1
|
Chapelin F, Khurana A, Moneeb M, Gray Hazard FK, Chan CFR, Nejadnik H, Gratzinger D, Messing S, Erdmann J, Gaur A, Daldrup-Link HE. Tumor Formation of Adult Stem Cell Transplants in Rodent Arthritic Joints. Mol Imaging Biol 2019; 21:95-104. [PMID: 29869062 DOI: 10.1007/s11307-018-1218-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE While imaging matrix-associated stem cell transplants aimed for cartilage repair in a rodent arthritis model, we noticed that some transplants formed locally destructive tumors. The purpose of this study was to determine the cause for this tumor formation in order to avoid this complication for future transplants. PROCEDURES Adipose-derived stem cells (ADSC) isolated from subcutaneous adipose tissue were implanted into 24 osteochondral defects of the distal femur in ten athymic rats and two immunocompetent control rats. All transplants underwent serial magnetic resonance imaging (MRI) up to 6 weeks post-transplantation to monitor joint defect repair. Nine transplants showed an increasing size over time that caused local bone destruction (group 1), while 11 transplants in athymic rats (group 2) and 4 transplants in immunocompetent rats did not. We compared the ADSC implant size and growth rate on MR images, macroscopic features, histopathologic features, surface markers, and karyotypes of these presumed neoplastic transplants with non-neoplastic ADSC transplants. RESULTS Implants in group 1 showed a significantly increased two-dimensional area at week 2 (p = 0.0092), 4 (p = 0.003), and 6 (p = 0.0205) compared to week 0, as determined by MRI. Histopathological correlations confirmed neoplastic features in group 1 with significantly increased size, cellularity, mitoses, and cytological atypia compared to group 2. Six transplants in group 1 were identified as malignant chondrosarcomas and three transplants as fibromyxoid sarcomas. Transplants in group 2 and immunocompetent controls exhibited normal cartilage features. Both groups showed a normal ADSC phenotype; however, neoplastic ADSC demonstrated a mixed population of diploid and tetraploid cells without genetic imbalance. CONCLUSIONS ADSC transplants can form tumors in vivo. Preventive actions to avoid in vivo tumor formations may include karyotyping of culture-expanded ADSC before transplantation. In addition, serial imaging of ADSC transplants in vivo may enable early detection of abnormally proliferating cell transplants.
Collapse
Affiliation(s)
- Fanny Chapelin
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, 725 Welch Rd, Rm 1665, Stanford, CA, 94305-5654, USA
| | - Aman Khurana
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, 725 Welch Rd, Rm 1665, Stanford, CA, 94305-5654, USA
| | - Mohammad Moneeb
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, 725 Welch Rd, Rm 1665, Stanford, CA, 94305-5654, USA
| | | | | | - Hossein Nejadnik
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, 725 Welch Rd, Rm 1665, Stanford, CA, 94305-5654, USA
| | - Dita Gratzinger
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Solomon Messing
- Department of Communication and Statistics, Stanford, CA, USA
| | - Jason Erdmann
- Department of Cytogenetics, Stanford University, Stanford, CA, USA
| | - Amitabh Gaur
- BD biosciences, Custom Technology Team, La Jolla, CA, USA.,Innovative Assay Solutions, San Diego, CA, 92129, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, 725 Welch Rd, Rm 1665, Stanford, CA, 94305-5654, USA.
| |
Collapse
|
2
|
Wang L, Tian H, Yuan J, Wu H, Wu J, Zhu X. CONSORT: Sam68 Is Directly Regulated by MiR-204 and Promotes the Self-Renewal Potential of Breast Cancer Cells by Activating the Wnt/Beta-Catenin Signaling Pathway. Medicine (Baltimore) 2015; 94:e2228. [PMID: 26656364 PMCID: PMC5008509 DOI: 10.1097/md.0000000000002228] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Breast cancer stem cells (BCSCs) are considered to be responsible for recurrence in breast cancer. The 68 kDa Src-associated protein in mitosis (Sam68) has been linked to the development and progression of breast cancer; however, the posttranscriptional regulation and role of Sam68 in BCSC self-renewal remain unclear.Sam68 was ectopically overexpressed or knocked down using a siRNA; the self-renewal potential of breast cancer cell lines was assessed using flow cytometry, in vitro mammosphere culture and a xenograft model in NOD/SCID mice. Activation of beta-catenin was assessed by immunohistochemical staining, Western blotting, and luciferase reporter gene assays. The ArrayExpress dataset GSE45666 was used to identify conserved microRNAs downregulated in breast cancer; real-time PCR, Western blotting, luciferase reporter assay, and xenografted tumor model were used to confirm miR-204 regulated Sam68.We found that endogenous Sam68 expression correlated positively with the self-renewal potential of breast cancer cell lines. Overexpression of Sam68 promoted, whereas knockdown reduced, breast cancer cell self-renewal potential in vitro and tumorigenicity in vivo. The Wnt/beta-catenin pathway was identified as a functional mediator of Sam68-induced self-renewal in SKBR-3 and MCF-7 cells. Furthermore, miR-204 was found to be frequently downregulated in human breast cancer and confirmed to directly target Sam68; miR-204 inhibited the self-renewal of breast cancer cell lines by targeting and suppressing Sam68.Our study reveals that Sam68 is regulated by miR-204 and may play an important role in the self-renewal of BCSCs via activating the Wnt/beta-catenin pathway. Sam68 may represent a novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Lan Wang
- From the Department of Pathogen Biology and Immunology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, China (LW, HW); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China (HT, XZ); and Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China (HT, JY, JW, XZ)
| | | | | | | | | | | |
Collapse
|
3
|
Li C, Zhang S, Lu Y, Zhang Y, Wang E, Cui Z. The roles of Notch3 on the cell proliferation and apoptosis induced by CHIR99021 in NSCLC cell lines: a functional link between Wnt and Notch signaling pathways. PLoS One 2013; 8:e84659. [PMID: 24367688 PMCID: PMC3867546 DOI: 10.1371/journal.pone.0084659] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 11/18/2013] [Indexed: 12/25/2022] Open
Abstract
Wnt and Notch signaling pathways both play essential roles and interact closely in development and carcinogenesis, but their interaction in non-small-cell lung cancer (NSCLC) is poorly unknown. Here we investigated the effects of CHIR99021, a Wnt signaling agonist, or Notch3-shRNA, or the combined application of CHIR99021 and Notch3-shRNA on cell proliferation and apoptosis, as well as the expressions of Notch3, its downstream genes, cyclinA and caspase-3. Our results showed that CHIR99021 up-regulated the expression of Notch3 protein and HES1 and HEYL mRNA. CHIR99021 promoted cell proliferation and the expression of cyclinA, which were inhibited by Notch3-shRNA in these three cell lines. Moreover, Notch3-shRNA significantly attenuated the positive effects of CHIR99021 on cell proliferation and cyclinA in H460 and H157. As for apoptosis, Notch3-shRNA induced cell apoptosis and increased the expression of caspase-3, whereas CHIR99021 showed the different effects in these three cell lines. The inhibitory effect of CHIR99021 on apoptosis was significantly weakened by Notch3-shRNA only in H460. Overall, although the effects of CHIR99021 and the combined application of CHIR99021 and Notch3-shRNA on the cell proliferation and apoptosis aren’t completely similar in the three cell lines, our findings still indicate that Notch3 signaling can be activated by canonical Wnt signaling and a functional link between Wnt and Notch signaling pathways exists in NSCLC, at least, which partially is associated with their regulations on the expressions of cyclinA and caspase-3.
Collapse
MESH Headings
- Apoptosis/drug effects
- Blotting, Western
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/physiopathology
- Caspase 3/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cyclin A/metabolism
- DNA Primers/genetics
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Regulation/drug effects
- Humans
- Microscopy, Fluorescence
- Pyridines/pharmacology
- Pyrimidines/pharmacology
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Real-Time Polymerase Chain Reaction
- Receptor, Notch3
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Wnt Signaling Pathway/drug effects
- Wnt Signaling Pathway/physiology
Collapse
Affiliation(s)
- Chunyan Li
- Center of the Laboratory Technology and Experimental Medicine, China Medical University, Shenyang, People’s Republic of China
- * E-mail:
| | - Siyang Zhang
- Center of the Laboratory Technology and Experimental Medicine, China Medical University, Shenyang, People’s Republic of China
| | - Yao Lu
- Center of the Laboratory Technology and Experimental Medicine, China Medical University, Shenyang, People’s Republic of China
| | - Ying Zhang
- Center of the Laboratory Technology and Experimental Medicine, China Medical University, Shenyang, People’s Republic of China
| | - Enhua Wang
- Department of Pathology, China Medical University, Shenyang, People’s Republic of China
| | - Zeshi Cui
- Center of the Laboratory Technology and Experimental Medicine, China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
4
|
A review of stem cell translation and potential confounds by cancer stem cells. Stem Cells Int 2013; 2013:241048. [PMID: 24385986 PMCID: PMC3872439 DOI: 10.1155/2013/241048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 11/05/2013] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells found in both fetal and adult tissues. MSCs show promise for cellular therapy for several disorders such as those associated with inflammation. In adults, MSCs primarily reside in the bone marrow (BM) and adipose tissues. In BM, MSCs are found at low frequency around blood vessels and trabecula. MSCs are attractive candidates for regenerative medicine given their ease in harvesting and expansion and their unique ability to bypass the immune system in an allogeneic host. Additionally, MSCs exert pathotropism by their ability to migrate to diseased regions. Despite the "attractive" properties of MSCs, their translation to patients requires indepth research. "Off-the-shelf" MSCs are proposed for use in an allogeneic host. Thus, the transplanted MSCs, when placed in a foreign host, could receive cue from the microenvironment for cellular transformation. An important problem with the use of MSCs involves their ability to facilitate the support of breast and other cancers as carcinoma-associated fibroblasts. MSCs could show distinct effect on each subset of cancer cells. This could lead to untoward effect during MSC therapy since the MSCs would be able to interact with undiagnosed cancer cells, which might be in a dormant state. Based on these arguments, further preclinical research is needed to ensure patient safety with MSC therapy. Here, we discuss the basic biology of MSCs, discuss current applications, and provide evidence why it is important to understand MSC biology in the context of diseased microenvironment for safe application.
Collapse
|