berg
- Department of Pharmacy and Pharmacology, Slotervaart Hospital, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
van den Berg JH, Nujien B, Beijnen JH, Vincent A, van Tinteren H, Kluge J, Woerdeman LAE, Hennink WE, Storm G, Schumacher TN, Haanen JBAG. Optimization of intradermal vaccination by DNA tattooing in human skin. Hum Gene Ther 2009. [PMID: 19301471 DOI: 10.1089/hgt.2008.073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The intradermal administration of DNA vaccines by tattooing is a promising delivery technique for genetic immunization, with proven high immunogenicity in mice and in nonhuman primates. However, the parameters that result in optimal expression of DNA vaccines that are applied by this strategy to human skin are currently unknown. To address this issue we set up an ex vivo human skin model in which DNA vaccine-induced expression of reporter proteins could be monitored longitudinally. Using this model we demonstrate the following: First, the vast majority of cells that express DNA vaccine-encoded antigen in human skin are formed by epidermal keratinocytes, with only a small fraction (about 1%) of antigen-positive epidermal Langerhans cells. Second, using full randomization of DNA tattoo variables we show that an increase in DNA concentration,needle depth, and tattoo time all significantly increase antigen expression ( p < 0.001), with DNA concentration forming the most critical variable influencing the level of antigen expression. Finally, in spite of the marked immunogenicity of this vaccination method in animal models, transfection efficiency of the technique is shown to be extremely low, estimated at approximately 2 to 2000 out of 1 x 10(10) copies of plasmid applied. This finding, coupled with the observed dependency of antigen expression on DNA concentration, suggests that the development of strategies that can enhance in vivo transfection efficacy would be highly valuable. Collectively, this study shows that an ex vivo human skin model can be used to determine the factors that control vaccine-induced antigen expression and define the optimal parameters for the evaluation of DNA tattoo or other dermal delivery techniques in phase 1 clinical trials.
Collapse
Affiliation(s)
- Joost H van den Berg
- Department of Pharmacy and Pharmacology, Slotervaart Hospital, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Potthoff A, Schwannecke S, Nabi G, Hoffmann D, Grunwald T, Wildner O, Brockmeyer N, Überla K, Tenbusch M. Immunogenicity and efficacy of intradermal tattoo immunization with adenoviral vector vaccines. Vaccine 2009; 27:2768-74. [DOI: 10.1016/j.vaccine.2009.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/24/2009] [Accepted: 03/02/2009] [Indexed: 12/17/2022]
|
43
|
Pokorná D, Poláková I, Kindlová M, Dusková M, Ludvíková V, Gabriel P, Kutinová L, Müller M, Smahel M. Vaccination with human papillomavirus type 16-derived peptides using a tattoo device. Vaccine 2009; 27:3519-29. [PMID: 19464530 DOI: 10.1016/j.vaccine.2009.03.073] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 03/23/2009] [Accepted: 03/24/2009] [Indexed: 12/23/2022]
Abstract
Tattooing has been shown to be very efficient at inducing immunity by vaccination with DNA vaccines. In this study, we examined the usability of tattooing for delivery of peptide vaccines. We compared tattooing with subcutaneous (s.c.) needle injection using peptides derived from human papillomavirus type 16 (HPV16) proteins. We observed that higher peptide-specific immune responses were elicited after vaccination with the simple peptides (E7(44-62) and E7(49-57)) and keyhole limpet hemocyanin-(KLH)-conjugated peptides (E7(49-57), L2(18-38) and L2(108-120)) with a tattoo device compared to s.c. inoculation. The administration of the synthetic oligonucleotide containing immunostimulatory CpG motifs (ODN1826) enhanced the immune responses developed after s.c. injection of some peptides (E7(44-62), KLH-conjugated L2(18-38) and L2(108-120)) to levels close to or even comparable to those after tattoo delivery of identical peptides with ODN1826. The highest efficacy of tattooing was observed in combination with ODN1826 for the vaccination with the less immunogenic E6(48-57) peptide and KLH-conjugated and non-conjugated E7(49-57) peptides which form the visible aggregates that could negatively influence the development of immune responses after s.c. injection but probably not after tattooing. In summary, we first evidenced that tattoo administration of peptide vaccines that might be useful in some cases efficiently induced both humoral and cell-mediated immune responses.
Collapse
Affiliation(s)
- Dana Pokorná
- Institute of Hematology and Blood Transfusion, Department of Experimental Virology, U Nemocnice 1, 12820 Prague 2, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|