1
|
Frejat FOA, Zhao B, Furaijit N, Wang L, Abou-Zied HA, Fathy HM, Mohamed FAM, Youssif BGM, Wu C. New pyrrolidine-carboxamide derivatives as dual antiproliferative EGFR/CDK2 inhibitors. Chem Biol Drug Des 2024; 103:e14422. [PMID: 38230772 DOI: 10.1111/cbdd.14422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/20/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024]
Abstract
Cancer is one of the leading causes of mortality worldwide, making it a public health concern. A novel series of pyrrolidine-carboxamide derivatives 7a-q were developed and examined in a cell viability assay utilizing a human mammary gland epithelial cell line (MCF-10A), where all the compounds exhibited no cytotoxic effects and more than 85% cell viability at a concentration of 50 μM. Antiproliferative activity was evaluated in vitro against four panels of cancer cell lines A-549, MCF-7, Panc-1, and HT-29. Compounds 7e, 7g, 7k, 7n, and 7o were the most active as antiproliferative agents capable of triggering apoptosis. Compound 7g was the most potent of all the derivatives, with a mean IC50 of 0.90 μM compared to IC50 of 1.10 μM for doxorubicin. Compound 7g inhibited A-549 (epithelial cancer cell line), MCF-7 (breast cancer cell line), and HT-29 (colon cancer cell line) more efficiently than doxorubicin. EGFR inhibitory assay results of 7e, 7g, 7k, 7n, and 7o demonstrated that the tested compounds inhibited EGFR with IC50 values ranging from 87 to 107 nM in comparison with the reference drug erlotinib (IC50 = 80 nM). 7e, 7g, 7k, 7n, and 7o inhibited CDK2 efficiently in comparison to the reference dinaciclib (IC50 = 20 nM), with IC50 values ranging from 15 to 31 nM. The results of inhibitory activity assay against different CDK isoforms revealed that the tested compounds had preferential inhibitory activity against the CDK2 isoform.
Collapse
Affiliation(s)
- Frias Obaid Arhema Frejat
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, PR China
- Zhengzhou Key laboratory of new veterinary Drug preparation innovation, Zhengzhou, PR China
| | - Bingbing Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, PR China
| | | | - Lihong Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, PR China
| | - Hesham A Abou-Zied
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Hazem M Fathy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Fatma A M Mohamed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat, Saudi Arabia
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Chunli Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, PR China
- Zhengzhou Key laboratory of new veterinary Drug preparation innovation, Zhengzhou, PR China
- Henan Qunbo Pharmaceutical Research Institute Co. LTD., Zhengzhou, PR China
| |
Collapse
|
2
|
Wang S, Wang YF, Yang G, Zhang HH, Yuan HF, Hou CY, Zhao LN, Suo YH, Sun J, Sun LL, Lv P, Sun Y, Zhang NN, Zhang XD, Lu W. Heat shock protein family A member 8 serving as a co-activator of transcriptional factor ETV4 up-regulates PHLDA2 to promote the growth of liver cancer. Acta Pharmacol Sin 2023; 44:2525-2536. [PMID: 37474643 PMCID: PMC10692233 DOI: 10.1038/s41401-023-01133-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
Heat shock protein family A member 8 (HSPA8) participates in the folding or degradation of misfolded proteins under stress and plays critical roles in cancer. In this study, we investigated the function of HSPA8 in the development of liver cancer. By analyzing the TCGA transcriptome dataset, we found that HSPA8 was upregulated in 134 clinical liver cancer tissue samples, and positively correlated with poor prognosis. IHC staining showed the nuclear and cytoplasmic localization of HSPA8 in liver cancer cells. Knockdown of HSPA8 resulted in a decrease in the proliferation of HepG2 and Huh-7 cells. ChIP-seq and RNA-seq analysis revealed that HSPA8 bound to the promoter of pleckstrin homology-like domain family A member 2 (PHLDA2) and regulated its expression. The transcription factor ETV4 in HepG2 cells activated PHLDA2 transcription. HSPA8 and ETV4 could interact with each other in the cells and colocalize in the nucleus. From a functional perspective, we demonstrated that HSPA8 upregulated PHDLA2 through the coactivating transcription factor ETV4 to enhance the growth of liver cancer in vitro and in vivo. From a therapeutic perspective, we identified both HSPA8 and PHDLA2 as novel targets in the treatment of HCC. In conclusion, this study demonstrates that HSPA8 serves as a coactivator of ETV4 and upregulates PHLDA2, leading to the growth of HCC, and is a potential therapeutic target in HCC treatment.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China
| | - Yu-Fei Wang
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Guang Yang
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hui-Hui Zhang
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hong-Feng Yuan
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Chun-Yu Hou
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Li-Na Zhao
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yu-Hong Suo
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China
| | - Jiao Sun
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China
| | - Lin-Lin Sun
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China
| | - Pan Lv
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yan Sun
- Department of Pathology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China.
| | - Ning-Ning Zhang
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China.
| | - Xiao-Dong Zhang
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Wei Lu
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China.
| |
Collapse
|
3
|
Mounika P, Gurupadayya B, Kumar HY, Namitha B. An Overview of CDK Enzyme Inhibitors in Cancer Therapy. Curr Cancer Drug Targets 2023; 23:603-619. [PMID: 36959160 DOI: 10.2174/1568009623666230320144713] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 03/25/2023]
Abstract
The ability to address the cell cycle in cancer therapy brings up new medication development possibilities. Cyclin-dependent kinases are a group of proteins that control the progression of the cell cycle. The CDK/cyclin complexes are activated when specific CDK sites are phosphorylated. Because of their non-selectivity and severe toxicity, most first-generation CDK inhibitors (also known as pan-CDK inhibitors) have not been authorized for clinical usage. Despite this, significant progress has been made in allowing pan-CDK inhibitors to be employed in clinical settings. Pan-CDK inhibitors' toxicity and side effects have been lowered in recent years because of the introduction of combination therapy techniques. As a result of this, pan-CDK inhibitors have regained a lot of clinical potential as a combination therapy approach. The CDK family members have been introduced in this overview, and their important roles in cell cycle control have been discussed. Then, we have described the current state of CDK inhibitor research, with a focus on inhibitors other than CDK4/6. We have mentioned first-generation pan-CDKIs, flavopiridol and roscovitine, as well as second-generation CDKIs, dinaciclib, P276-00, AT7519, TG02, roniciclib, and RGB-286638, based on their research phases, clinical trials, and cancer targeting. CDKIs are CDK4/6, CDK7, CDK9, and CDK12 inhibitors. Finally, we have looked into the efficacy of CDK inhibitors and PD1/PDL1 antibodies when used together, which could lead to the development of a viable cancer treatment strategy.
Collapse
Affiliation(s)
- Peddaguravagari Mounika
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Bannimath Gurupadayya
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Honnavalli Yogish Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Bannimath Namitha
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| |
Collapse
|
4
|
Lin J, Liu G, Chen L, Kwok HF, Lin Y. Targeting lactate-related cell cycle activities for cancer therapy. Semin Cancer Biol 2022; 86:1231-1243. [PMID: 36328311 DOI: 10.1016/j.semcancer.2022.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Lactate has long been considered as a metabolic by-product of aerobic glycolysis for cancer. However, more and more studies have shown that lactate can regulate cancer progression via multiple mechanisms such as cell cycle regulation, immune suppression, energy metabolism and so on. A recent discovery of lactylation attracted a lot of attention and is already a hot topic in the cancer field. In this review, we summarized the latest functions of lactate and its underlying mechanisms in cancer. We also included our analysis of protein lactylation in different rat organs and compared them with other published lactylation data. The unresolved challenges in this field were discussed, and the potential application of these new discoveries of lactate-related cell cycle activities for cancer target therapy was speculated.
Collapse
Affiliation(s)
- Jia Lin
- Central Laboratory at the Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Collaborative Innovation Center for Rehabilitation Technology, the Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, China; Collaborative Innovation Center for Rehabilitation Technology, the Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, China
| | - Geng Liu
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, UK
| | - Lidian Chen
- Collaborative Innovation Center for Rehabilitation Technology, the Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, China.
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR; MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR.
| | - Yao Lin
- Central Laboratory at the Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Collaborative Innovation Center for Rehabilitation Technology, the Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, China; Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, China.
| |
Collapse
|
5
|
Manohar SM, Joshi KS. Promising Anticancer Activity of Multitarget Cyclin Dependent Kinase Inhibitors against Human Colorectal Carcinoma Cells. Curr Mol Pharmacol 2022; 15:1024-1033. [PMID: 35068399 DOI: 10.2174/1874467215666220124125809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/06/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
Background:
Colorectal cancer (CRC) is the third leading cause of cancer death worldwide, and its incidence is steadily rising in developing nations. Cell cycle aberrations due to deregulation of cyclin dependent kinases (CDKs) and cyclins are common events during colorectal carcinogenesis. Yet, efficacy of multitarget CDK inhibitors as therapeutic agents has not been much explored against CRC.
Objective:
The anticancer potential of multitarget CDK inhibitor riviciclib (also known as P276-00), was investigated against CRC cell lines of varied genetic background.
Method:
Cytotoxicity of riviciclib - potent CDK1, CDK4 and CDK9-specific inhibitor was evaluated in vitro. Further, its effect on clonogenic potential, cell cycle, apoptosis and transcription was tested using colony forming assay, flow cytometry and western blot analysis respectively. Also, efficacy of riviciclib in combination with standard chemotherapeutic agents was assessed. Dependency of CRC cells on specific CDKs for their survival was confirmed using siRNA studies.
Results:
Riviciclib exerted significant cytotoxicity against CRC cells and inhibited their colony forming potential. It induced apoptosis along with inhibition of cell cycle CDKs and cyclins as well as transcriptional CDKs and cyclins. Moreover, dual combination of riviciclib with standard chemotherapeutic drugs exhibited synergism in CRC cells. siRNA studies indicated that CRC cells are dependent on specific CDKs for their survival which are targets of riviciclib.
Conclusion:
This study provides evidence that multitarget CDK inhibitors can serve as promising therapeutic agents against CRC alone or in combination.
Collapse
Affiliation(s)
- Sonal M. Manohar
- Department of Biological Sciences, Sunandan Divatia of School of Science, NMIMS (Deemed-to-be) University, Vile Parle (West), Mumbai, India
| | - Kalpana S. Joshi
- Discovery Engine, Cipla R and D, Cipla Ltd., Vikhroli (West), Mumbai, India
| |
Collapse
|
6
|
IL-6 in the Ecosystem of Head and Neck Cancer: Possible Therapeutic Perspectives. Int J Mol Sci 2021; 22:ijms222011027. [PMID: 34681685 PMCID: PMC8540903 DOI: 10.3390/ijms222011027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Interleukin-6 (IL-6) is a highly potent cytokine involved in multiple biological processes. It was previously reported to play a distinct role in inflammation, autoimmune and psychiatric disorders, ageing and various types of cancer. Furthermore, it is understood that IL-6 and its signaling pathways are substantial players in orchestrating the cancer microenvironment. Thus, they appear to be potential targets in anti-tumor therapy. The aim of this article is to elucidate the role of IL-6 in the tumor ecosystem and to review the possible therapeutic approaches in head and neck cancer.
Collapse
|
7
|
Zhang M, Zhang L, Hei R, Li X, Cai H, Wu X, Zheng Q, Cai C. CDK inhibitors in cancer therapy, an overview of recent development. Am J Cancer Res 2021; 11:1913-1935. [PMID: 34094661 PMCID: PMC8167670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023] Open
Abstract
Dysregulated cell division, which leads to aberrant cell proliferation, is one of the key hallmarks of cancer. Therefore, therapeutic targets that block cell division would be effective for cancer treatment. Cell division is mainly controlled by a complex composed of cyclin and cyclin dependent kinases (CDKs). To date, the CDK inhibitors (CDKIs), specifically the ones that block the enzyme activity of CDK4 and CDK6 (CDK4/6), have been approved by FDA for the treatment of metastatic hormone receptor positive breast cancer. However, due to the non-selectivity and significant toxicity, most of the first generation CDK inhibitors (so called pan-CDK inhibitors that target several CDKs), have not been approved for clinical application. Despite this, great efforts and progress have been made to enable pan-CDK inhibitors application in the clinical setting. Notably, the development of combination therapy strategies in recent years has made it possible to reduce the toxicity and side effects of pan-CDK inhibitors. Thus, as a combination therapy approach, pan-CDK inhibitors regain great potential in clinical application. In this review, we introduced the CDK family members and discussed their major functions in cell cycle controlling. Then, we summarized the research progress regarding CDK inhibitors, especially those other than CDK4/6 inhibitors. We reviewed first-generation pan-CDKIs Flavopiridol and Roscovitine, and second-generation CDKIs Dinaciclib, P276-00, AT7519, TG02, Roniciclib, RGB-286638 by focusing on their developing stages, clinical trials and targeting cancers. The specific CDKIs, which targets to increase specificity and decrease the side effects, were also discussed. These CDKIs include CDK4/6, CDK7, CDK9, and CDK12/13 inhibitors. Finally, the efficacy and discrepancy of combination therapy with CDK inhibitors and PD1/PDL1 antibodies were analyzed, which might give insights into the development of promising strategy for cancer treatment.
Collapse
Affiliation(s)
- Mengna Zhang
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan UniversityWuhan 430071, China
| | - Lingxian Zhang
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan UniversityWuhan 430071, China
| | - Ruoxuan Hei
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, China
| | - Xiao Li
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan UniversityWuhan 430071, China
| | | | - Xuan Wu
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, China
| | - Qiping Zheng
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, China
- Shenzhen Academy of Peptide Targeting Technology at Pingshan, and Shenzhen Tyercan Bio-pharm Co., Ltd.Shenzhen 518118, China
| | - Cheguo Cai
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan UniversityWuhan 430071, China
| |
Collapse
|
8
|
Uz U, Eskiizmir G. Association Between Interleukin-6 and Head and Neck Squamous Cell Carcinoma: A Systematic Review. Clin Exp Otorhinolaryngol 2021; 14:50-60. [PMID: 33587847 PMCID: PMC7904429 DOI: 10.21053/ceo.2019.00906] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022] Open
Abstract
Interleukin-6 (IL-6) is a proinflammatory cytokine which plays an important role in several regulatory mechanisms of cancer. Moreover, experimental and clinical studies have reported that IL-6 targeted therapies might provide significant benefits for cancer treatment. The purpose of this systematic review is to evaluate IL-6 activity in patients with head and neck squamous cell carcinoma (HNSCC). A systematic review of the association between serum, saliva and tumor IL-6 and HNSCC was developed on PubMed/Medline in the publication range from January 1995 to January 2019. Our literature analysis demonstrated that overexpression and elevated serum and/or saliva IL-6 concentrations in patients with HNSCC are related to poor survival and oncological outcomes. Although there is a correlation between IL-6 concentrations and tumorigenicity, it is noteworthy that IL-6 targeted therapies are generally performed in vitro and in experimental studies. Therefore, prospective, randomized clinical trials are required that focus on IL-6 targeted therapies for the treatment of HNSCC.
Collapse
Affiliation(s)
- Uzdan Uz
- Department of Otolaryngology-Head and Neck Surgery, Izmir Bozyaka Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Görkem Eskiizmir
- Department of Otolaryngology-Head and Neck Surgery, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
9
|
Relevance of chromosomal band 11q13 in oral carcinogenesis: An update of current knowledge. Oral Oncol 2017; 72:7-16. [DOI: 10.1016/j.oraloncology.2017.04.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/24/2017] [Indexed: 12/14/2022]
|
10
|
Ramos-García P, Gil-Montoya JA, Scully C, Ayén A, González-Ruiz L, Navarro-Triviño FJ, González-Moles MA. An update on the implications of cyclin D1 in oral carcinogenesis. Oral Dis 2017; 23:897-912. [DOI: 10.1111/odi.12620] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/07/2016] [Accepted: 12/01/2016] [Indexed: 12/11/2022]
Affiliation(s)
- P Ramos-García
- School of Dentistry; University of Granada; Granada Spain
| | - JA Gil-Montoya
- School of Dentistry; University of Granada; Granada Spain
- Instituto de Biomedicina; University of Granada; Granada Spain
| | - C Scully
- University College of London; London UK
| | - A Ayén
- School of Medicine; University of Granada; Granada Spain
| | - L González-Ruiz
- Servicio de Dermatología; Hospital General Universitario de Ciudad Real; Ciudad Real Spain
| | - FJ Navarro-Triviño
- Servicio de Dermatología; Complejo Hospitalario San Cecilio; Granada Spain
| | - MA González-Moles
- School of Dentistry; University of Granada; Granada Spain
- Instituto de Biomedicina; University of Granada; Granada Spain
| |
Collapse
|
11
|
Rahaman MH, Kumarasiri M, Mekonnen LB, Yu M, Diab S, Albrecht H, Milne RW, Wang S. Targeting CDK9: a promising therapeutic opportunity in prostate cancer. Endocr Relat Cancer 2016; 23:T211-T226. [PMID: 27582311 DOI: 10.1530/erc-16-0299] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 08/31/2016] [Indexed: 12/18/2022]
Abstract
Cyclin-dependent kinase 9 (CDK9) is a key transcriptional regulator and a lucrative target for cancer treatment. Targeting CDK9 can effectively confine the hyperactivity of androgen receptor and the constitutive expression of anti-apoptotic proteins; both being main causes of prostate cancer (PCa) development and progression. In castrate-resistant PCa, traditional therapies that only target androgen receptor (AR) have become obsolete due to reprograming in AR activity to make the cells independent of androgen. CDK9 inhibitors may provide a new and better therapeutic opportunity over traditional treatment options by targeting both androgen receptor activity and anti-apoptotic proteins, improving the chances of positive outcomes, especially in patients with the advanced disease. This review focuses on biological functions of CDK9, its involvement with AR and the potential for therapeutic opportunities in PCa treatment.
Collapse
Affiliation(s)
| | | | - Laychiluh B Mekonnen
- Centre for Drug Discovery and DevelopmentSansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Mingfeng Yu
- Centre for Drug Discovery and DevelopmentSansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sarah Diab
- Centre for Drug Discovery and DevelopmentSansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Hugo Albrecht
- Centre for Drug Discovery and DevelopmentSansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Robert W Milne
- Centre for Drug Discovery and DevelopmentSansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Shudong Wang
- Centre for Drug Discovery and DevelopmentSansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
12
|
Yamamoto VN, Thylur DS, Bauschard M, Schmale I, Sinha UK. Overcoming radioresistance in head and neck squamous cell carcinoma. Oral Oncol 2016; 63:44-51. [PMID: 27938999 DOI: 10.1016/j.oraloncology.2016.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 08/29/2016] [Accepted: 11/06/2016] [Indexed: 12/28/2022]
Abstract
Radiation therapy plays an essential role in the treatment of head and neck squamous cell carcinoma (HNSCC), yet therapeutic efficacy is hindered by treatment-associated toxicity and tumor recurrence. In comparison to other cancers, innovation has proved challenging, with the epidermal growth factor receptor (EGFR) antibody cetuximab being the only new radiosensitizing agent approved by the FDA in over half a century. This review examines the physiological mechanisms that contribute to radioresistance in HNSCC as well as preclinical and clinical data regarding novel radiosensitizing agents, with an emphasis on those with highest translational promise.
Collapse
Affiliation(s)
- Vicky N Yamamoto
- USC Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - David S Thylur
- USC Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Michael Bauschard
- USC Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Isaac Schmale
- Department of Otolaryngology-Head & Neck Surgery, University of Rochester Medical Center, Rochester, NY, United States
| | - Uttam K Sinha
- USC Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
13
|
Beck TN, Kaczmar J, Handorf E, Nikonova A, Dubyk C, Peri S, Lango M, Ridge JA, Serebriiskii IG, Burtness B, Golemis EA, Mehra R. Phospho-T356RB1 predicts survival in HPV-negative squamous cell carcinoma of the head and neck. Oncotarget 2016; 6:18863-74. [PMID: 26265441 PMCID: PMC4662460 DOI: 10.18632/oncotarget.4321] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/22/2015] [Indexed: 11/25/2022] Open
Abstract
Locally advanced squamous cell carcinoma of the head and neck (SCCHN) that is not associated with human papillomavirus (HPV) has a poor prognosis in contrast to HPV-positive disease. To better understand the importance of RB1 activity in HPV-negative SCCHN, we investigated the prognostic value of inhibitory CDK4/6 phosphorylation of RB1 on threonine 356 (T356) in archival HPV-negative tumor specimens from patients who underwent surgical resection and adjuvant radiation. We benchmarked pT356RB1 to total RB1, Ki67, pT202/Y204ERK1/2, and TP53, as quantified by automatic quantitative analysis (AQUA), and correlated protein expression with tumor stage and grade. High expression of pT356RB1 but not total RB1 predicted reduced overall survival (OS; P = 0.0295), indicating the potential relevance of post-translational phosphorylation. Paired analysis of The Cancer Genome Atlas (TCGA) data for regulators of this RB1 phosphorylation identified loss or truncating mutation of negative regulator CDKN2A (p16) and elevated expression of the CDK4/6 activator CCND1 (cyclin D) as also predicting poor survival. Given that CDK4/6 inhibitors have been most effective in the context of functional RB1 and low expression or deletion of p16 in other tumor types, these data suggest such agents may merit evaluation in HPV-negative SCCHN, specifically in cases associated with high pT356RB1.
Collapse
Affiliation(s)
- Tim N Beck
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA.,Molecular and Cell Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA, USA
| | - John Kaczmar
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA.,Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Elizabeth Handorf
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Anna Nikonova
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Cara Dubyk
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Suraj Peri
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Miriam Lango
- Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - John A Ridge
- Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ilya G Serebriiskii
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA.,Department of Biochemistry, Kazan Federal University, Kazan, Russia
| | - Barbara Burtness
- Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT, USA
| | - Erica A Golemis
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA.,Molecular and Cell Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Ranee Mehra
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA.,Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
14
|
Shirsath N, Rathos M, Chaudhari U, Sivaramakrishnan H, Joshi K. Potentiation of anticancer effect of valproic acid, an antiepileptic agent with histone deacetylase inhibitory activity, by the cyclin-dependent kinase inhibitor P276-00 in human non-small-cell lung cancer cell lines. Lung Cancer 2013; 82:214-21. [PMID: 24051085 DOI: 10.1016/j.lungcan.2013.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/01/2013] [Accepted: 08/07/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND P276-00 is a novel cyclin-dependent kinase (CDK) inhibitor is in Phase II clinical trials. Valproic acid (VPA), an antiepileptic agent has been associated with anticancer activity, through the inhibition of histone deacetylase I. Here we investigate the effect of the combination of VPA and P276-00, in non-small-cell lung cancer (NSCLC) cell lines. MATERIALS AND METHODS Cell growth inhibition was studied using the Propidium iodide (PI) assay. Cell cycle analysis and recovery were detected by flow cytometry. The expression levels of various proteins were detected by western blot. Inhibition of colony formation in H460 was checked in vitro. In vivo efficacy was studied in H460 xenograft model. RESULTS The combination of P276-00 and VPA showed synergistic effect on p53+ and p53- NSCLC cell lines in antiproliferative assay at both constant and non-constant ratio with marked decrease in colony forming potential. Flow cytometric analysis confirmed a significant time dependent increase in apoptosis with 64% apoptotic population at 96 h compared to VPA (1%) and P276-00 (28%) alone (p < 0.0001). Incubation of the cells after treatment, in fresh medium without drugs, led to the recovery of cells treated with P276-00 alone but not the cells treated with the combination of both the drugs. The combination treatment up-regulated tumor suppressor proteins like p53, p21 and p27 along with down-regulation of proliferation and survival proteins viz. cyclin D1 and Bcl-2. This was also associated with the upregulation of the pro-apoptotic protein Bax and significant accumulation of hyperacetylated histones in the combination treatment. Interestingly, VPA in combination with P276-00 was much more effective as an antitumor agent than alone, in the H460 xenograft tumor model in SCID mice. CONCLUSIONS This study indicates that the combination of HDAC inhibitor VPA with CDK inhibitor P276-00 is promising novel molecularly targeted therapeutic approach for NSCLC treatment.
Collapse
Affiliation(s)
- Nitesh Shirsath
- Department of Pharmacology, Piramal Life Sciences, Piramal Enterprises Limited, 1 Nirlon Complex, Goregaon (East), Mumbai, Maharashtra 400 063, India
| | | | | | | | | |
Collapse
|
15
|
Deregulations in the cyclin-dependent kinase-9-related pathway in cancer: implications for drug discovery and development. ISRN ONCOLOGY 2013; 2013:305371. [PMID: 23840966 PMCID: PMC3690251 DOI: 10.1155/2013/305371] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/19/2013] [Indexed: 12/21/2022]
Abstract
The CDK9-related pathway is an important regulator of mammalian cell biology and is also involved in the replication cycle of several viruses, including the human immunodeficiency virus type 1. CDK9 is present in two isoforms termed CDK9-42 and CDK9-55 that bind noncovalently type T cyclins and cyclin K. This association forms a heterodimer, where CDK9 carries the enzymatic site and the cyclin partner functions as a regulatory subunit. This heterodimer is the main component of the positive transcription elongation factor b, which stabilizes RNA elongation via phosphorylation of the RNA pol II carboxyl terminal domain. Abnormal activities in the CDK9-related pathway were observed in human malignancies and cardiac hypertrophies. Thus, the elucidation of the CDK9 pathway deregulations may provide useful insights into the pathogenesis and progression of human malignancies, cardiac hypertrophy, AIDS and other viral-related maladies. These studies may lead to the improvement of kinase inhibitors for the treatment of the previously mentioned pathological conditions. This review describes the CDK9-related pathway deregulations in malignancies and the development of kinase inhibitors in cancer therapy, which can be classified into three categories: antagonists that block the ATP binding site of the catalytic domain, allosteric inhibitors, and small molecules that disrupt protein-protein interactions.
Collapse
|