1
|
Verploegh ISC, Conidi A, El Hassnaoui H, Verhoeven FAM, Korporaal AL, Ntafoulis I, van den Hout MCGN, Brouwer RWW, Lamfers MLM, van IJcken WFJ, Huylebroeck D, Leenstra S. BMP4 and Temozolomide Synergize in the Majority of Patient-Derived Glioblastoma Cultures. Int J Mol Sci 2024; 25:10176. [PMID: 39337661 PMCID: PMC11432198 DOI: 10.3390/ijms251810176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
One of the main causes of poor prognoses in patient with glioblastoma (GBM) is drug resistance to current standard treatment, which includes chemoradiation and adjuvant temozolomide (TMZ). In addition, the concept of cancer stem cells provides new insights into therapy resistance and management also in GBM and glioblastoma stem cell-like cells (GSCs), which might contribute to therapy resistance. Bone morphogenetic protein-4 (BMP4) stimulates astroglial differentiation of GSCs and thereby reduces their self-renewal capacity. Exposure of GSCs to BMP4 may also sensitize these cells to TMZ. A recent phase I trial has shown that local delivery of BMP4 is safe, but a large variation in survival is seen in these treated patients and in features of their cultured tumors. We wanted to combine TMZ and BMP4 (TMZ + BMP4) therapy and assess the inter-tumoral variability in response to TMZ + BMP4 in patient-derived GBM cultures. A phase II trial could then benefit a larger group of patients than those treated with BMP4 only. We first show that simultaneous treatment with TMZ + BMP4 is more effective than sequential treatment. Second, when applying our optimized treatment protocol, 70% of a total of 20 GBM cultures displayed TMZ + BMP4 synergy. This combination induces cellular apoptosis and does not inhibit cell proliferation. Comparative bulk RNA-sequencing indicates that treatment with TMZ + BMP4 eventually results in decreased MAPK signaling, in line with previous evidence that increased MAPK signaling is associated with resistance to TMZ. Based on these results, we advocate further clinical trial research to test patient benefit and validate pathophysiological hypothesis.
Collapse
Affiliation(s)
- Iris S. C. Verploegh
- Department of Neurosurgery, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (I.S.C.V.)
- Department of Cell Biology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Andrea Conidi
- Department of Cell Biology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Hoesna El Hassnaoui
- Department of Neurosurgery, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (I.S.C.V.)
| | - Floor A. M. Verhoeven
- Department of Neurosurgery, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (I.S.C.V.)
| | - Anne L. Korporaal
- Department of Cell Biology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Ioannis Ntafoulis
- Department of Neurosurgery, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (I.S.C.V.)
| | - Mirjam C. G. N. van den Hout
- Department of Cell Biology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Biomics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Rutger W. W. Brouwer
- Department of Cell Biology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Biomics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Martine L. M. Lamfers
- Department of Neurosurgery, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (I.S.C.V.)
| | - Wilfred F. J. van IJcken
- Department of Cell Biology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Biomics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Sieger Leenstra
- Department of Neurosurgery, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (I.S.C.V.)
| |
Collapse
|
2
|
Huo X, Li H, Xing Y, Liu W, Chen P, Du F, Song L, Yu Z, Cao X, Tian J. Two decades of progress in glioma methylation research: the rise of temozolomide resistance and immunotherapy insights. Front Neurosci 2024; 18:1440756. [PMID: 39286478 PMCID: PMC11402815 DOI: 10.3389/fnins.2024.1440756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Aims This study aims to systematically analyze the global trends in glioma methylation research using bibliometric methodologies. We focus on identifying the scholarly trajectory and key research interests, and we utilize these insights to predict future research directions within the epigenetic context of glioma. Methods We performed a comprehensive literature search of the Web of Science Core Collection (WoSCC) to identify articles related to glioma methylation published from January 1, 2004, to December 31, 2023. The analysis included full-text publications in the English language and excluded non-research publications. Analysis and visualization were performed using GraphPad Prism, CiteSpace, and VOSviewer software. Results The search identified 3,744 publications within the WoSCC database, including 3,124 original research articles and 620 review articles. The research output gradually increased from 2004 to 2007, followed by a significant increase after 2008, which peaked in 2022. A minor decline in publication output was noted during 2020-2021, potentially linked to the coronavirus disease 2019 pandemic. The United States and China were the leading contributors, collectively accounting for 57.85% of the total research output. The Helmholtz Association of Germany, the German Cancer Research Center (DKFZ), and the Ruprecht Karls University of Heidelberg were the most productive institutions. The Journal of Neuro-Oncology led in terms of publication volume, while Neuro-Oncology had the highest Impact Factor. The analysis of publishing authors revealed Michael Weller as the most prolific contributor. The co-citation network analysis identified David N. Louis's article as the most frequently cited. The keyword analysis revealed "temozolomide," "expression," "survival," and "DNA methylation" as the most prominent keywords, while "heterogeneity," "overall survival," and "tumor microenvironment" showed the strongest citation bursts. Conclusions The findings of this study illustrate the increasing scholarly interest in glioma methylation, with a notable increase in research output over the past two decades. This study provides a comprehensive overview of the research landscape, highlighting the importance of temozolomide, DNA methylation, and the tumor microenvironment in glioma research. Despite its limitations, this study offers valuable insights into the current research trends and potential future directions, particularly in the realm of immunotherapy and epigenetic editing techniques.
Collapse
Affiliation(s)
- Xianhao Huo
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Haoyuan Li
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, China
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Yixiang Xing
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Wenqing Liu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Pengfei Chen
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Fang Du
- School of Information Engineering, Ningxia University, Yinchuan, China
- Collaborative Innovation Center for Ningxia Big Data and Artificial Intelligence Co-founded by Ningxia Municipality and Ministry of Education, Ningxia University, Yinchuan, China
| | - Lijuan Song
- School of Information Engineering, Ningxia University, Yinchuan, China
| | - Zhenhua Yu
- School of Information Engineering, Ningxia University, Yinchuan, China
| | - Xiangmei Cao
- Basic Medical School, Ningxia Medical University, Yinchuan, China
| | - Jihui Tian
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
3
|
Azimi P, Yazdanian T, Ahmadiani A. mRNA markers for survival prediction in glioblastoma multiforme patients: a systematic review with bioinformatic analyses. BMC Cancer 2024; 24:612. [PMID: 38773447 PMCID: PMC11106946 DOI: 10.1186/s12885-024-12345-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a type of fast-growing brain glioma associated with a very poor prognosis. This study aims to identify key genes whose expression is associated with the overall survival (OS) in patients with GBM. METHODS A systematic review was performed using PubMed, Scopus, Cochrane, and Web of Science up to Journey 2024. Two researchers independently extracted the data and assessed the study quality according to the New Castle Ottawa scale (NOS). The genes whose expression was found to be associated with survival were identified and considered in a subsequent bioinformatic study. The products of these genes were also analyzed considering protein-protein interaction (PPI) relationship analysis using STRING. Additionally, the most important genes associated with GBM patients' survival were also identified using the Cytoscape 3.9.0 software. For final validation, GEPIA and CGGA (mRNAseq_325 and mRNAseq_693) databases were used to conduct OS analyses. Gene set enrichment analysis was performed with GO Biological Process 2023. RESULTS From an initial search of 4104 articles, 255 studies were included from 24 countries. Studies described 613 unique genes whose mRNAs were significantly associated with OS in GBM patients, of which 107 were described in 2 or more studies. Based on the NOS, 131 studies were of high quality, while 124 were considered as low-quality studies. According to the PPI network, 31 key target genes were identified. Pathway analysis revealed five hub genes (IL6, NOTCH1, TGFB1, EGFR, and KDR). However, in the validation study, only, the FN1 gene was significant in three cohorts. CONCLUSION We successfully identified the most important 31 genes whose products may be considered as potential prognosis biomarkers as well as candidate target genes for innovative therapy of GBM tumors.
Collapse
Affiliation(s)
- Parisa Azimi
- Neurosurgeon, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839- 63113, Iran.
| | | | - Abolhassan Ahmadiani
- Neurosurgeon, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839- 63113, Iran.
| |
Collapse
|
4
|
Luo W, Quan Q, Jiang J, Peng R. An immune and epithelial-mesenchymal transition-related risk model and immunotherapy strategy for grade II and III gliomas. Front Genet 2023; 13:1070630. [PMID: 36778912 PMCID: PMC9909968 DOI: 10.3389/fgene.2022.1070630] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Grade II and III gliomas are heterogeneous and aggressive diseases. More efficient prognosis models and treatment methods are needed. This study aims to construct a new risk model and propose a new strategy for grade II and III gliomas. The data were downloaded from The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO), gene set enrichment analysis (GSEA), and the EMTome website for analysis. The Human Cell Landscape website and the Genomics of Drug Sensitivity in Cancer website were used for single-cell analysis and drug susceptibility analysis. Gene set enrichment analysis, gene function enrichment analysis, univariate and multivariate Cox regression analyses, Pearson's correlation analysis, log-rank test, Kaplan-Meier survival analysis, and ROC analysis were performed. We constructed an immune-related prognostic model associated with the isocitrate dehydrogenase 1 (IDH1) mutation status. By analyzing the immune microenvironment of patients with different risk scores, we found that high-risk patients were more likely to have an inflammatory immune microenvironment and a higher programmed death ligand-1 (PD-L1) expression level. Epithelial-mesenchymal transition (EMT)-related gene sets were significantly enriched in the high-risk group, and the epithelial-mesenchymal transition phenotype was associated with a decrease in CD8+ T cells and an increase in M2 macrophages. Transforming growth factor-β (TGF-β) signaling was the most important signaling in inducing epithelial-mesenchymal transition, and TGFB1/TGFBR1 was correlated with an increase in CD8+ T cytopenia and M2 macrophages. Survival analysis showed that simultaneous low expression of TGFBR1 and PD-L1 had better survival results. Through single-cell analysis, we found that TGFB1 is closely related to microglia and macrophages, especially M2 macrophages. Finally, we discussed the sensitivity of TGFB1 inhibitors in gliomas using cell line susceptibility data. These results demonstrated a potential immunotherapy strategy in combination with the TGFB1/TGFBR1 inhibitor and PD-1/PD-L1 inhibitor for grade II and III gliomas.
Collapse
Affiliation(s)
| | | | | | - Roujun Peng
- Department of VIP Section, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangzhou, China
| |
Collapse
|
5
|
Han XX, Cai C, Yu LM, Wang M, Yang W, Hu DY, Ren J, Zhu LY, Deng JJ, Chen QQ, He H, Gao Z. Glioma stem cells and neural stem cells respond differently to BMP4 signaling. CELL REGENERATION 2022; 11:36. [DOI: 10.1186/s13619-022-00136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/09/2022] [Indexed: 11/06/2022]
Abstract
AbstractMalignant glioma is a highly heterogeneous and invasive primary brain tumor characterized by high recurrence rates, resistance to combined therapy, and dismal prognosis. Glioma stem cells (GSCs) are likely responsible for tumor progression, resistance to therapy, recurrence, and poor prognosis owing to their high self-renewal and tumorigenic potential. As a family member of BMP signaling, bone morphogenetic protein4 (BMP4) has been reported to induce the differentiation of GSCs and neural stem cells (NSCs). However, the molecular mechanisms underlying the BMP4-mediated effects in these two cell types are unclear. In this study, we treated hGSCs and hNSCs with BMP4 and compared the phenotypic and transcriptional changes between these two cell types. Phenotypically, we found that the growth of hGSCs was greatly inhibited by BMP4, but the same treatment only increased the cell size of hNSCs. While the RNA sequencing results showed that BMP4 treatment evoked significantly transcriptional changes in both hGSCs and hNSCs, the profiles of differentially expressed genes were distinct between the two groups. A gene set that specifically targeted the proliferation and differentiation of hGSCs but not hNSCs was enriched and then validated in hGSC culture. Our results suggested that hGSCs and hNSCs responded differently to BMP4 stimulation. Understanding and investigating different responses between hGSCs and hNSCs will benefit finding partner factors working together with BMP4 to further suppress GSCs proliferation and stemness without disturbing NSCs.
Collapse
|
6
|
Ferguson KM, Blin C, Alfazema N, Gangoso E, Pollard SM, Marques-Torrejon MA. Lrig1 regulates the balance between proliferation and quiescence in glioblastoma stem cells. Front Cell Dev Biol 2022; 10:983097. [PMID: 36420140 PMCID: PMC9677454 DOI: 10.3389/fcell.2022.983097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2023] Open
Abstract
Patients with glioblastoma (GBM) face a dismal prognosis. GBMs are driven by glioblastoma stem cells (GSCs) that display a neural stem cell (NSC)-like phenotype. These glioblastoma stem cells are often in a quiescent state that evades current therapies, namely debulking surgery and chemo/radiotherapy. Leucine-rich repeats and immunoglobulin-like domains (LRIG) proteins have been implicated as regulators of growth factor signalling across many tissue stem cells. Lrig1 is highly expressed in gliomas and importantly, polymorphisms have been identified that are risk alleles for patients with GBM, which suggests some functional role in gliomagenesis. We previously reported that Lrig1 is a gatekeeper of quiescence exit in adult mouse neural stem cells, suppressing epidermal growth factor receptor signalling prior to cell cycle re-entry. Here, we perform gain- and loss-of-function studies to understand the function of Lrig1 in glioblastoma stem cells. Using a novel mouse glioblastoma stem cell model, we show that genetic ablation of Lrig1 in cultured GBM stem cells results in higher proliferation and loss of quiescence. In vivo, mice transplanted with glioblastoma stem cells lacking Lrig1 display lower survival compared to Lrig1 WT glioblastoma stem cells, with tumours displaying increased proportions of proliferative cells and reduced quiescent subpopulations. In contrast, Lrig1 overexpression in mouse glioblastoma stem cells results in enhanced quiescence and reduced proliferation, with impaired tumour formation upon orthotopic transplantation. Mechanistically, we find that Lrig1-null cells have a deficiency in BMP signalling responses that may underlie their lack of responsiveness to quiescence cues in vivo. These findings highlight important roles for Lrig1 in controlling responsiveness to both epidermal growth factor receptor and BMPR signalling, and hence the proportions of quiescent and proliferative subpopulations in GBMs.
Collapse
Affiliation(s)
- Kirsty M. Ferguson
- Centre for Regenerative Medicine and Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Carla Blin
- Centre for Regenerative Medicine and Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Neza Alfazema
- Centre for Regenerative Medicine and Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Ester Gangoso
- Centre for Regenerative Medicine and Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Steven M. Pollard
- Centre for Regenerative Medicine and Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria Angeles Marques-Torrejon
- Centre for Regenerative Medicine and Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
- Predepartment Unit of Medicine. Jaume I University, Castellon, Spain
| |
Collapse
|
7
|
Current Opportunities for Targeting Dysregulated Neurodevelopmental Signaling Pathways in Glioblastoma. Cells 2022; 11:cells11162530. [PMID: 36010607 PMCID: PMC9406959 DOI: 10.3390/cells11162530] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most common and highly lethal type of brain tumor, with poor survival despite advances in understanding its complexity. After current standard therapeutic treatment, including tumor resection, radiotherapy and concomitant chemotherapy with temozolomide, the median overall survival of patients with this type of tumor is less than 15 months. Thus, there is an urgent need for new insights into GBM molecular characteristics and progress in targeted therapy in order to improve clinical outcomes. The literature data revealed that a number of different signaling pathways are dysregulated in GBM. In this review, we intended to summarize and discuss current literature data and therapeutic modalities focused on targeting dysregulated signaling pathways in GBM. A better understanding of opportunities for targeting signaling pathways that influences malignant behavior of GBM cells might open the way for the development of novel GBM-targeted therapies.
Collapse
|
8
|
Ehata S, Miyazono K. Bone Morphogenetic Protein Signaling in Cancer; Some Topics in the Recent 10 Years. Front Cell Dev Biol 2022; 10:883523. [PMID: 35693928 PMCID: PMC9174896 DOI: 10.3389/fcell.2022.883523] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/09/2022] [Indexed: 12/19/2022] Open
Abstract
Bone morphogenetic proteins (BMPs), members of the transforming growth factor-β (TGF-β) family, are multifunctional cytokines. BMPs have a broad range of functions, and abnormalities in BMP signaling pathways are involved in cancer progression. BMPs activate the proliferation of certain cancer cells. Malignant phenotypes of cancer cells, such as increased motility, invasiveness, and stemness, are enhanced by BMPs. Simultaneously, BMPs act on various cellular components and regulate angiogenesis in the tumor microenvironment. Thus, BMPs function as pro-tumorigenic factors in various types of cancer. However, similar to TGF-β, which shows both positive and negative effects on tumorigenesis, BMPs also act as tumor suppressors in other types of cancers. In this article, we review important findings published in the recent decade and summarize the pro-oncogenic functions of BMPs and their underlying mechanisms. The current status of BMP-targeted therapies for cancers is also discussed.
Collapse
Affiliation(s)
- Shogo Ehata
- Department of Pathology, School of Medicine, Wakayama Medical University, Wakayama, Japan
- *Correspondence: Shogo Ehata,
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Bone Morphogenetic Protein 7 Effect on Human Glioblastoma Cell Transmigration and Migration. Life (Basel) 2021; 11:life11070708. [PMID: 34357080 PMCID: PMC8307702 DOI: 10.3390/life11070708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/01/2021] [Accepted: 07/16/2021] [Indexed: 01/02/2023] Open
Abstract
Glioblastoma, World Health Organization—grade IV, is the most malignant glioma type and it is still an incurable tumor due to the high level of heterogeneity and uncontrolled metastatic nature. In addition to the tumorigenicity-suppressing activity, bone morphogenetic protein 7 (BMP7) has recently been found for its invasion-promoting role in glioblastoma. However, the detailed and precise mechanism in this issue should have more elucidation. Thus, in this study, we determined the BMP7 effect on glioblastoma transmigration and migration regulations and the underlying mechanisms. Human LN18/LN229 glioblastoma cells were used in this study. Our results showed a higher BMP7/pSmad5 level in human malignant glioma tissues compared to healthy brain tissues. In addition, it was demonstrated that endogenous and exogenous BMP7 stimulation could increase the transmigration and migration capabilities of human LN18/LN229 glioblastoma cells. Moreover, this event is regulated by Smad5 and p75 neurotrophin receptor (p75NTR) signaling. Furthermore, unexpected data are that the Smad1 gene knockdown could lead to the cell death of human LN18 glioblastoma cells. Overall, the present study finds that the invasion-promoting activity of BMP7 might be an autocrine stimulation of glioblastoma and this effect could be regulated by Smad5-p75NTR signaling.
Collapse
|
10
|
Tanabe R, Miyazono K, Todo T, Saito N, Iwata C, Komuro A, Sakai S, Raja E, Koinuma D, Morikawa M, Westermark B, Heldin CH. PRRX1 induced by BMP signaling decreases tumorigenesis by epigenetically regulating glioma-initiating cell properties via DNA methyltransferase 3A. Mol Oncol 2021; 16:269-288. [PMID: 34214250 PMCID: PMC8732353 DOI: 10.1002/1878-0261.13051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/25/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022] Open
Abstract
Glioma‐initiating cells (GICs), a major source of glioblastoma recurrence, are characterized by the expression of neural stem cell markers and the ability to grow by forming nonadherent spheres under serum‐free conditions. Bone morphogenetic proteins (BMPs), members of the transforming growth factor‐β family, induce differentiation of GICs and suppress their tumorigenicity. However, the mechanisms underlying the BMP‐induced loss of GIC stemness have not been fully elucidated. Here, we show that paired related homeobox 1 (PRRX1) induced by BMPs decreases the CD133‐positive GIC population and inhibits tumorigenic activity of GICs in vivo. Of the two splice isoforms of PRRX1, the longer isoform, pmx‐1b, but not the shorter isoform, pmx‐1a, induces GIC differentiation. Upon BMP stimulation, pmx‐1b interacts with the DNA methyltransferase DNMT3A and induces promoter methylation of the PROM1 gene encoding CD133. Silencing DNMT3A maintains PROM1 expression and increases the CD133‐positive GIC population. Thus, pmx‐1b promotes loss of stem cell‐like properties of GICs through region‐specific epigenetic regulation of CD133 expression by recruiting DNMT3A, which is associated with decreased tumorigenicity of GICs.
Collapse
Affiliation(s)
- Ryo Tanabe
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan.,Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Sweden
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan.,Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Sweden
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, The Institute of Medical Science, The University of Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Japan
| | - Caname Iwata
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Akiyoshi Komuro
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Satoshi Sakai
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Erna Raja
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Masato Morikawa
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Bengt Westermark
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Sweden
| |
Collapse
|
11
|
Wang Q, An Y, Wang F, Zhang G, Zhang L, Dong H, Xin J, Li Y, Ji S, Guo X. OSchol: an online consensus survival web server for cholangiocarcinoma prognosis analysis. HPB (Oxford) 2021; 23:545-550. [PMID: 32888851 DOI: 10.1016/j.hpb.2020.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND As the most common biliary ducts, cholangiocarcinoma (CHOL) is an aggressive malignancy with complex pathological context, high mortality and relapse rate. The current therapy of CHOL is mainly performed with surgery followed by chemoradiotherapy. Due to the high metastasis and relapse rate of CHOL, the prognosis of CHOL is still poor, and the molecular prognostic system is to be constructed. METHODS In this study, we have established an online prognostic analysis web server named OSchol to evaluate the correlation between candidate genes and survival for CHOL. RESULTS The prognostic values of previous published biomarkers in OSchol, including ITIH4, PTEN and DACH1, have been validated by OSchol. In addition, we have identified novel potential prognostic biomarker for CHOL using OSchol, that E2F1 has significant prognostic ability in OSchol (both TCGA and GSE107943 cohorts). CONCLUSION Our study provides a platform for researchers and clinicians to screen, develop and validate their genes of interest to be potential prognostic biomarkers for CHOL and may also help guide the targeted therapies for CHOL.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Yang An
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Fengling Wang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Guosen Zhang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Lu Zhang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Huan Dong
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Junfang Xin
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Yongqiang Li
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Shaoping Ji
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Xiangqian Guo
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
12
|
Deng G, Chen Y, Guo C, Yin L, Han Y, Li Y, Fu Y, Cai C, Shen H, Zeng S. BMP4 promotes the metastasis of gastric cancer by inducing epithelial-mesenchymal transition via ID1. J Cell Sci 2020; 133:jcs237222. [PMID: 32376787 DOI: 10.1242/jcs.237222] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 04/15/2020] [Indexed: 12/15/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial process for cancer cells to acquire metastatic potential, which primarily causes death in gastric cancer (GC) patients. Bone morphogenetic protein 4 (BMP4) is a member of the TGF-β family that plays an indispensable role in human cancers. However, little is known about its roles in GC metastasis. In this study, BMP4 was found to be frequently overexpressed in GC tissues and was correlated with poor patient's prognosis. BMP4 was upregulated in GC cell lines and promoted EMT and metastasis of GC cells both in vitro and in vivo, whereas knockdown of BMP4 significantly inhibited EMT and metastasis of GC cells. Furthermore, the inhibitor of DNA binding 1 (also known as DNA-binding protein inhibitor ID1) was identified as a downstream target of BMP4 using PCR arrays and was upregulated via SMAD1/5/8 phosphorylation. ID1 knockdown attenuated BMP4-induced EMT and invasion in GC cells. Moreover, ID1 overexpression in BMP4 knockdown cells restored the promotion of EMT and cell invasion. In summary, BMP4 induced EMT and promoted GC metastasis by upregulating ID1 expression. Antagonizing BMP4 could be a potential therapeutic strategy for GC metastasis.
Collapse
Affiliation(s)
- Ganlu Deng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022 Guangxi, China
| | - Yihong Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Cao Guo
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Ling Yin
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Yiyi Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Yaojie Fu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| |
Collapse
|
13
|
Bone Morphogenetic Protein 4 Targeting Glioma Stem-Like Cells for Malignant Glioma Treatment: Latest Advances and Implications for Clinical Application. Cancers (Basel) 2020; 12:cancers12020516. [PMID: 32102285 PMCID: PMC7072475 DOI: 10.3390/cancers12020516] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
Malignant gliomas are heterogeneous neoplasms. Glioma stem-like cells (GSCs) are undifferentiated and self-renewing cells that develop and maintain these tumors. These cells are the main population that resist current therapies. Genomic and epigenomic analyses has identified various molecular subtypes. Bone morphogenetic protein 4 (BMP4) reduces the number of GSCs through differentiation and induction of apoptosis, thus increasing therapeutic sensitivity. However, the short half-life of BMP4 impedes its clinical application. We previously reviewed BMP4 signaling in central nervous system development and glioma tumorigenesis and its potential as a treatment target in human gliomas. Recent advances in understanding both adult and pediatric malignant gliomas highlight critical roles of BMP4 signaling pathways in the regulation of tumor biology, and indicates its potential as a therapeutic molecule. Furthermore, significant progress has been made on synthesizing BMP4 biocompatible delivery materials, which can bind to and markedly extend BMP4 half-life. Here, we review current research associated with BMP4 in brain tumors, with an emphasis on pediatric malignant gliomas. We also summarize BMP4 delivery strategies, highlighting biocompatible BMP4 binding peptide amphiphile nanostructures as promising novel delivery platforms for treatment of these devastating tumors.
Collapse
|
14
|
Wang ZL, Zhang CB, Liu YQ, Wang Z, Jiang T. Peripheral blood test provides a practical method for glioma evaluation and prognosis prediction. CNS Neurosci Ther 2019; 25:876-883. [PMID: 30912613 PMCID: PMC6630006 DOI: 10.1111/cns.13120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To investigate the relationship between tumor characteristics and the preoperative counts of immune cells in peripheral blood test in glioma patients. METHODS We included 260 WHO grades II-IV patients who had preoperative peripheral blood test result from Sanbo hospital as training set. The 66 patients from Tiantan hospital was obtained for validation. RNA sequencing data from CGGA and TCGA datasets were used to evaluate the features of neutrophil subtype and lymphocyte subtype in glioma. RESULTS We revealed that the count of preoperative lymphocytes, eosinophils and neutrophils were associated with glioma grades. Neutrophil-to-lymphocyte ratio (NLR) <3.2 was associated with better prognosis, whereas increased NLR was strongly corresponding with a poor prognosis. Lymphocyte type glioma patients demonstrated a positive correlation with isocitrate dehydrogenase (IDH) mutation and lower grade. IDH mutant glioma contained a higher proportion of tumor-infiltrating lymphocytes than IDH wild-type glioma. The immune subtype (neutrophil subtype and lymphocyte subtype) was an independent prognostic factor in glioma. CONCLUSION Our data demonstrated that NLR was an important prognostic factor in glioma. We classified that the immune subtype of glioma may contribute to a better understanding of disease pathogenesis and lead to the identification of new therapeutic targets for glioma patients.
Collapse
Affiliation(s)
- Zhi-Liang Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chuan-Bao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu-Qing Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zheng Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
15
|
Ng Kee Kwong F, Nicholson AG, Pavlidis S, Adcock IM, Chung KF. PGAM5 expression and macrophage signatures in non-small cell lung cancer associated with chronic obstructive pulmonary disease (COPD). BMC Cancer 2018; 18:1238. [PMID: 30526542 PMCID: PMC6288964 DOI: 10.1186/s12885-018-5140-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/27/2018] [Indexed: 12/19/2022] Open
Abstract
Background COPD patients are at increased risk of developing non-small cell lung carcinoma that has a worse prognosis. Oxidative stress contributes to carcinogenesis and is increased in COPD patients due to mitochondrial dysfunction. We determined whether mitochondrial dysfunction is a contributing factor to the reduced survival of COPD patients with non-small cell lung carcinoma (NSCLC). Methods Using a transcriptomic database and outcome data of 3553 NSCLC samples, we selected mitochondrial-related genes whose levels in the tumour correlated with patient mortality. We further selected those genes showing a ≥ 2 fold expression in cancer compared to normal tissue. Cell-type specific expression of these proteins in lung tissue from NSCLC patients who were non-smokers or smokers with or without COPD (healthy smokers) was determined by immunohistochemistry. Gene set variation analysis was used in additional NSCLC datasets to determine the relative expression of specific macrophage transcriptomic signatures within lung cancer tissue. Results The expression of 14 mitochondrial-related genes was correlated with patient mortality and these were differentially expressed between cancer and normal lung tissue. We studied further the expression of one of these genes, PGAM5 which is a regulator of mitochondrial degradation by mitophagy. In background lung tissue, PGAM5 was only expressed in alveolar macrophages, with the highest expression in smokers with COPD compared to healthy smokers and non-smokers. In cancerous tissue, only the malignant epithelial cells and associated macrophages at the periphery of the cancer expressed PGAM5. Pre-neoplastic epithelium also showed the expression of PGAM5. There was no difference in expression in cancer tissue between COPD, healthy smoker and non-smoker groups. Macrophages at the edge of the cancer from COPD patients showed a trend towards higher expression of PGAM5 compared to those from the other groups. There was a significant correlation between PGAM5 expression in cancer tissue and the level of expression of 9 out of 49 previously-defined macrophage transcriptomic signatures with a particular one associated with patient mortality (p < 0.05). Conclusion PGAM5 is expressed in pre-neoplastic tissue and NSCLC, but not in normal epithelium. The association between PGAM5 expression and patient mortality may be mediated through the induction of specific macrophage phenotypes. Electronic supplementary material The online version of this article (10.1186/s12885-018-5140-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- F Ng Kee Kwong
- Airways Disease, National Heart and Lung Institute, Imperial College London, London, UK. .,Department of Histopathology, Royal Brompton & Harefield NHS Foundation Trust, London, UK. .,Department of Histopathology, The Cotman Centre, Norfolk and Norwich University Hospital NHS Foundation Trust, Colney Lane, Norwich, NR4 7UB, UK.
| | - A G Nicholson
- Airways Disease, National Heart and Lung Institute, Imperial College London, London, UK.,Department of Histopathology, Royal Brompton & Harefield NHS Foundation Trust, London, UK
| | - S Pavlidis
- Airways Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - I M Adcock
- Airways Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - K F Chung
- Airways Disease, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
16
|
Kuo CHS, Pavlidis S, Loza M, Baribaud F, Rowe A, Pandis I, Hoda U, Rossios C, Sousa A, Wilson SJ, Howarth P, Dahlen B, Dahlen SE, Chanez P, Shaw D, Krug N, Sandstrӧm T, De Meulder B, Lefaudeux D, Fowler S, Fleming L, Corfield J, Auffray C, Sterk PJ, Djukanovic R, Guo Y, Adcock IM, Chung KF. A Transcriptome-driven Analysis of Epithelial Brushings and Bronchial Biopsies to Define Asthma Phenotypes in U-BIOPRED. Am J Respir Crit Care Med 2017; 195:443-455. [PMID: 27580351 DOI: 10.1164/rccm.201512-2452oc] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
RATIONALE Asthma is a heterogeneous disease driven by diverse immunologic and inflammatory mechanisms. OBJECTIVES Using transcriptomic profiling of airway tissues, we sought to define the molecular phenotypes of severe asthma. METHODS The transcriptome derived from bronchial biopsies and epithelial brushings of 107 subjects with moderate to severe asthma were annotated by gene set variation analysis using 42 gene signatures relevant to asthma, inflammation, and immune function. Topological data analysis of clinical and histologic data was performed to derive clusters, and the nearest shrunken centroid algorithm was used for signature refinement. MEASUREMENTS AND MAIN RESULTS Nine gene set variation analysis signatures expressed in bronchial biopsies and airway epithelial brushings distinguished two distinct asthma subtypes associated with high expression of T-helper cell type 2 cytokines and lack of corticosteroid response (group 1 and group 3). Group 1 had the highest submucosal eosinophils, as well as high fractional exhaled nitric oxide levels, exacerbation rates, and oral corticosteroid use, whereas group 3 patients showed the highest levels of sputum eosinophils and had a high body mass index. In contrast, group 2 and group 4 patients had an 86% and 64% probability, respectively, of having noneosinophilic inflammation. Using machine learning tools, we describe an inference scheme using the currently available inflammatory biomarkers sputum eosinophilia and fractional exhaled nitric oxide levels, along with oral corticosteroid use, that could predict the subtypes of gene expression within bronchial biopsies and epithelial cells with good sensitivity and specificity. CONCLUSIONS This analysis demonstrates the usefulness of a transcriptomics-driven approach to phenotyping that segments patients who may benefit the most from specific agents that target T-helper cell type 2-mediated inflammation and/or corticosteroid insensitivity.
Collapse
Affiliation(s)
- Chih-Hsi Scott Kuo
- 1 Department of Computing.,2 Data Science Institute, and.,3 Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stelios Pavlidis
- 1 Department of Computing.,2 Data Science Institute, and.,4 Janssen Research and Development, High Wycombe, United Kingdom
| | - Matthew Loza
- 4 Janssen Research and Development, High Wycombe, United Kingdom
| | - Fred Baribaud
- 4 Janssen Research and Development, High Wycombe, United Kingdom
| | - Anthony Rowe
- 4 Janssen Research and Development, High Wycombe, United Kingdom
| | - Ioannis Pandis
- 1 Department of Computing.,2 Data Science Institute, and
| | - Uruj Hoda
- 3 Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,5 Biomedical Research Unit, Royal Brompton & Harefield National Health Service Trust, London, United Kingdom
| | - Christos Rossios
- 3 Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ana Sousa
- 6 Respiratory Therapeutic Unit, GlaxoSmithKline, Stockley Park, United Kingdom
| | - Susan J Wilson
- 7 Faculty of Medicine, Southampton University, Southampton, United Kingdom
| | - Peter Howarth
- 7 Faculty of Medicine, Southampton University, Southampton, United Kingdom
| | - Barbro Dahlen
- 8 Centre for Allergy Research, Karolinska Institute, Stockholm, Sweden
| | - Sven-Erik Dahlen
- 8 Centre for Allergy Research, Karolinska Institute, Stockholm, Sweden
| | | | - Dominick Shaw
- 10 Centre for Respiratory Research, University of Nottingham, Nottingham, United Kingdom
| | - Norbert Krug
- 11 Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Thomas Sandstrӧm
- 12 Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Bertrand De Meulder
- 13 European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, University of Lyon, Lyon, France
| | - Diane Lefaudeux
- 13 European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, University of Lyon, Lyon, France
| | - Stephen Fowler
- 14 Centre for Respiratory Medicine and Allergy, University of Manchester, Manchester, United Kingdom
| | - Louise Fleming
- 3 Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,5 Biomedical Research Unit, Royal Brompton & Harefield National Health Service Trust, London, United Kingdom
| | - Julie Corfield
- 15 AstraZeneca R&D, Molndal, Sweden.,16 Areteva R&D, Nottingham, United Kingdom; and
| | - Charles Auffray
- 13 European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, University of Lyon, Lyon, France
| | - Peter J Sterk
- 17 Faculty of Medicine, University of Amsterdam, Amsterdam, the Netherlands
| | - Ratko Djukanovic
- 7 Faculty of Medicine, Southampton University, Southampton, United Kingdom
| | - Yike Guo
- 1 Department of Computing.,2 Data Science Institute, and
| | - Ian M Adcock
- 3 Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,5 Biomedical Research Unit, Royal Brompton & Harefield National Health Service Trust, London, United Kingdom
| | - Kian Fan Chung
- 3 Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,5 Biomedical Research Unit, Royal Brompton & Harefield National Health Service Trust, London, United Kingdom
| | | |
Collapse
|
17
|
Abstract
Gliomas are the most common primary brain tumors. This meta-analysis aimed to systematically evaluate the relationship between CD147 expression in tissues and the clinicopathological features of patients with glioma. We searched PubMed (1966-2016), EMBASE (1980-2016), Cochrane Library (1996-2016), Web of Science (1945-2016), China National Knowledge Infrastructure (1982-2016), and Wan Fang databases (1988-2016). Quality assessment of the literature was performed using the Newcastle-Ottawa Scale, with Revman 5.3 and Stata 14.0 for analysis. In total, 1806 glioma patients from 19 studies were included, and patients with CD147 overexpression had poorer overall survival [hazard ratio (HR) = 2.211, P < 0.0001], a higher risk of recurrence (HR = 2.20, P = 0.0025), and a lower 5-year survival rate [odds ratio (OR) 0.12; 95% CI 0.08-0.19; P < 0.00001]. We observed significant differences in CD147 expression when comparing glioma tissues versus non-cancerous brain tissues (OR 20.42; 95% CI 13.94-29.91; P < 0.00001), tumor grades III-IV versus grades I-II (OR 5.88, 95% CI 4.15-8.34; P < 0.00001), and large versus small tumors (OR 1.58, 95% CI 1.04-2.40; P = 0.03). We also observed a significant correlation with matrix metalloproteinase (MMP) 2 (OR 39.11, 95% CI 11.47-133.34; P < 0.00001) and MMP9 (OR 13.35, 95% CI 4.67-38.18; P < 0.00001). CD147 expression did not differ based on patient's age (young vs. old, P = 0.89) or gender (female vs. male, P = 0.57). CD147 expression may be a potential prognostic biomarker for poorer overall and relapse-free survival, and may affect the 5-year survival rate in glioma patients. CD147 expression is also closely correlated with poor clinical characteristics in glioma patients.
Collapse
|
18
|
Xi G, Best B, Mania-Farnell B, James CD, Tomita T. Therapeutic Potential for Bone Morphogenetic Protein 4 in Human Malignant Glioma. Neoplasia 2017; 19:261-270. [PMID: 28278424 PMCID: PMC5342987 DOI: 10.1016/j.neo.2017.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 12/14/2022] Open
Abstract
Human glioma, in particular, malignant forms such as glioblastoma exhibit dismal survival rates despite advances in treatment strategies. A population of glioma cells with stem-like features, glioma cancer stem-like cells (GCSCs), contribute to renewal and maintenance of the tumor cell population and appear responsible for chemotherapeutic and radiation resistance. Bone morphogenetic protein 4 (BMP4), drives differentiation of GCSCs and thus improves therapeutic efficacy. Based on this observation it is imperative that the clinical merits of BMP4 in treating human gliomas should be addressed. This article reviews BMP4 signaling in central nervous system development and in glioma tumorigenesis, and the potential of this molecule as a treatment target in human gliomas. Further work needs to be done to determine if distinct lineages of GCSCs, associated with different glioma sub-classifications, proneural, neural, classical and mesenchymal, differ in responsiveness to BMP4 treatment. Additionally, interaction among BMP4 and cell matrix, tumor-vascular molecules and microglial immune cells also needs to be investigated, as this will enhance our knowledge about the role of BMP4 in human glioma and lead to the identification and/or development of novel therapeutic approaches that improve treatment outcomes of these devastating tumors.
Collapse
Affiliation(s)
- Guifa Xi
- Division of Pediatric Neurosurgery, Falk Brain Tumor Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; The Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Benjamin Best
- Division of Pediatric Neurosurgery, Falk Brain Tumor Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Barbara Mania-Farnell
- Department of Biological Sciences, Purdue University Northwest, Hammond, IN 46323, USA
| | - Charles David James
- The Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tadanori Tomita
- Division of Pediatric Neurosurgery, Falk Brain Tumor Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; The Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
19
|
Liu S, Yin F, Zhao M, Zhou C, Ren J, Huang Q, Zhao Z, Mitra R, Fan W, Fan M. The homing and inhibiting effects of hNSCs-BMP4 on human glioma stem cells. Oncotarget 2017; 7:17920-31. [PMID: 26908439 PMCID: PMC4951260 DOI: 10.18632/oncotarget.7472] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/11/2016] [Indexed: 02/06/2023] Open
Abstract
Malignant gliomas patients have a poor survival rate, partially due to the inability in delivering therapeutic agents to the tumors, especially to the metastasis of human glioma stem cells (hGSCs). To explore whether the human neural stem cells (hNSCs) with an over-expression of BMP4 (hNSCs-BMP4) can trace and inhibit hGSCs, in this study, we examined the migration of hNSCs to hGSCs using transwell assay in vitro and performed the fluorescent tracer experiment in vivo. We examined the proliferation, differentiation, apoptosis and migration of hGSCs after co-culturing with hNSCs-BMP4 in vitro and tested the tropism and antitumor effects of hNSCs-BMP4 in the established brain xenograft models of hGSCs. We found that hNSCs-BMP4 could secrete BMP4 and trace hGSCs both in vitro and in vivo. When compared to the normal human astrocytes (NHAs) and hNSCs, hNSCs-BMP4 could significantly inhibit the invasive growth of hGSCs, promote their differentiation and apoptosis by activating Smad1/5/8 signaling, and prolong the survival time of the tumor-bearing nude mice. Collectively, this study suggested that hNSCs-BMP4 may help in developing therapeutic approaches for the treatment of human malignant gliomas.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Neurosurgery, Navy General Hospital, PLA, Beijing 100048, China
| | - Feng Yin
- Department of Neurosurgery, Navy General Hospital, PLA, Beijing 100048, China
| | - Mingming Zhao
- Department of Neurosurgery, Navy General Hospital, PLA, Beijing 100048, China
| | - Chunhui Zhou
- Department of Neurosurgery, Navy General Hospital, PLA, Beijing 100048, China
| | - Junlin Ren
- Department of Neurosurgery, Navy General Hospital, PLA, Beijing 100048, China
| | - Qiming Huang
- Department of Brain Protection & Plasticity Research, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Zhongming Zhao
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, USA.,Departments of Psychiatry and Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ramkrishna Mitra
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Wenhong Fan
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Ming Fan
- Department of Brain Protection & Plasticity Research, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| |
Collapse
|
20
|
Kuo CHS, Pavlidis S, Loza M, Baribaud F, Rowe A, Pandis I, Sousa A, Corfield J, Djukanovic R, Lutter R, Sterk PJ, Auffray C, Guo Y, Adcock IM, Chung KF. T-helper cell type 2 (Th2) and non-Th2 molecular phenotypes of asthma using sputum transcriptomics in U-BIOPRED. Eur Respir J 2017; 49:49/2/1602135. [PMID: 28179442 DOI: 10.1183/13993003.02135-2016] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 11/05/2022]
Abstract
Asthma is characterised by heterogeneous clinical phenotypes. Our objective was to determine molecular phenotypes of asthma by analysing sputum cell transcriptomics from 104 moderate-to-severe asthmatic subjects and 16 nonasthmatic subjects.After filtering on the differentially expressed genes between eosinophil- and noneosinophil-associated sputum inflammation, we used unbiased hierarchical clustering on 508 differentially expressed genes and gene set variation analysis of specific gene sets.We defined three transcriptome-associated clusters (TACs): TAC1 (characterised by immune receptors IL33R, CCR3 and TSLPR), TAC2 (characterised by interferon-, tumour necrosis factor-α- and inflammasome-associated genes) and TAC3 (characterised by genes of metabolic pathways, ubiquitination and mitochondrial function). TAC1 showed the highest enrichment of gene signatures for interleukin-13/T-helper cell type 2 (Th2) and innate lymphoid cell type 2. TAC1 had the highest sputum eosinophilia and exhaled nitric oxide fraction, and was restricted to severe asthma with oral corticosteroid dependency, frequent exacerbations and severe airflow obstruction. TAC2 showed the highest sputum neutrophilia, serum C-reactive protein levels and prevalence of eczema. TAC3 had normal to moderately high sputum eosinophils and better preserved forced expiratory volume in 1 s. Gene-protein coexpression networks from TAC1 and TAC2 extended this molecular classification.We defined one Th2-high eosinophilic phenotype TAC1, and two non-Th2 phenotypes TAC2 and TAC3, characterised by inflammasome-associated and metabolic/mitochondrial pathways, respectively.
Collapse
Affiliation(s)
- Chih-Hsi Scott Kuo
- Airways Disease, National Heart and Lung Institute, Imperial College London, London, UK.,Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK.,Dept of Computing and Data Science Institute, Imperial College London, London, UK
| | | | | | | | | | - Iaonnis Pandis
- Dept of Computing and Data Science Institute, Imperial College London, London, UK
| | - Ana Sousa
- Respiratory Therapeutic Unit, GSK, Stockley Park, UK
| | - Julie Corfield
- AstraZeneca R&D, Mölndal, Sweden.,Areteva R&D, Nottingham, UK
| | | | - Rene Lutter
- Faculty of Medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter J Sterk
- Faculty of Medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - Charles Auffray
- Faculty of Medicine, Southampton University, Southampton, UK.,European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, Université de Lyon, Lyon, France
| | - Yike Guo
- Dept of Computing and Data Science Institute, Imperial College London, London, UK
| | - Ian M Adcock
- Airways Disease, National Heart and Lung Institute, Imperial College London, London, UK.,Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK.,These authors contributed equally to this work
| | - Kian Fan Chung
- Airways Disease, National Heart and Lung Institute, Imperial College London, London, UK .,Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK.,These authors contributed equally to this work
| | | |
Collapse
|
21
|
Liu DM, Wang HJ, Han B, Meng XQ, Chen MH, Yang DB, Sun Y, Li YL, Jiang CL. CAMKK2, Regulated by Promoter Methylation, is a Prognostic Marker in Diffuse Gliomas. CNS Neurosci Ther 2016; 22:518-24. [PMID: 27012733 DOI: 10.1111/cns.12531] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 12/12/2022] Open
Abstract
AIMS To explore the expression, methylation pattern, the prognostic value, and the biological consequences of CAMKK2 in gliomas. METHODS The expression and methylation pattern of CAMKK2 was inferred and validated from mRNA expression profile (N = 866) and methylation profile (N = 426) of glioma tissue samples, and independent samples were used for further validation by IHC and pyrosequencing. To explore the function of CAMKK2 in gliomas, in vitro studies, colony formation assays and migration and invasion assays were performed. RESULTS We found the upregulation of CAMKK2 in high-grade glioma samples was associated with promoter hypomethylation. An elevated expression of CAMKK2 was associated with worse prognosis. By in vitro assays, we demonstrated that CAMKK2 could promote cell migration, invasion, and proliferation. CONCLUSIONS The expression level of CAMKK2 could be regulated by promoter methylation. CAMKK2 serves as a prognostic marker in gliomas and could be a potential therapeutic target in gliomas.
Collapse
Affiliation(s)
- Da-Ming Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilong Jiang, China
| | - Hong-Jun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilong Jiang, China
| | - Bo Han
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilong Jiang, China
| | - Xiang-Qi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilong Jiang, China
| | - Ming-Hui Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilong Jiang, China
| | - Dong-Bo Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilong Jiang, China
| | - Ying Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilong Jiang, China
| | - Yong-Li Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilong Jiang, China
| | - Chuan-Lu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilong Jiang, China
| |
Collapse
|
22
|
Wang Q, Zhang J, Liu Y, Zhang W, Zhou J, Duan R, Pu P, Kang C, Han L. A novel cell cycle-associated lncRNA, HOXA11-AS, is transcribed from the 5-prime end of the HOXA transcript and is a biomarker of progression in glioma. Cancer Lett 2016; 373:251-9. [PMID: 26828136 DOI: 10.1016/j.canlet.2016.01.039] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/08/2016] [Accepted: 01/24/2016] [Indexed: 01/17/2023]
Abstract
The comprehensive lncRNA expression signature in glioma has not yet been fully elucidated. We performed a high-throughput microarray to detect the ncRNA expression profiles of 220 human glioma tissues. Here, we found that a novel lncRNA, HOXA11-AS, was the antisense transcript of the HOX11 gene. It was shown that HOXA11-AS was closely associated with glioma grade and poor prognosis. Multivariate Cox regression analysis revealed that HOXA11-AS was an independent prognostic factor in glioblastoma multiforme patients, and its expression was correlated with the glioma molecular subtypes of the Cancer Genome Atlas. Gene set enrichment analysis indicated that the gene sets most correlated with HOXA11-AS expression were involved in cell cycle progression. Over-expression of the HOXA11-AS transcript promoted cell proliferation in vitro, while knockdown of HOXA11-AS expression repressed cell proliferation via regulation of cell cycle progression. The growth-promoting and growth-inhibiting effects of HOXA11-AS were also demonstrated in a xenograft mouse model. Our data confirms, for the first time, that HOXA11-AS is an important long non-coding RNA that primarily serves as a prognostic factor for glioma patient survival. HOXA11-AS could serve as a biomarker for identifying glioma molecular subtypes and as therapeutic target for glioma patients.
Collapse
Affiliation(s)
- Qixue Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China; Chinese Glioma Cooperative Group (CGCG), 6 Tiantanxi Li, Beijing 100050, China
| | - Junxia Zhang
- Chinese Glioma Cooperative Group (CGCG), 6 Tiantanxi Li, Beijing 100050, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yanwei Liu
- Chinese Glioma Cooperative Group (CGCG), 6 Tiantanxi Li, Beijing 100050, China; Glioma Center, Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Wei Zhang
- Chinese Glioma Cooperative Group (CGCG), 6 Tiantanxi Li, Beijing 100050, China; Glioma Center, Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Junhu Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China; Chinese Glioma Cooperative Group (CGCG), 6 Tiantanxi Li, Beijing 100050, China
| | - Ran Duan
- Chinese Glioma Cooperative Group (CGCG), 6 Tiantanxi Li, Beijing 100050, China; Glioma Center, Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Peiyu Pu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China; Chinese Glioma Cooperative Group (CGCG), 6 Tiantanxi Li, Beijing 100050, China
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China; Chinese Glioma Cooperative Group (CGCG), 6 Tiantanxi Li, Beijing 100050, China
| | - Lei Han
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China; Chinese Glioma Cooperative Group (CGCG), 6 Tiantanxi Li, Beijing 100050, China.
| |
Collapse
|
23
|
Hover LD, Owens P, Munden AL, Wang J, Chambless LB, Hopkins CR, Hong CC, Moses HL, Abel TW. Bone morphogenetic protein signaling promotes tumorigenesis in a murine model of high-grade glioma. Neuro Oncol 2015; 18:928-38. [PMID: 26683138 DOI: 10.1093/neuonc/nov310] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/14/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Improved therapies for high-grade glioma (HGG) are urgently needed as the median survival for grade IV gliomas is only 15 months. Bone morphogenetic protein (BMP) signaling plays critical and complex roles in many types of cancer, including glioma, with most of the recently published work focusing on BMP-mediated regulation of glioma stem cells (GSCs). We hypothesized that BMP signaling may be an important modulator of tumorigenic properties in glioma cells outside of the GSC compartment. METHODS We used a human HGG tissue microarray and performed immunohistochemistry for phospho-Smads1,5,8. To examine the role of BMP signaling in tumorigenic astrocytes, transgenic mice were used to delete the BMP type IA receptor (Bmpr1a) and generate astrocytes transformed with oncogenic Ras and homozygous deletion of p53. The cells were transplanted orthotopically into immunocompetent adult host mice. RESULTS First we established that BMP signaling is active within the vast majority of HGG tumor cells. Mice implanted with BMPR1a-knockout transformed astrocytes showed an increase in median survival compared with mice that received BMPR1a-intact transformed astrocytes (52.5 vs 16 days). In vitro analysis showed that deletion of BMPR1a in oncogenic astrocytes resulted in decreased proliferation, decreased invasion, decreased migration, and increased expression of stemness markers. In addition, inhibition of BMP signaling in murine cells and astrocytoma cells with a small molecule BMP receptor kinase inhibitor resulted in similar tumor suppressive effects in vitro. CONCLUSION BMP inhibition may represent a viable therapeutic approach in adult HGG.
Collapse
Affiliation(s)
- Laura D Hover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee (L.D.H., T.W.A.); Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee (P.O., H.L.M.); Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee (A.M.); Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee (J.W., L.C.); Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (C.H.); Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (C.C.H.); Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center (C.C.H.); Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee (C.C.H.); Research Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee (C.C.H.)
| | - Philip Owens
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee (L.D.H., T.W.A.); Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee (P.O., H.L.M.); Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee (A.M.); Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee (J.W., L.C.); Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (C.H.); Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (C.C.H.); Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center (C.C.H.); Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee (C.C.H.); Research Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee (C.C.H.)
| | - Alexander L Munden
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee (L.D.H., T.W.A.); Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee (P.O., H.L.M.); Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee (A.M.); Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee (J.W., L.C.); Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (C.H.); Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (C.C.H.); Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center (C.C.H.); Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee (C.C.H.); Research Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee (C.C.H.)
| | - Jialiang Wang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee (L.D.H., T.W.A.); Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee (P.O., H.L.M.); Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee (A.M.); Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee (J.W., L.C.); Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (C.H.); Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (C.C.H.); Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center (C.C.H.); Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee (C.C.H.); Research Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee (C.C.H.)
| | - Lola B Chambless
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee (L.D.H., T.W.A.); Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee (P.O., H.L.M.); Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee (A.M.); Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee (J.W., L.C.); Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (C.H.); Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (C.C.H.); Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center (C.C.H.); Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee (C.C.H.); Research Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee (C.C.H.)
| | - Corey R Hopkins
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee (L.D.H., T.W.A.); Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee (P.O., H.L.M.); Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee (A.M.); Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee (J.W., L.C.); Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (C.H.); Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (C.C.H.); Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center (C.C.H.); Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee (C.C.H.); Research Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee (C.C.H.)
| | - Charles C Hong
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee (L.D.H., T.W.A.); Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee (P.O., H.L.M.); Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee (A.M.); Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee (J.W., L.C.); Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (C.H.); Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (C.C.H.); Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center (C.C.H.); Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee (C.C.H.); Research Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee (C.C.H.)
| | - Harold L Moses
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee (L.D.H., T.W.A.); Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee (P.O., H.L.M.); Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee (A.M.); Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee (J.W., L.C.); Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (C.H.); Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (C.C.H.); Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center (C.C.H.); Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee (C.C.H.); Research Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee (C.C.H.)
| | - Ty W Abel
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee (L.D.H., T.W.A.); Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee (P.O., H.L.M.); Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee (A.M.); Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee (J.W., L.C.); Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (C.H.); Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (C.C.H.); Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center (C.C.H.); Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee (C.C.H.); Research Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee (C.C.H.)
| |
Collapse
|
24
|
Mechanisms of action of bone morphogenetic proteins in cancer. Cytokine Growth Factor Rev 2015; 27:81-92. [PMID: 26678814 DOI: 10.1016/j.cytogfr.2015.11.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/13/2015] [Indexed: 01/28/2023]
Abstract
The bone morphogenetic proteins (BMPs) play fundamental roles in embryonic development and control differentiation of a diverse set of cell types. It is therefore of no surprise that the BMPs also contribute to the process of tumourigenesis and regulate cancer progression through various stages. We summarise here key roles of BMP ligands, receptors, their signalling mediators, mainly focusing on proteins of the Smad family, and extracellular antagonists, that contribute to the onset of tumourigenesis and to cancer progression in diverse tissues. Overall, the BMP pathways seem to act as tumour suppressors that maintain physiological tissue homeostasis and which are perturbed in cancer either via genetic mutation or via epigenetic misregulation of key gene components. BMPs also control the self-renewal and fate choices made by stem cells in several tissues. By promoting cell differentiation, including inhibition of the process of epithelial-mesenchymal transition, BMPs contribute to the malignant progression of cancer at advanced stages. It is therefore reasonable that pharmaceutical industries continuously develop biological agents and chemical modulators of BMP signalling with the aim to improve therapeutic regimes against several types of cancer.
Collapse
|
25
|
Jefferson A, Cadet VE, Hielscher A. The mechanisms of genetically modified vaccinia viruses for the treatment of cancer. Crit Rev Oncol Hematol 2015; 95:407-16. [PMID: 25900073 DOI: 10.1016/j.critrevonc.2015.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/18/2014] [Accepted: 04/02/2015] [Indexed: 02/06/2023] Open
Abstract
The use of oncolytic viruses for the treatment of cancer is an emerging field of cancer research and therapy. Oncolytic viruses are designed to induce tumor specific immunity while replicating selectively within cancer cells to cause lysis of the tumor cells. While there are several forms of oncolytic viruses, the use of vaccinia viruses for oncolysis may be more beneficial than other forms of oncolytic viruses. For example, vaccinia viruses have been shown to exert their anti-tumor effects through genetic engineering strategies which enhance their therapeutic efficacy. This paper will address some of the most common forms of genetically modified vaccinia viruses and will explore the mechanisms whereby they selectively target, enter and destroy cancer cells. Furthermore, this review will highlight how vaccinia viruses activate host immune responses against cancer cells and will address clinical trials evaluating the tumor-directed and killing efficacy of these viruses against solid tumors.
Collapse
Affiliation(s)
- Artrish Jefferson
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, United States
| | - Valerie E Cadet
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, United States
| | - Abigail Hielscher
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, United States.
| |
Collapse
|
26
|
Transforming growth factor β and bone morphogenetic protein actions in brain tumors. FEBS Lett 2015; 589:1588-97. [PMID: 25957771 DOI: 10.1016/j.febslet.2015.04.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 01/05/2023]
Abstract
Members of the transforming growth factor β (TGF-β) family are implicated in the biology of several cancers. Here we focus on malignancies of the brain and examine the TGFβ and the bone morphogenetic protein (BMP) signaling branches of the family. These pathways exhibit context-dependent actions during tumorigenesis, acting either as tumor suppressors or as pro-tumorigenic agents. In the brain, the TGF-βs associate with oncogenic development and progression to the more malignant state. Inversely, the BMPs suppress tumorigenic potential by acting as agents that induce tumor cell differentiation. The latter has been best demonstrated in grade IV astrocytomas, otherwise known as glioblastoma multiforme. We discuss how the actions of TGF-βs and BMPs on cancer stem cells may explain their effects on tumor progression, and try to highlight intricate mechanisms that may link tumor cell differentiation to invasion. The focus on TGF-β and BMP and their actions in brain malignancies provides a rich territory for mechanistic understanding of tumor heterogeneity and suggests ways for improved therapeutic intervention, currently being addressed by clinical trials.
Collapse
|
27
|
Hover LD, Abel TW, Owens P. Genomic Analysis of the BMP Family in Glioblastomas. TRANSLATIONAL ONCOGENOMICS 2015; 7:1-9. [PMID: 25987829 PMCID: PMC4406393 DOI: 10.4137/tog.s22256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/22/2015] [Accepted: 01/29/2015] [Indexed: 12/29/2022]
Abstract
Glioblastoma multiforme (GBM) is a grade IV glioma with a median survival of 15 months. Recently,
bone morphogenetic protein (BMP) signaling has been shown to promote survival in xenograft murine
models. To gain a better understanding of the role of BMP signaling in human GBMs, we examined the
genomic alterations of 90 genes associated with BMP signaling in GBM patient samples. We completed
this analysis using publically available datasets compiled through The Cancer Genome Atlas and the
Glioma Molecular Diagnostic Initiative. Here we show how mRNA expression is altered in GBM samples
and how that is associated with patient survival, highlighting both known and novel associations
between BMP signaling and GBM biology.
Collapse
Affiliation(s)
- Laura D Hover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ty W Abel
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Philip Owens
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
28
|
Ramakrishna R, Hebb A, Barber J, Rostomily R, Silbergeld D. Outcomes in Reoperated Low-Grade Gliomas. Neurosurgery 2015; 77:175-84; discussion 184. [DOI: 10.1227/neu.0000000000000753] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
BACKGROUND:
Low-grade gliomas (LGGs) comprise a diverse set of intrinsic brain tumors that correlate strongly with survival. Data on the effect of reoperation are sparse.
OBJECTIVE:
To evaluate the effect of reoperation on patients with LGG.
METHODS:
Fifty-two consecutive patients with reoperated LGGs treated at the University of Washington between 1986 and 2004 were identified and evaluated in a retrospective analysis.
RESULTS:
The average overall survival (OS) for this cohort was 12.95 ± 0.96 years. The overall 10-year survival rate was 57%. The absence of any residual tumor at either the first or second operation was associated with significantly increased OS. Negative prognostic variables for OS included the use of upfront radiation and pathology at recurrence. The average overall progression-free survival to the first recurrence (PFS1) was 6.23 ± 0.51 years. Positive prognostic factors for improved PFS1 included the use of upfront radiation therapy. Variables not associated with differences in PFS1 included the use of upfront chemotherapy, enhancement, pathology, extent of resection, the presence of residual tumor, and Karnofsky Performance Scale score <80. The average overall progression-free survival to the second recurrence was 2.73 ± 0.39 years. Pathology at recurrence was associated with significant differences in progression-free survival to the second recurrence, as was extent of resection at time of first recurrence, and Karnofsky Performance Scale score <80.
CONCLUSION:
This is among the largest studies to assess variables associated with outcome in patients with reoperated LGG. Reresection appears to provide significant benefit, and extent of resection remains the strongest predictor of OS.
Collapse
Affiliation(s)
- Rohan Ramakrishna
- Weill Cornell Medical College, New York Presbyterian Hospital, Department of Neurological Surgery, New York, New York
| | - Adam Hebb
- Colorado Neurological Institute, Englewood, Colorado
| | - Jason Barber
- University of Washington, School of Medicine, Department of Neurological Surgery, Seattle, Washington
| | - Robert Rostomily
- University of Washington, School of Medicine, Department of Neurological Surgery, Seattle, Washington
| | - Daniel Silbergeld
- University of Washington, School of Medicine, Department of Neurological Surgery, Seattle, Washington
| |
Collapse
|
29
|
Meng D, Chen Y, Zhao Y, Wang J, Yun D, Yang S, Chen J, Chen H, Lu D. Expression and prognostic significance of TCTN1 in human glioblastoma. J Transl Med 2014; 12:288. [PMID: 25304031 PMCID: PMC4198629 DOI: 10.1186/s12967-014-0288-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/03/2014] [Indexed: 11/26/2022] Open
Abstract
Background Glioblastoma (GBM) is the most common and lethal intracranial malignancy in adults, with dismal prognosis despite multimodal therapies. Tectonic family member 1 (TCTN1) is a protein involved in a diverse range of developmental processes, yet its functions in GBM remain unclear. This study aims to investigate expression profile, prognostic value and effects of TCTN1 gene in GBM. Methods Protein levels of TCTN1 were assessed by immunohistochemical staining using a tissue microarray constructed by a Chinese cohort of GBM patients (n = 110), and its mRNA expression was also detected in a subset of this cohort. Kaplan-Meier analysis and Cox regression were performed to estimate the prognostic significance of TCTN1. Similar analyses were also conducted in another two independent cohorts: The Cancer Genome Atlas (TCGA) cohort (n = 528) and the Repository for Molecular Brain Neoplasia Data (REMBRANDT) cohort (n = 228). For the TCGA cohort, the relationships between TCTN1 expression, clinical outcome, molecular subtypes and genetic alterations were also analysed. Furthermore, proliferation of TCTN1 overexpressed or silenced GBM cells was determined by CCK-8 assays. Results As discovered in three independent cohorts, both mRNA and protein levels of TCTN1 expression were markedly elevated in human GBMs, and higher TCTN1 expression served as an independent prognostic factor predicting poorer prognosis of GBM patients. Additionally, in the TCGA cohort, TCTN1 expression was dramatically decreased in patients within the proneural subtype compared to other subtypes, and significantly influenced by the status of several genetic aberrations such as CDKN2A/B deletion, EGFR amplification, PTEN deletion and TP53 mutation. The prognostic value of TCTN1 was more pronounced in proneural and mesenchymal subtypes, and was also affected by several genetic alterations particularly PTEN deletion. Furthermore, overexpression of TCTN1 significantly promoted proliferation of GBM cells, while its depletion evidently hampered cell growth. Conclusions TCTN1 is elevated in human GBMs and predicts poor clinical outcome for GBM patients, which is associated with molecular subtypes and genetic features of GBMs. Additionally, TCTN1 expression impacts GBM cell proliferation. Our results suggest for the first time that TCTN1 may serve as a novel prognostic factor and a potential therapeutic target for GBM. Electronic supplementary material The online version of this article (doi:10.1186/s12967-014-0288-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Daru Lu
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, No, 2005 Songhu Road, Shanghai 200438, People's Republic of China.
| |
Collapse
|
30
|
Borodovsky A, Salmasi V, Turcan S, Fabius AWM, Baia GS, Eberhart CG, Weingart JD, Gallia GL, Baylin SB, Chan TA, Riggins GJ. 5-azacytidine reduces methylation, promotes differentiation and induces tumor regression in a patient-derived IDH1 mutant glioma xenograft. Oncotarget 2014; 4:1737-47. [PMID: 24077805 PMCID: PMC3858560 DOI: 10.18632/oncotarget.1408] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Somatic mutations in Isocitrate Dehydrogenase 1 (IDH1) are frequent in low grade and progressive gliomas and are characterized by the production of 2-hydroxyglutarate (2-HG) from α-ketoglutarate by the mutant enzyme. 2-HG is an “oncometabolite” that competitively inhibits α-KG dependent dioxygenases resulting in various widespread cellular changes including abnormal hypermethylation of genomic DNA and suppression of cellular differentiation. Despite the growing understanding of IDH mutant gliomas, the development of effective therapies has proved challenging in part due to the scarcity of endogenous mutant in vivo models. Here we report the generation of an endogenous IDH1 anaplastic astrocytoma model which rapidly grows in vivo, produces 2-HG and exhibits DNA hypermethylation. Using this model, we have demonstrated the preclinical efficacy and mechanism of action of the FDA approved demethylating drug 5-azacytidine in vivo. Long term administration of 5-azacytidine resulted in reduction of DNA methylation of promoter loci, induction of glial differentiation, reduction of cell proliferation and a significant reduction in tumor growth. Tumor regression was observed at 14 weeks and subsequently showed no signs of re-growth at 7 weeks despite discontinuation of therapy. These results have implications for clinical trials of demethylating agents for patients with IDH mutated gliomas.
Collapse
Affiliation(s)
- Alexandra Borodovsky
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
BMPs as therapeutic targets and biomarkers in astrocytic glioma. BIOMED RESEARCH INTERNATIONAL 2014; 2014:549742. [PMID: 24877113 PMCID: PMC4022209 DOI: 10.1155/2014/549742] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/15/2014] [Indexed: 01/04/2023]
Abstract
Astrocytic glioma is the most common brain tumor. The glioma initiating cell (GIC) fraction of the tumor is considered as highly chemoresistant, suggesting that GICs are responsible for glioma relapse. A potential treatment for glioma is to induce differentiation of GICs to a more benign and/or druggable cell type. Given BMPs are among the most potent inducers of GIC differentiation, they have been considered as noncytotoxic therapeutic compounds that may be of use to prevent growth and recurrence of glioma. We herein summarize advances made in the understanding of the role of BMP signaling in astrocytic glioma, with a particular emphasis on the effects exerted on GICs. We discuss the prognostic value of BMP signaling components and the implications of BMPs in the differentiation of GICs and in their sensitization to alkylating drugs and oncolytic therapy/chemotherapy. This mechanistic insight may provide new opportunities for therapeutic intervention of brain cancer.
Collapse
|
32
|
Wang H, Zhao Y, Zhang C, Li M, Jiang C, Li Y. Rab27a was identified as a prognostic biomaker by mRNA profiling, correlated with malignant progression and subtype preference in gliomas. PLoS One 2014; 9:e89782. [PMID: 24587032 PMCID: PMC3935941 DOI: 10.1371/journal.pone.0089782] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 01/27/2014] [Indexed: 12/31/2022] Open
Abstract
Purpose Rab27a belongs to the Rab small GTPase superfamily. The protein is membrane-bound and may be involved in protein transport and small GTPase-mediated signal transduction. Mutations in this gene are associated with Griscelli syndrome type 2. However, the prognostic and molecular features of gliomas with Rab27a expression are still unclear. Experimental Design We used a whole-genome mRNA expression microarray dataset of 220 glioma samples from the Chinese Glioma Genome Atlas (CGGA) database (http://www.cgga.org.cn) as a discovery set. In this set, 220 gliomas, consisting of 97 WHO Grade II gliomas, 34 WHO Grade III gliomas, and 89 WHO Grade IV gliomas, were analyzed using the Kaplan-Meier method. To validate the protein expression of Rab27a, we assayed another 162 glioma samples by immunohistochemistry. Three additional datasets were obtained as validation sets. Gene ontology (GO) analysis and gene set variation analysis (GSVA) were used for the functional annotation of Rab27a in 89 WHO Grade IV gliomas. Results Rab27a was significantly associated with grade progression and high mortality in all grades of glioma in the discovery set. Rab27a also showed a mesenchymal subtype, G3 subtype and isocitrate dehydrogenase 1 (IDH1) wild-type preference and association with migration. The 3 validation datasets revealed similar findings. Rab27a was more highly expressed in gliomas than in normal brain tissues, and its expression increased with glioma grade progression. Conclusions Rab27a expression was significantly associated with grade progression and worse prognosis in all grades of gliomas, suggesting Rab27a as a novel biomarker with potentially important therapeutic implications.
Collapse
Affiliation(s)
- Hongjun Wang
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Zhao
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanbao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingyang Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chuanlu Jiang
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongli Li
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
- * E-mail:
| |
Collapse
|
33
|
WANG HONGJUN, JIANG CHUANLU. RAB38 confers a poor prognosis, associated with malignant progression and subtype preference in glioma. Oncol Rep 2013; 30:2350-6. [DOI: 10.3892/or.2013.2730] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 08/30/2013] [Indexed: 11/06/2022] Open
|
34
|
Duggal R, Geissinger U, Zhang Q, Aguilar J, Chen NG, Binda E, Vescovi AL, Szalay AA. Vaccinia virus expressing bone morphogenetic protein-4 in novel glioblastoma orthotopic models facilitates enhanced tumor regression and long-term survival. J Transl Med 2013; 11:155. [PMID: 23800258 PMCID: PMC3706280 DOI: 10.1186/1479-5876-11-155] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/20/2013] [Indexed: 01/06/2023] Open
Abstract
Background Glioblastoma multiforme (GBM) is one of the most aggressive forms of cancer with a high rate of recurrence. We propose a novel oncolytic vaccinia virus (VACV)-based therapy using expression of the bone morphogenetic protein (BMP)-4 for treating GBM and preventing recurrence. Methods We have utilized clinically relevant, orthotopic xenograft models of GBM based on tumor-biopsy derived, primary cancer stem cell (CSC) lines. One of the cell lines, after being transduced with a cDNA encoding firefly luciferase, could be used for real time tumor imaging. A VACV that expresses BMP-4 was constructed and utilized for infecting several primary glioma cultures besides conventional serum-grown glioma cell lines. This virus was also delivered intracranially upon implantation of the GBM CSCs in mice to determine effects on tumor growth. Results We found that the VACV that overexpresses BMP-4 demonstrated heightened replication and cytotoxic activity in GBM CSC cultures with a broad spectrum of activity across several different patient-biopsy cultures. Intracranial inoculation of mice with this virus resulted in a tumor size equal to or below that at the time of injection. This resulted in survival of 100% of the treated mice up to 84 days post inoculation, significantly superior to that of a VACV lacking BMP-4 expression. When mice with a higher tumor burden were injected with the VACV lacking BMP-4, 80% of the mice showed tumor recurrence. In contrast, no recurrence was seen when mice were injected with the VACV expressing BMP-4, possibly due to induction of differentiation in the CSC population and subsequently serving as a better host for VACV infection and oncolysis. This lack of recurrence resulted in superior survival in the BMP-4 VACV treated group. Conclusions Based on these findings we propose a novel VACV therapy for treating GBM, which would allow tumor specific production of drugs in the future in combination with BMPs which would simultaneously control tumor maintenance and facilitate CSC differentiation, respectively, thereby causing sustained tumor regression without recurrence.
Collapse
|