1
|
Gao C, Zhang RS, Zheng N, Wang C. Adeno-associated virus type 2-mediated gene transfer of a short hairpin-RNA targeting human IGFBP-2 suppresses the proliferation and invasion of MDA-MB-468 cells. Mol Med Rep 2018; 17:4383-4391. [PMID: 29344663 PMCID: PMC5802212 DOI: 10.3892/mmr.2018.8434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/14/2017] [Indexed: 01/25/2023] Open
Abstract
Adeno-associated virus 2 (AAV2) is prepotent in the biological treatment of breast tumor because of its low pathogenicity and immunogenicity. Our previous study demonstrated that insulin‑like growth factor‑binding protein 2 (IGFBP‑2) was highly expressed in patients with breast metastasis. In the present study, the effects of recombinant AAV2 on the growth and metastasis of breast cancer cells were determined in vitro, and in vivo. rAAV2-ZsGreen-shRNA-scramble and rAAV2‑ZsGreen‑shRNA‑hIGFBP‑2 were used to transfect MDA‑MB‑468, and MCF‑10A cells respectively, and observed that these virus could not penetrate the normal human breast epithelia MCF‑10A cell line. To investigate the effect of the recombinant virus on chemotherapeutics, paclitaxel was added to MDA‑MB‑468 cells and it was demonstrated that rAAV2‑ZsGreen‑shRNA‑hIGFBP-2-infected MDA-MB-468 cells were highly chemosensitive to paclitaxel compared with rAAV2‑ZsGreen‑shRNA‑scramble‑injected cells. In addition, it was demonstrated that the invasive ability of rAAV2‑ZsGreen‑shRNA‑hIGFBP‑2‑infected MDA-MB-468 cells was highly impaired compared with the rAAV2‑ZsGreen‑shRNA‑scramble group. In the nude mice xenografts, the rAAV2‑ZsGreen‑shRNA‑hIGFBP‑2 injection inhibited tumor growth and Ki‑67 expression was significantly downregulated compared with the scramble group. Following IGFBP‑2 knockdown using rAAV2-ZsGreen-shRNA-hIGFBP‑2, matrix metalloproteinase‑2 expression was significantly reduced in tumor tissues compared with that in rAAV2‑ZsGreen‑shRNA‑scramble treated tumor tissues. These findings have provided a direction for the application of novel AAV2‑based therapeutics for treating aggressive triple‑negative breast cancer types.
Collapse
Affiliation(s)
- Chao Gao
- The Center for Clinical Reproductive Medicine, Jiangsu Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Ru-Song Zhang
- The Pathology Department, Nanjing General Hospital of Nanjing Military Command, Nanjing, Jiangsu 210002, P.R. China
| | - Nan Zheng
- State Key Laboratory of Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Chen Wang
- State Key Laboratory of Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| |
Collapse
|
2
|
Li S, Hao L, Wang L, Lu Y, Li Q, Zhu Z, Shao JZ, Chen W. Targeting Atp6v1c1 Prevents Inflammation and Bone Erosion Caused by Periodontitis and Reveals Its Critical Function in Osteoimmunology. PLoS One 2015; 10:e0134903. [PMID: 26274612 PMCID: PMC4537256 DOI: 10.1371/journal.pone.0134903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 07/16/2015] [Indexed: 01/08/2023] Open
Abstract
Periodontal disease (Periodontitis) is a serious disease that affects a majority of adult Americans and is associated with other systemic diseases, including diabetes, rheumatoid arthritis, and other inflammatory diseases. While great efforts have been devoted toward understanding the pathogenesis of periodontitis, there remains a pressing need for developing potent therapeutic strategies for targeting this pervasive and destructive disease. In this study, we utilized novel adeno-associated virus (AAV)-mediated Atp6v1c1 knockdown gene therapy to treat bone erosion and inflammatory caused by periodontitis in mouse model. Atp6v1c1 is a subunit of the V-ATPase complex and regulator of the assembly of the V0 and V1 domains of the V-ATPase complex. We demonstrated previously that Atp6v1c1 has an essential function in osteoclast mediated bone resorption. We hypothesized that Atp6v1c1 may be an ideal target to prevent the bone erosion and inflammation caused by periodontitis. To test the hypothesis, we employed AAV RNAi knockdown of Atp6v1c1 gene expression to prevent bone erosion and gingival inflammation simultaneously. We found that lesion-specific injection of AAV-shRNA-Atp6v1c1 into the periodontal disease lesions protected against bone erosion (>85%) and gingival inflammation caused by P. gingivalis W50 infection. AAV-mediated Atp6v1c1 knockdown dramatically reduced osteoclast numbers and inhibited the infiltration of dendritic cells and macrophages in the bacteria-induced inflammatory lesions in periodontitis. Silencing of Atp6v1c1 expression also prevented the expressions of osteoclast-related genes and pro-inflammatory cytokine genes. Our data suggests that AAV-shRNA-Atp6v1c1 treatment can significantly attenuate the bone erosion and inflammation caused by periodontitis, indicating the dual function of AAV-shRNA-Atp6v1c1 as an inhibitor of bone erosion mediated by osteoclasts, and as an inhibitor of inflammation through down-regulation of pro-inflammatory cytokine expression. This study demonstrated that Atp6v1c1 RNAi knockdown gene therapy mediated by AAV-shRNA-Atp6v1c1 is a promising novel therapeutic approach for the treatment of bone erosion and inflammatory related diseases, such as periodontitis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Sheng Li
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
- College of Stomatology, Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Liang Hao
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
| | - Lin Wang
- College of Stomatology, Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Yun Lu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
| | - Qian Li
- Life Science College, Zhejiang University, 388 Yuhang Road, Hangzhou, 310058, People's Republic of China
| | - Zheng Zhu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
- College of Stomatology, Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Jian-Zhong Shao
- Life Science College, Zhejiang University, 388 Yuhang Road, Hangzhou, 310058, People's Republic of China
| | - Wei Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
- * E-mail:
| |
Collapse
|
3
|
Lu L, Luo ST, Shi HS, Li M, Zhang HL, He SS, Liu Y, Pan Y, Yang L. AAV2-mediated gene transfer of VEGF-Trap with potent suppression of primary breast tumor growth and spontaneous pulmonary metastases by long-term expression. Oncol Rep 2012; 28:1332-8. [PMID: 22824831 DOI: 10.3892/or.2012.1915] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 04/17/2012] [Indexed: 02/05/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is an important signaling protein and a predominant mediator of angiogenesis in tumor growth and metastasis. Therefore, antagonism of the VEGF pathway results in inhibition of abnormal angiogenesis, then suppression of tumor growth and metastasis. VEGF-Trap, a high-affinity soluble decoy receptor, is currently in phase II clinical trails, and has demonstrated more efficacy in different types of solid tumors by intravenous injection every two weeks. In our study, we used recombinant AAV2 as a delivery vehicle to achieve long-lasting expression of VEGF Trap protein in a mouse model for the first time. We report that AAV2-VEGF-Trap can be safely administered and sustained expression in vivo via a single intravenously administration, simultaneously suppressing primary tumor growth and preventing the pulmonary metastases of 4T1 tumors. Decreased microvessel density and increased tumor cell apoptosis were observed in the treatment group. AAV2-VEGF-Trap can obviously decrease not only the concentration of VEGF in sera, but also the concentration of other angiogenic factors, such as aFGF, bFGF, angiopoietin-1 and others. These studies suggest that AAV-mediated long-term expression of VEGF-Trap is a useful and safe tool to block tumor progression and inhibit spontaneous pulmonary metastases.
Collapse
Affiliation(s)
- Lian Lu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Sichuan 610041, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Alekseenko IV, Kopantzev EP, Vinogradova TV, Sverdlov ED. Bicistronic vector for combined expression of the HSVtk killer gene and cytokine GM-CSF gene in cancer cells. DOKL BIOCHEM BIOPHYS 2011; 439:174-7. [PMID: 21928138 DOI: 10.1134/s1607672911040065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- I V Alekseenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997 Russia
| | | | | | | |
Collapse
|