1
|
He C, Wang Z, Yu J, Mao S, Xiang X. Current Drug Resistance Mechanisms and Treatment Options in Gastrointestinal Stromal Tumors: Summary and Update. Curr Treat Options Oncol 2024; 25:1390-1405. [PMID: 39441520 PMCID: PMC11541409 DOI: 10.1007/s11864-024-01272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
OPINION STATEMENT Gastrointestinal stromal tumor (GIST) is characterized by well-defined oncogenes. Despite the significant improvement in treatment outcomes with adjuvant imatinib therapy for patients, drug resistance remains a major challenge for GIST therapy. This review focuses on the mechanisms contributing to drug resistance phenotype in GIST, such as primary imatinib-resistant mutants, secondary mutations, non-covalent binding of TKI to its target, tumor heterogeneity, re-activation of pro-survival/proliferation pathways through non-KIT/PDGFRA kinases, and loss of therapeutic targets in wild-type GIST. Corresponding suggestions are proposed to overcome drug-resistance phenotype of GIST. This review also summarizes the suitability of currently approved TKIs on different KIT/PDGFRA mutations and updates related clinical trials. Recent potent drugs and emerging strategies against advanced GISTs in clinical trials are presented. Additionally, metabolic intervention offers a new avenue for clinical management in GIST. A landscape of metabolism in GIST and metabolic changes under imatinib treatment are summarized based on currently published data. The OXPHOS pathway is a promising therapeutic target in combination with TKI against sensitive KIT/PDGFRA mutants. Comprehensive understanding of the above resistance mechanisms, experimental drugs/strategies and metabolic changes is critical to implement the proper therapy strategy and improve the clinical therapy outcomes for GIST.
Collapse
Affiliation(s)
- Chunxiao He
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Zilong Wang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jiaying Yu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Shuang Mao
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xi Xiang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Yu G, Liu R, Li J, Zhao G, Wang Y. The immunotherapy in gastrointestinal stromal tumors. Heliyon 2024; 10:e33617. [PMID: 39040340 PMCID: PMC11260923 DOI: 10.1016/j.heliyon.2024.e33617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Using Tyrosine Kinase Inhibitors (TKIs) for gastrointestinal stromal tumors (GIST) has significantly reduced the risk of recurrence and prolonged survival. Immunotherapy has demonstrated efficacy in multiple solid tumors, but its effectiveness in GIST remains uncertain. Although early clinical studies indicate good tolerability of immunotherapy in patients, the efficacy is not as desired. Therefore, identifying the subset of GIST patients who benefit from immunotherapy and coordinating the relationship between immunotherapy and TKI treatment are crucial issues to be explored. In this review, we aims to provide a retrospective analysis of relevant literature and find that GIST patients exhibit a rich presence of tumor-infiltrating immune cells, which play critical roles in the immune surveillance and evasion processes of tumors. This review incorporates a selection of 48 articles published between 2002 and 2023, sourced from PubMed, EBSCO, and Google Scholar databases.
Collapse
Affiliation(s)
- Guilin Yu
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Ruibin Liu
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
- Department of Clinical Integration of Traditional Chinese and Western Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jiayao Li
- Liaoning Normal University Haihua College,Liaoning, China
| | - Guohua Zhao
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yue Wang
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
3
|
Yu Y, Yu M, Luo L, Zhang Z, Zeng H, Chen Y, Lin Z, Chen M, Wang W. Molecular characteristics and immune microenvironment of gastrointestinal stromal tumours: targets for therapeutic strategies. Front Oncol 2024; 14:1405727. [PMID: 39070147 PMCID: PMC11272528 DOI: 10.3389/fonc.2024.1405727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Gastrointestinal stromal tumours (GISTs) are the most common mesenchymal tumours, arising mainly from the interstitial cells of Cajal (ICCs) of the gastrointestinal tract. As radiotherapy and chemotherapy are generally ineffective for GISTs, the current primary treatment is surgical resection. However, surgical resection is not choice for most patients. Therefore, new therapeutic strategies are urgently needed. Targeted therapy, represented by tyrosine kinase inhibitors (TKIs), and immunotherapy, represented by immune checkpoint inhibitor therapies and chimeric antigen receptor T-cell immunotherapy (CAR-T), offer new therapeutic options in GISTs and have shown promising treatment responses. In this review, we summarize the molecular classification and immune microenvironment of GISTs and discuss the corresponding targeted therapy and immunotherapy options. This updated knowledge may provide more options for future therapeutic strategies and applications in GISTs.
Collapse
Affiliation(s)
- Yang Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Mengdie Yu
- Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou, Guangdong, China
| | - Lijie Luo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Zijing Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Haiping Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Yan Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Zeyu Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Mengnan Chen
- Department of Thyroid and Breast Surgery, Baiyun Hospital, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Wei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Li B, Chen H, Yang S, Chen F, Xu L, Li Y, Li M, Zhu C, Shao F, Zhang X, Deng C, Zeng L, He Y, Zhang C. Advances in immunology and immunotherapy for mesenchymal gastrointestinal cancers. Mol Cancer 2023; 22:71. [PMID: 37072770 PMCID: PMC10111719 DOI: 10.1186/s12943-023-01770-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/29/2023] [Indexed: 04/20/2023] Open
Abstract
Mesenchymal gastrointestinal cancers are represented by the gastrointestinal stromal tumors (GISTs) which occur throughout the whole gastrointestinal tract, and affect human health and economy globally. Curative surgical resections and tyrosine kinase inhibitors (TKIs) are the main managements for localized GISTs and recurrent/metastatic GISTs, respectively. Despite multi-lines of TKIs treatments prolonged the survival time of recurrent/metastatic GISTs by delaying the relapse and metastasis of the tumor, drug resistance developed quickly and inevitably, and became the huge obstacle for stopping disease progression. Immunotherapy, which is typically represented by immune checkpoint inhibitors (ICIs), has achieved great success in several solid tumors by reactivating the host immune system, and been proposed as an alternative choice for GIST treatment. Substantial efforts have been devoted to the research of immunology and immunotherapy for GIST, and great achievements have been made. Generally, the intratumoral immune cell level and the immune-related gene expressions are influenced by metastasis status, anatomical locations, driver gene mutations of the tumor, and modulated by imatinib therapy. Systemic inflammatory biomarkers are regarded as prognostic indicators of GIST and closely associated with its clinicopathological features. The efficacy of immunotherapy strategies for GIST has been widely explored in pre-clinical cell and mouse models and clinical experiments in human, and some patients did benefit from ICIs. This review comprehensively summarizes the up-to-date advancements of immunology, immunotherapy and research models for GIST, and provides new insights and perspectives for future studies.
Collapse
Affiliation(s)
- Bo Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Hui Chen
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Shaohua Yang
- Guangdong-Hong Kong-Macau University Joint Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Feng Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Liangliang Xu
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Yan Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Mingzhe Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Chengming Zhu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Fangyuan Shao
- MOE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, Institute of Translational Medicine, Cancer Center, University of Macau, Macau SAR, 999078, China
| | - Xinhua Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road, Guangzhou, 510080, China
| | - Chuxia Deng
- MOE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, Institute of Translational Medicine, Cancer Center, University of Macau, Macau SAR, 999078, China.
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| | - Changhua Zhang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
5
|
Exploring the Dynamic Crosstalk between the Immune System and Genetics in Gastrointestinal Stromal Tumors. Cancers (Basel) 2022; 15:cancers15010216. [PMID: 36612211 PMCID: PMC9818806 DOI: 10.3390/cancers15010216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Gastrointestinal Stromal Tumors (GISTs) represent a paradigmatic model of oncogene addiction. Despite the well-known impact of the mutational status on clinical outcomes, we need to expand our knowledge to other factors that influence behavior heterogeneity in GIST patients. A growing body of studies has revealed that the tumor microenvironment (TME), mostly populated by tumor-associated macrophages (TAMs) and lymphocytes (TILs), and stromal differentiation (SD) have a significant impact on prognosis and response to treatment. Interestingly, even though the current knowledge of the role of immune response in this setting is still limited, recent pre-clinical and clinical data have highlighted the relevance of the TME in GISTs, with possible implications for clinical practice in the near future. Moreover, the expression of immune checkpoints, such as PD-L1, PD-1, and CTLA-4, and their relationship to the clinical phenotype in GIST are emerging as potential prognostic biomarkers. Looking forward, these variables related to the underlying tumoral microenvironment in GIST, though limited to still-ongoing trials, might lead to the potential use of immunotherapy, alone or in combination with targeted therapy, in advanced TKI-refractory GISTs. This review aims to deepen understanding of the potential link between mutational status and the immune microenvironment in GIST.
Collapse
|
6
|
Kim Y, Kim D, Sung WJ, Hong J. High-Grade Endometrial Stromal Sarcoma: Molecular Alterations and Potential Immunotherapeutic Strategies. Front Immunol 2022; 13:837004. [PMID: 35242139 PMCID: PMC8886164 DOI: 10.3389/fimmu.2022.837004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Endometrial stromal tumor (EST) is an uncommon and unusual mesenchymal tumor of the uterus characterized by multicolored histopathological, immunohistochemical, and molecular features. The morphology of ESTs is similar to normal endometrial stromal cells during the proliferative phase of the menstrual cycle. ESTs were first classified into benign and malignant based on the number of mitotic cells. However, recently WHO has divided ESTs into four categories: endometrial stromal nodules (ESN), undifferentiated uterine sarcoma (UUS), low-grade endometrial stromal sarcoma (LG-ESS), and high-grade endometrial stromal sarcoma (HG-ESS). HG-ESS is the most malignant of these categories, with poor clinical outcomes compared to other types. With advances in molecular biology, ESTs have been further classified with morphological identification. ESTs, including HG-ESS, is a relatively rare type of cancer, and the therapeutics are not being developed compared to other cancers. However, considering the tumor microenvironment of usual stromal cancers, the advance of immunotherapy shows auspicious outcomes reported in many different stromal tumors and non-identified uterine cancers. These studies show the high possibility of successful immunotherapy in HG-ESS patients in the future. In this review, we are discussing the background of ESTs and the BCOR and the development of HG-ESS by mutations of BCOR or other related genes. Among the gene mutations of HG-ESSs, BCOR shows the most common mutations in different ways. In current tumor therapies, immunotherapy is one of the most effective therapeutic approaches. In order to connect immunotherapy with HG-ESS, the understanding of tumor microenvironment (TME) is required. The TME of HG-ESS shows the mixture of tumor cells, vessels, immune cells and non-malignant stromal cells. Macrophages, neutrophils, dendritic cells and natural killer cells lose their expected functions, but rather show pro-tumoral functions by the matricellular proteins, extracellular matrix and other complicated environment in TME. In order to overcome the current therapeutic limitations of HG-ESS, immunotherapies should be considered in addition to the current surgical strategies. Checkpoint inhibitors, cytokine-based immunotherapies, immune cell therapies are good candidates to be considered as they show promising results in other stromal cancers and uterine cancers, while less studied because of the rarity of ESTs. Based on the advance of knowledge of immune therapies in HG-ESS, the new strategies can also be applied to the current therapies and also in other ESTs.
Collapse
Affiliation(s)
- Youngah Kim
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu, South Korea.,Department of Pathology, Daegu Catholic University School of Medicine, Daegu, South Korea
| | - Dohyang Kim
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu, South Korea
| | - Woo Jung Sung
- Department of Pathology, Daegu Catholic University School of Medicine, Daegu, South Korea
| | - Jaewoo Hong
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu, South Korea
| |
Collapse
|
7
|
de Nonneville A, Finetti P, Picard M, Monneur A, Pantaleo MA, Astolfi A, Ostrowski J, Birnbaum D, Mamessier E, Bertucci F. CSPG4 Expression in GIST Is Associated with Better Prognosis and Strong Cytotoxic Immune Response. Cancers (Basel) 2022; 14:cancers14051306. [PMID: 35267618 PMCID: PMC8909029 DOI: 10.3390/cancers14051306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Gastrointestinal stromal tumors (GIST) are the most frequent sarcomas of the gastrointestinal tract. Identification of novel prognostic and/or therapeutic targets is a major issue to overcome tyrosine kinase inhibitors resistances. CSPG4, a cell surface proteoglycan, emerged as a potential therapeutic target for immune therapy in different cancers, including sarcomas. CSPG4 expression has never been studied in GIST. In this work we analyzed CSPG4 mRNA expression in a large series of clinical GIST samples given the scarcity of disease (n = 309 patients). We find that high CSPG4 expression is independently associated with disease-free survival, and with an immune landscape favorable to induce strong cytotoxic immune response after NK cell stimulation. Our results suggest the potential value of CSPG4-specific chimeric antigen receptor-redirected cytokine-induced killer lymphocytes treatment in GIST, notably “CSPG4-high” tumors, and calls for preclinical validation, drug testing in vivo, then in clinical trials. Abstract The treatment of gastrointestinal stromal tumors (GIST) must be improved through the development of more reliable prognostic factors and of therapies able to overcome imatinib resistance. The immune system represents an attractive tool. CSPG4, a cell surface proteoglycan, emerged as a potential therapeutic target for immune therapy in different cancers, including cell therapy based on CSPG4-specific chimeric antigen receptor (CAR)-redirected cytokine-induced killer lymphocytes (CSPG4-CAR.CIKs) in sarcomas. CSPG4 expression has never been studied in GIST. We analyzed CSPG4 mRNA expression data of 309 clinical GIST samples profiled using DNA microarrays and searched for correlations with clinicopathological and immune features. CSPG4 expression, higher in tumors than normal digestive tissues, was heterogeneous across tumors. High expression was associated with AFIP low-risk, gastric site, and localized stage, and independently with longer postoperative disease-free survival (DFS) in localized stage. The correlations between CSPG4 expression and immune signatures highlighted a higher anti-tumor immune response in “CSPG4-high” tumors, relying on both the adaptive and innate immune system, in which the boost of NK cells by CSPG4-CAR.CIKs might be instrumental, eventually combined with immune checkpoint inhibitors. In conclusion, high CSPG4 expression in GIST is associated with better DFS and offers an immune environment favorable to a vulnerability to CAR.CIKs.
Collapse
Affiliation(s)
- Alexandre de Nonneville
- Predictive Oncology Laboratory, Equipe Labellisée Ligue Nationale Contre Le Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University, 13009 Marseille, France; (A.d.N.); (P.F.); (M.P.); (D.B.); (E.M.)
- Department of Medical Oncology, Institut Paoli-Calmettes, Aix-Marseille University, CNRS, INSERM, 13009 Marseille, France;
| | - Pascal Finetti
- Predictive Oncology Laboratory, Equipe Labellisée Ligue Nationale Contre Le Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University, 13009 Marseille, France; (A.d.N.); (P.F.); (M.P.); (D.B.); (E.M.)
| | - Maelle Picard
- Predictive Oncology Laboratory, Equipe Labellisée Ligue Nationale Contre Le Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University, 13009 Marseille, France; (A.d.N.); (P.F.); (M.P.); (D.B.); (E.M.)
| | - Audrey Monneur
- Department of Medical Oncology, Institut Paoli-Calmettes, Aix-Marseille University, CNRS, INSERM, 13009 Marseille, France;
| | - Maria Abbondanza Pantaleo
- Department of Specialized, Experimental and Diagnostic Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy; (M.A.P.); (A.A.)
| | - Annalisa Astolfi
- Department of Specialized, Experimental and Diagnostic Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy; (M.A.P.); (A.A.)
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center of Postgraduate Education, 01-813 Warsaw, Poland;
- Department of Genetics, Maria Sklodowska-Curie National Institute of Oncology, 02-781 Warsaw, Poland
| | - Daniel Birnbaum
- Predictive Oncology Laboratory, Equipe Labellisée Ligue Nationale Contre Le Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University, 13009 Marseille, France; (A.d.N.); (P.F.); (M.P.); (D.B.); (E.M.)
| | - Emilie Mamessier
- Predictive Oncology Laboratory, Equipe Labellisée Ligue Nationale Contre Le Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University, 13009 Marseille, France; (A.d.N.); (P.F.); (M.P.); (D.B.); (E.M.)
| | - François Bertucci
- Predictive Oncology Laboratory, Equipe Labellisée Ligue Nationale Contre Le Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University, 13009 Marseille, France; (A.d.N.); (P.F.); (M.P.); (D.B.); (E.M.)
- Department of Medical Oncology, Institut Paoli-Calmettes, Aix-Marseille University, CNRS, INSERM, 13009 Marseille, France;
- Correspondence: ; Tel.: +33-4-91-22-35-37; Fax: +33-4-91-22-36-70
| |
Collapse
|
8
|
Thomas A, Sumughan S, Dellacecca ER, Shivde RS, Lancki N, Mukhatayev Z, Vaca CC, Han F, Barse L, Henning SW, Zamora-Pineda J, Akhtar S, Gupta N, Zahid JO, Zack SR, Ramesh P, Jaishankar D, Lo AS, Moss J, Picken MM, Darling TN, Scholtens DM, Dilling DF, Junghans RP, Le Poole IC. Benign tumors in TSC are amenable to treatment by GD3 CAR T cells in mice. JCI Insight 2021; 6:e152014. [PMID: 34806651 PMCID: PMC8663788 DOI: 10.1172/jci.insight.152014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Mutations underlying disease in tuberous sclerosis complex (TSC) give rise to tumors with biallelic mutations in TSC1 or TSC2 and hyperactive mammalian target of rapamycin complex 1 (mTORC1). Benign tumors might exhibit de novo expression of immunogens, targetable by immunotherapy. As tumors may rely on ganglioside D3 (GD3) expression for mTORC1 activation and growth, we compared GD3 expression in tissues from patients with TSC and controls. GD3 was overexpressed in affected tissues from patients with TSC and also in aging Tsc2+/- mice. As GD3 overexpression was not accompanied by marked natural immune responses to the target molecule, we performed preclinical studies with GD3 chimeric antigen receptor (CAR) T cells. Polyfunctional CAR T cells were cytotoxic toward GD3-overexpressing targets. In mice challenged with Tsc2-/- tumor cells, CAR T cells substantially and durably reduced the tumor burden, correlating with increased T cell infiltration. We also treated aged Tsc2+/- heterozygous (>60 weeks) mice that carry spontaneous Tsc2-/- tumors with GD3 CAR or untransduced T cells and evaluated them at endpoint. Following CAR T cell treatment, the majority of mice were tumor free while all control animals carried tumors. The outcomes demonstrate a strong treatment effect and suggest that targeting GD3 can be successful in TSC.
Collapse
Affiliation(s)
- Ancy Thomas
- Department of Dermatology, Feinberg School of Medicine
- Robert H. Lurie Comprehensive Cancer Center
| | | | | | | | - Nicola Lancki
- Quantitative Data Sciences Core, Robert H. Lurie Comprehensive Cancer Center; and
| | | | | | - Fei Han
- Department of Dermatology, Feinberg School of Medicine
- Robert H. Lurie Comprehensive Cancer Center
| | - Levi Barse
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Jesus Zamora-Pineda
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Suhail Akhtar
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Nikhilesh Gupta
- Robert H. Lurie Comprehensive Cancer Center
- Illinois Mathematics and Science Academy, Aurora, Illinois, USA
| | - Jasmine O. Zahid
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Stephanie R. Zack
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | | | | | - Agnes S.Y. Lo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Joel Moss
- Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Maria M. Picken
- Department of Pathology, Loyola University, Maywood, Illinois, USA
| | - Thomas N. Darling
- Department of Dermatology, School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Denise M. Scholtens
- Quantitative Data Sciences Core, Robert H. Lurie Comprehensive Cancer Center; and
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniel F. Dilling
- Department of Medicine, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Richard P. Junghans
- Department of Hematology/Oncology, School of Medicine, Boston University, Boston, Massachusetts, USA
| | - I. Caroline Le Poole
- Department of Dermatology, Feinberg School of Medicine
- Robert H. Lurie Comprehensive Cancer Center
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
9
|
Adoptive T-cell immunotherapy in digestive tract malignancies: Current challenges and future perspectives. Cancer Treat Rev 2021; 100:102288. [PMID: 34525422 DOI: 10.1016/j.ctrv.2021.102288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/15/2022]
Abstract
Multiple systemic treatments are currently available for advanced cancers of the digestive tract, but none of them is curative. Adoptive T-cell immunotherapy refers to the extraction, modification and re-infusion of autologous or allogenic T lymphocytes for therapeutic purposes. A number of clinical trials have investigated either non-engineered T cells (i.e., lymphokine-activated killer cells, cytokine induced killer cells, or tumor-infiltrating lymphocytes) or engineered T cells (T cell receptor-redirected T cells or chimeric antigen receptor T cells) in patients with digestive tract malignancies over the past two decades, with variable degrees of success. While the majority of completed trials have been primarily aimed at assessing the safety of T-cell transfer strategies, a new generation of studies is being designed to formally evaluate the antitumor potential of adoptive T-cell immunotherapy in both the metastatic and adjuvant settings. In this review, we provide an overview of completed and ongoing clinical trials of passive T-cell immunotherapy in patients with cancers of the digestive tract, focusing on present obstacles and future strategies for achieving potential success.
Collapse
|
10
|
Roulleaux Dugage M, Jones RL, Trent J, Champiat S, Dumont S. Beyond the Driver Mutation: Immunotherapies in Gastrointestinal Stromal Tumors. Front Immunol 2021; 12:715727. [PMID: 34489967 PMCID: PMC8417712 DOI: 10.3389/fimmu.2021.715727] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are a subtype of soft tissue sarcoma (STS), and have become a concept of oncogenic addiction and targeted therapies.The large majority of these tumors develop after a mutation in KIT or platelet derived growth factor receptor α (PDGFRα), resulting in uncontrolled proliferation. GISTs are highly sensitive to imatinib. GISTs are immune infiltrated tumors with a predominance of tumor-associated macrophages (TAMs) and T-cells, including many CD8+ T-cells, whose numbers are prognostic. The genomic expression profile is that of an inhibited Th1 response and the presence of tertiary lymphoid structures and B cell signatures, which are known as predictive to response to ICI. However, the microtumoral environment has immunosuppressive attributes, with immunosuppressive M2 macrophages, overexpression of indoleamine 2,3-dioxygenase (IDO) or PD-L1, and loss of major histocompatibility complex type 1. In addition to inhibiting the KIT oncogene, imatinib appears to act by promoting cytotoxic T-cell activity, interacting with natural killer cells, and inhibiting the expression of PD-L1. Paradoxically, imatinib also appears to induce M2 polarization of macrophages. There have been few immunotherapy trials with anti-CTLA-4 or anti-PD-L1drugs and available clinical data are not very promising. Based on this comprehensive analysis of TME, we believe three immunotherapeutic strategies must be underlined in GIST. First, patients included in clinical trials must be better selected, based on the identified driver mutation (such as PDGFRα D842V mutation), the presence of tertiary lymphoid structures (TLS) or PD-L1 expression. Moreover, innovative immunotherapeutic agents also provide great interest in GIST, and there is a strong rationale for exploring IDO targeting after disease progression during imatinib therapy. Finally and most importantly, there is a strong rationale to combine of c-kit inhibition with immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Robin Lewis Jones
- Division of Clinical Studies, Institute of Cancer Research & Sarcoma Unit of the Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Jonathan Trent
- Department of Medicine, Division of Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Stéphane Champiat
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Sarah Dumont
- Département d’Oncologie Médicale, Gustave Roussy, Université Paris Saclay, Villejuif, France
| |
Collapse
|
11
|
Arshad J, Costa PA, Barreto-Coelho P, Valdes BN, Trent JC. Immunotherapy Strategies for Gastrointestinal Stromal Tumor. Cancers (Basel) 2021; 13:3525. [PMID: 34298737 PMCID: PMC8306810 DOI: 10.3390/cancers13143525] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 01/13/2023] Open
Abstract
Gastrointestinal stromal tumors (GIST) are the most common mesenchymal soft tissue sarcoma of the gastrointestinal tract. The management of locally advanced or metastatic unresectable GIST involves detecting KIT, PDGFR, or other molecular alterations targeted by imatinib and other tyrosine kinase inhibitors. The role of immunotherapy in soft tissue sarcomas is growing fast due to multiple clinical and pre-clinical studies with no current standard of care. The potential therapies include cytokine-based therapy, immune checkpoint inhibitors, anti-KIT monoclonal antibodies, bi-specific monoclonal antibodies, and cell-based therapies. Here we provide a comprehensive review of the immunotherapeutic strategies for GIST.
Collapse
Affiliation(s)
- Junaid Arshad
- Hematology-Oncology Department, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
| | - Philippos A. Costa
- Internal Medicine Department, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA; (P.A.C.); (P.B.-C.)
| | - Priscila Barreto-Coelho
- Internal Medicine Department, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA; (P.A.C.); (P.B.-C.)
| | | | - Jonathan C. Trent
- Hematology-Oncology Department, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
| |
Collapse
|
12
|
Si W, Li C, Wei P. Synthetic immunology: T-cell engineering and adoptive immunotherapy. Synth Syst Biotechnol 2018; 3:179-185. [PMID: 30345403 PMCID: PMC6190530 DOI: 10.1016/j.synbio.2018.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/28/2018] [Accepted: 08/13/2018] [Indexed: 12/24/2022] Open
Abstract
During the past decades, the rapidly-evolving cancer is hard to be thoroughly eliminated even though the radiotherapy and chemotherapy do exhibit efficacy in some degree. However, a breakthrough appeared when the adoptive cancer therapy [1] was developed, especially T cells armed with chimeric antigen receptors (CARs) showed great potential in tumor clinical trials recently. CAR-T cells successfully elevated the efficiency and specificity of cytotoxicity. In this review, we will talk about the design of CAR and CAR-included combinatory therapeutic applications in the principles of systems and synthetic immunology.
Collapse
Affiliation(s)
- Wen Si
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Cheng Li
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ping Wei
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Florou V, Wilky BA, Trent JC. Latest advances in adult gastrointestinal stromal tumors. Future Oncol 2017; 13:2183-2193. [DOI: 10.2217/fon-2017-0245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common GI tract mesenchymal tumors. GIST patients are optimally managed by a precision medicine approach. Herein, we discuss the latest advances in precision medicine and ongoing clinical trials relevant to GIST. Circulating tumor DNA for detection of mutational changes could replace tissue biopsies and radiographic imaging once validated. Most GISTs are KIT/PDGFRα mutated, and despite the good clinical response to imatinib, treatment is generally not curative, more often due to secondary mutations. New mechanisms to bypass this resistance by inhibiting KIT downstream pathways and by targeting multiple KIT or PDGFRα mutations are being investigated. Immunotherapy for GIST patients is in its infancy. These approaches may lead to more effective, less toxic therapies.
Collapse
Affiliation(s)
- Vaia Florou
- Division of Hematology/Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Breelyn A Wilky
- Division of Hematology/Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Jonathan C Trent
- Division of Hematology/Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| |
Collapse
|
14
|
Tan Y, Trent JC, Wilky BA, Kerr DA, Rosenberg AE. Current status of immunotherapy for gastrointestinal stromal tumor. Cancer Gene Ther 2017; 24:130-133. [DOI: 10.1038/cgt.2016.58] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 12/12/2022]
|
15
|
Abstract
PURPOSE OF REVIEW This article reviews the current literature on tumor-infiltrating immune cells in gastrointestinal stromal tumor (GIST), and the current status and prospects of effective immunotherapeutic strategies. RECENT FINDINGS Tumor-infiltrating immune cells populate the microenvironment of GISTs; the most numerous are tumor-associated macrophages (TAMs) and CD3 T cells. TAMs have not been shown to have a relationship with the biological behavior of GISTs; however, the number of CD3 T cells correlates with better outcomes. The prognostic significance of tumor-infiltrating neutrophils, natural killer cells, CD4 T cells, CD8 T cells, and Treg cells remains unknown.Imatinib mesylate achieves a clinical response in 80% of patients with GIST. Its antitumor mechanism is partially immune mediated. The combination of imatinib and interferon-α has been shown to be effective against GIST - it eradicates tumor cells including those that are drug resistant. Preclinical trials including cytotoxic T lymphocyte-associated antigen 4 blockade, anti-KIT antibody, and the generation of designer T cells have shown promising therapeutic effect in animal models of GIST. SUMMARY GIST contains many tumor-infiltrating immune cells and should be susceptible to immunotherapy; early clinical and preclinical trials have shown promising results that should lead to new investigations and effective forms of direct and synergistic therapies.
Collapse
|
16
|
Goel G, Sun W. Cancer immunotherapy in clinical practice -- the past, present, and future. CHINESE JOURNAL OF CANCER 2015; 33:445-57. [PMID: 25189717 PMCID: PMC4190434 DOI: 10.5732/cjc.014.10123] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Considerable progress has been made in the field of cancer immunotherapy in recent years. This has been made possible in large part by the identification of new immune-based cellular targets and the development of novel approaches aimed at stimulating the immune system. The role played by the immunosuppressive microenvironment in the development of tumors has been established. The success of checkpoint-inhibiting antibodies and cancer vaccines has marked the beginning of a new era in cancer treatment. This review highlights the clinically relevant principles of cancer immunology and various immunotherapeutic approaches that have either already entered mainstream oncologic practice or are currently in the process of being evaluated in clinical trials. Furthermore, the current barriers to the development of effective immunotherapies and the potential strategies of overcoming them are also discussed.
Collapse
Affiliation(s)
- Gaurav Goel
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA.
| | | |
Collapse
|
17
|
Constitutive activation of oncogenic PDGFRα-mutant proteins occurring in GIST patients induces receptor mislocalisation and alters PDGFRα signalling characteristics. Cell Commun Signal 2015; 13:21. [PMID: 25880691 PMCID: PMC4396151 DOI: 10.1186/s12964-015-0096-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/05/2015] [Indexed: 12/11/2022] Open
Abstract
Background Gastrointestinal stromal tumours (GIST) are mainly characterised by the presence of activating mutations in either of the two receptor tyrosine kinases c-KIT or platelet-derived growth factor receptor-α (PDGFRα). Most mechanistic studies dealing with GIST mutations have focused on c-KIT and far less is known about the signalling characteristics of the mutated PDGFRα proteins. Here, we study the signalling capacities and corresponding transcriptional responses of the different PDGFRα proteins under comparable genomic conditions. Results We demonstrate that the constitutive signalling via the oncogenic PDGFRα mutants favours a mislocalisation of the receptors and that this modifies the signalling characteristics of the mutated receptors. We show that signalling via the oncogenic PDGFRα mutants is not solely characterised by a constitutive activation of the conventional PDGFRα signalling pathways. In contrast to wild-type PDGFRα signal transduction, the activation of STAT factors (STAT1, STAT3 and STAT5) is an integral part of signalling mediated via mutated PDGF-receptors. Furthermore, this unconventional STAT activation by mutated PDGFRα is already initiated in the endoplasmic reticulum whereas the conventional signalling pathways rather require cell surface expression of the receptor. Finally, we demonstrate that the activation of STAT factors also translates into a biologic response as highlighted by the induction of STAT target genes. Conclusion We show that the overall oncogenic response is the result of different signatures emanating from different cellular compartments. Furthermore, STAT mediated responses are an integral part of mutated PDGFRα signalling. Electronic supplementary material The online version of this article (doi:10.1186/s12964-015-0096-8) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Cameron S, Gieselmann M, Blaschke M, Ramadori G, Füzesi L. Immune cells in primary and metastatic gastrointestinal stromal tumors (GIST). INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:3563-3579. [PMID: 25120735 PMCID: PMC4128970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 06/09/2014] [Indexed: 06/03/2023]
Abstract
We have previously described immune cells in untreated primary gastrointestinal stromal tumors (GIST). Here we compare immune cells in metastatic and primary GIST, and describe their chemoattractants. For this purpose, tissue microarrays from 196 patients, 188 primary and 51 metastasized GIST were constructed for paraffin staining. Quantitative analysis was performed for cells of macrophage lineage (Ki-M1P, CD68), T-cells (CD3, CD56) and B-cells (CD20). Chemokine gene-expression was evaluated by real-time RT-PCR. Immuno-localisation was verified by immunofluorescence. Ki-M1P+ cells were the predominant immune cells in both primary and metastatic GIST (2 8.8% ± 7.1, vs. 26.7% ± 6.3). CD68+ macrophages were significantly fewer, with no significant difference between primary GIST (3.6% ± 2.1) and metastases (4.6% ± 1.5). CD3+ T-cells were the most dominant lymphocytes with a significant increase in metastases (7.3% ± 2.3 vs. 2.2% ± 1.8 in primary GIST, P < 0.01). The percentage of CD56+ NK-cells was 1.1% ± 0.9 in the primary, and 2.4 ± 0.7 (P < 0.05) in the metastases. The number of CD20+ B-cells was generally low with 0.6% ± 0.7 in the primary and 1.8% ± 0.3 (P < 0.05) in the metastases. Analysis of the metastases showed significantly more Ki-M1P+ cells in peritoneal metastases (31.8% ± 7.4 vs. 18.2% ± 3.7, P < 0.01), whilst CD3+ T-cells were more common in liver metastases (11.7% ± 1.8 vs. 4.4% ± 2.6, P < 0.01). The highest transcript expression was seen for monocyte chemotactic protein 1 (MCP1/CCL2), macrophage inflammatory protein 1α (MIP-1α/CCL3) and the pro-angiogenic growth-related oncoprotein 1 (Gro-α/CXCL-1). Whilst the ligands were predominantly expressed in tumor cells, their receptors were mostly present in immune cells. This locally specific microenvironment might influence neoplastic progression of GIST at the different metastatic sites.
Collapse
Affiliation(s)
- Silke Cameron
- Clinic of Gastroenterology and Endocrinology, Georg-August UniversityGöttingen, Germany
| | - Marieke Gieselmann
- Clinic of Gastroenterology and Endocrinology, Georg-August UniversityGöttingen, Germany
| | - Martina Blaschke
- Clinic of Gastroenterology and Endocrinology, Georg-August UniversityGöttingen, Germany
| | - Giuliano Ramadori
- Clinic of Gastroenterology and Endocrinology, Georg-August UniversityGöttingen, Germany
| | - Laszlo Füzesi
- Institute of Pathology, Georg-August UniversityGöttingen, Germany
- Current address: Pius HospitalOldenburg, Germany
| |
Collapse
|
19
|
Fan R, Zhong J, Zheng S, Wang Z, Xu Y, Li S, Zhou J, Yuan F. MicroRNA-218 inhibits gastrointestinal stromal tumor cell and invasion by targeting KIT. Tumour Biol 2013; 35:4209-17. [PMID: 24375253 DOI: 10.1007/s13277-013-1551-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 12/13/2013] [Indexed: 12/14/2022] Open
Abstract
The objectives of this study were to detect the expressions of microRNA-218 (miR-218) in human gastrointestinal stromal tumor (GIST) tissues and cells and explore its effects on the biological features of GIST-T1 cells and the expression of its target gene KIT, so as to provide new insights for GIST treatment. Using quantitative real-time polymerase chain reaction (qRT-PCR), we detected the expressions of miR-218 in the tissues and adjacent tissues of GIST and in the GIST cell lines including GIST882, GIST430, GIST48, and GIST-T1. Forty-eight hours after the miR-218 mimic was transfected into the GIST-T1 cells, the expression of miR-218 in the GIST-T1 cells was detected by qRT-PCR. The effect of miR-218 on the GIST-T1 cell viability was detected using MTT. The effect of miR-218 on the proliferation and apoptosis of GIST-T1 cell was analyzed using flow cytometry. Transwell invasion chamber was applied to detect the effect of miR-218 on the invasion of GIST-T1 cells. KIT was identified to be a target gene of miR-218 by the luciferase reporter enzyme system, and the effect of miR-218 on the expression of KIT protein in cells was determined using Western blotting. As shown by qRT-PCR, compared with that in the GIST adjacent tissue, the expressions of miR-218 in the tumor tissue and GIST cell lines were significantly decreased (P < 0.0001). Compared with the control group, the expression of miR-218 increased significantly in GIST-T1 cells transfected with miR-218 mimic for 48 h (P < 0.01). MTT showed that the cell viability decreased significantly after the overexpression of miR-218 in the GIST-T1 cells (P < 0.01). Flow cytometry showed that the cell proliferation index significantly declined after the overexpression of miR-218 (P < 0.01); meanwhile, the apoptosis of cells also significantly increased (P < 0.01). Detection using the Transwell invasion chamber showed that the number of cells passing through the Transwell chamber significantly dropped after the enhanced expression of miR-218 (P < 0.01). Luciferase reporter gene assay showed that, compared with the control group, the relative luciferase activity significantly declined in the miR-218 mimic transfection group (P < 0.01). Compared with the control group, the expression of KIT protein in the GIST-T1 cells transfected with miR-218 mimic for 48 h significantly decreased (P < 0.01). In conclusion, the expression of miR-218 decreases in human GIST tissue and cell lines. miR-218 can negatively regulate the expression of KIT protein and inhibit the proliferation and invasion of GIST cells. Treatment based on the enhanced expression of miR-218 may be a promising strategy for GIST.
Collapse
Affiliation(s)
- Rong Fan
- Department of Gastroenterology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Rd, Shanghai, 200025, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Saied A, Pillarisetty VG, Katz SC. Immunotherapy for solid tumors--a review for surgeons. J Surg Res 2013; 187:525-35. [PMID: 24485876 DOI: 10.1016/j.jss.2013.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 01/01/2023]
Abstract
Immunotherapy has evolved considerably in the last decade and is becoming an integral component of the armamentarium for the treatment of patients with advanced solid tumors. It is important for clinicians, especially surgeons, to understand the basic principles of novel immunotherapies and the immune system. This review summarizes the evolution of the most relevant immunotherapies, their mechanisms of action, the data supporting their clinical use, and integration of immunotherapy into multidisciplinary management of solid tumors. This review should serve as a primer for clinicians and surgeons to understand the rapidly evolving field of immunotherapy.
Collapse
Affiliation(s)
- Abdul Saied
- Department of Surgery, Roger Williams Medical Center, Providence, Rhode Island
| | - Venu G Pillarisetty
- Department of Surgery, University of Washington School of Medicine, Seattle, Washington
| | - Steven C Katz
- Department of Surgery, Roger Williams Medical Center, Providence, Rhode Island; Department of Surgery, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
21
|
Abstract
T cells have the capacity to eradicate diseased cells, but tumours present considerable challenges that render T cells ineffectual. Cancer cells often make themselves almost 'invisible' to the immune system, and they sculpt a microenvironment that suppresses T cell activity, survival and migration. Genetic engineering of T cells can be used therapeutically to overcome these challenges. T cells can be taken from the blood of cancer patients and then modified with genes encoding receptors that recognize cancer-specific antigens. Additional genes can be used to enable resistance to immunosuppression, to extend survival and to facilitate the penetration of engineered T cells into tumours. Using genetic modification, highly active, self-propagating 'slayers' of cancer cells can be generated.
Collapse
Affiliation(s)
- Michael H Kershaw
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia. michael.kershaw@ petermac.org
| | | | | |
Collapse
|