1
|
Dixit A, Balakrishnan B, Karande AA. Immunomodulatory activity of glycodelin: implications in allograft rejection. Clin Exp Immunol 2017; 192:213-223. [PMID: 29271477 DOI: 10.1111/cei.13096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 12/01/2022] Open
Abstract
Glycodelin is an immunomodulator, indispensable for the maintenance of pregnancy in humans. The glycoprotein induces apoptosis in activated CD4+ T cells, monocytes and natural killer (NK) cells, and suppresses the activity of cytotoxic T cells, macrophages and dendritic cells. This study explores the immunosuppressive property of glycodelin for its possible use in preventing graft rejection. Because glycodelin is found only in certain primates, the hypothesis was investigated in an allograft nude mouse model. It is demonstrated that treatment of alloactivated mononuclear cells with glycodelin thwarts graft rejection. Glycodelin decreases the number of activated CD4+ and CD8+ cells and down-regulates the expression of key proteins known to be involved in graft demise such as granzyme-B, eomesodermin (EOMES), interleukin (IL)-2 and proinflammatory cytokines [tumour necrosis factor (TNF)-α and IL-6], resulting in a weakened cell-mediated immune response. Immunosuppressive drugs for treating allograft rejection are associated with severe side effects. Glycodelin, a natural immunomodulator in humans, would be an ideal alternative candidate.
Collapse
Affiliation(s)
- A Dixit
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - B Balakrishnan
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - A A Karande
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
2
|
Srivastava P, Paluch BE, Matsuzaki J, James SR, Collamat-Lai G, Taverna P, Karpf AR, Griffiths EA. Immunomodulatory action of the DNA methyltransferase inhibitor SGI-110 in epithelial ovarian cancer cells and xenografts. Epigenetics 2015; 10:237-46. [PMID: 25793777 PMCID: PMC4623048 DOI: 10.1080/15592294.2015.1017198] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We aimed to determine the effect of SGI-110 on methylation and expression of the cancer testis antigens (CTAs) NY-ESO-1 and MAGE-A in epithelial ovarian cancer (EOC) cells in vitro and in vivo and to establish the impact of SGI-110 on expression of major histocompatibility (MHC) class I and Intracellular Adhesion Molecule 1 (ICAM-1) on EOC cells, and on recognition of EOC cells by NY-ESO-1-specific CD8+ T-cells. We also tested the impact of combined SGI-110 and NY-ESO-1-specific CD8+ T-cells on tumor growth and/or murine survival in a xenograft setting. EOC cells were treated with SGI-110 in vitro at various concentrations and as tumor xenografts with 3 distinct dose schedules. Effects on global methylation (using LINE-1), NY-ESO-1 and MAGE-A methylation, mRNA, and protein expression were determined and compared to controls. SGI-110 treated EOC cells were evaluated for expression of immune-modulatory genes using flow cytometry, and were co-cultured with NY-ESO-1 specific T-cell clones to determine immune recognition. In vivo administration of SGI-110 and CD8+ T-cells was performed to determine anti-tumor effects on EOC xenografts. SGI-110 treatment induced hypomethylation and CTA gene expression in a dose dependent manner both in vitro and in vivo, at levels generally superior to azacitidine or decitabine. SGI-110 enhanced the expression of MHC I and ICAM-1, and enhanced recognition of EOC cells by NY-ESO-1-specific CD8+ T-cells. Sequential SGI-110 and antigen-specific CD8+ cell treatment restricted EOC tumor growth and enhanced survival in a xenograft setting. SGI-110 is an effective hypomethylating agent and immune modulator and, thus, an attractive candidate for combination with CTA-directed vaccines in EOC.
Collapse
Key Words
- AZA, Azacitidine (5-azacytidine)
- CTA, Cancer-testis antigen or cancer-germline antigen
- CTAG1B, Cancer/testis antigen 1B
- DAC, Decitabine (5-aza-2′-deoxycitidine)
- DNA methylation
- DNA methyltransferase inhibitors
- DNA, Deoxyribonucleic acid
- DNMTi, DNA methyltransferase inhibitor
- EOC, Epithelial ovarian cancer
- HLA, Human leukocyte antigen
- ICAM-1, Intracellular Adhesion Molecule 1
- LINE-1, Long interspersed nuclear element-1
- MAGE-A, Melanoma antigen family A
- MHC, Major histocompatibility complex
- NY-ESO-1, New york esophageal squamous cell carcinoma 1
- RNA, Ribonucleic acid
- SGI-110
- cancer germline genes
- cancer testis antigens
- epigenetics
- epithelial ovarian cancer
- immune modulation
Collapse
Affiliation(s)
- Pragya Srivastava
- a Department of Medicine; Roswell Park Cancer Institute ; Buffalo NY USA
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Bao W, Gao M, Cheng Y, Lee HJ, Zhang Q, Hemingway S, Luo Z, Krol A, Yang G, An J. Biomodification of PCL Scaffolds with Matrigel, HA, and SR1 Enhances De Novo Ectopic Bone Marrow Formation Induced by rhBMP-2. Biores Open Access 2015; 4:298-306. [PMID: 26309805 PMCID: PMC4497713 DOI: 10.1089/biores.2015.0020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The de novo formation of ectopic bone marrow was induced using 1.2-mm-thin polycaprolactone (PCL) scaffolds biomodified with several different biomaterials. In vivo investigations of de novo bone and bone marrow formation indicated that subcutaneous implantation of PCL scaffolds coated with recombinant human bone morphogenetic protein-2 (rhBMP-2) plus Matrigel, hydroxyapatite (HA), or StemRegenin 1 (SR1) improved formation of bone and hematopoietic bone marrow as determined by microcomputed tomography, and histological and hematopoietic characterizations. Our study provides evidence that thin PCL scaffolds biomodified with Matrigel, HA, and SR1 mimic the environments of real bone and bone marrow, thereby enhancing the de novo ectopic bone marrow formation induced by rhBMP-2. This ectopic bone marrow model will serve as a unique and essential tool for basic research and for clinical applications of postnatal tissue engineering and organ regeneration.
Collapse
Affiliation(s)
- Wenjing Bao
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York
- Cancer Research Institute, SUNY Upstate Medical University, Syracuse, New York
- Department of Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Mei Gao
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York
- Cancer Research Institute, SUNY Upstate Medical University, Syracuse, New York
| | - Yanyan Cheng
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York
- Cancer Research Institute, SUNY Upstate Medical University, Syracuse, New York
- Department of Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Hyun Jae Lee
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York
| | - Qinghao Zhang
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York
- Cancer Research Institute, SUNY Upstate Medical University, Syracuse, New York
| | - Susan Hemingway
- Department of Radiology, SUNY Upstate Medical University, Syracuse, New York
| | - Zhibo Luo
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York
- Cancer Research Institute, SUNY Upstate Medical University, Syracuse, New York
- Department of Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Andrzej Krol
- Department of Radiology, SUNY Upstate Medical University, Syracuse, New York
| | - Guanlin Yang
- Department of Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Address correspondence to: Jing An, MD, PhD, Department of Pharmacology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, E-mail: or Guanlin Yang, MD, Department of Medicine, Liaoning University of Traditional Chinese Medicine, No. 33 Beiling Street, 79 East Chongshan Road, Shenyang 110032, China, E-mail:
| | - Jing An
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York
- Cancer Research Institute, SUNY Upstate Medical University, Syracuse, New York
- Address correspondence to: Jing An, MD, PhD, Department of Pharmacology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, E-mail: or Guanlin Yang, MD, Department of Medicine, Liaoning University of Traditional Chinese Medicine, No. 33 Beiling Street, 79 East Chongshan Road, Shenyang 110032, China, E-mail:
| |
Collapse
|
4
|
Mac Keon S, Ruiz MS, Gazzaniga S, Wainstok R. Dendritic cell-based vaccination in cancer: therapeutic implications emerging from murine models. Front Immunol 2015; 6:243. [PMID: 26042126 PMCID: PMC4438595 DOI: 10.3389/fimmu.2015.00243] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/06/2015] [Indexed: 01/29/2023] Open
Abstract
Dendritic cells (DCs) play a pivotal role in the orchestration of immune responses, and are thus key targets in cancer vaccine design. Since the 2010 FDA approval of the first cancer DC-based vaccine (Sipuleucel-T), there has been a surge of interest in exploiting these cells as a therapeutic option for the treatment of tumors of diverse origin. In spite of the encouraging results obtained in the clinic, many elements of DC-based vaccination strategies need to be optimized. In this context, the use of experimental cancer models can help direct efforts toward an effective vaccine design. This paper reviews recent findings in murine models regarding the antitumoral mechanisms of DC-based vaccination, covering issues related to antigen sources, the use of adjuvants and maturing agents, and the role of DC subsets and their interaction in the initiation of antitumoral immune responses. The summary of such diverse aspects will highlight advantages and drawbacks in the use of murine models, and contribute to the design of successful DC-based translational approaches for cancer treatment.
Collapse
Affiliation(s)
- Soledad Mac Keon
- Laboratorio de Cancerología, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET , Buenos Aires , Argentina
| | - María Sol Ruiz
- Centro de Investigaciones Oncológicas, Fundación para la Investigación, Docencia y Prevención del Cáncer (FUCA) , Buenos Aires , Argentina
| | - Silvina Gazzaniga
- Laboratorio de Biología Tumoral, Departamento de Química Biológica IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Rosa Wainstok
- Laboratorio de Cancerología, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET , Buenos Aires , Argentina ; Laboratorio de Biología Tumoral, Departamento de Química Biológica IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires , Argentina
| |
Collapse
|
5
|
Hayashi S, Kumai T, Matsuda Y, Aoki N, Sato K, Kimura S, Kitada M, Tateno M, Celis E, Kobayashi H. Six-transmembrane epithelial antigen of the prostate and enhancer of zeste homolog 2 as immunotherapeutic targets for lung cancer. J Transl Med 2011; 9:191. [PMID: 22053850 PMCID: PMC3219573 DOI: 10.1186/1479-5876-9-191] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 11/05/2011] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND T-cell based immunotherapy for lung cancer (LC) could be a promising and novel therapeutic approach. Six-transmembrane epithelial antigen of the prostate (STEAP) and the polycomb group protein enhancer of zeste homolog 2 (EZH2) are highly expressed in LC and since the expression of molecules in normal tissue is significantly lower as compared to tumor cells, these proteins are considered as potential tumor-associated antigens (TAAs) for developing T-cell based immunotherapy. METHODS We assessed the capacity of predicted CD4 T-cell epitopes from STEAP and EZH2 to induce anti-tumor immune responses to LC cell lines. RESULTS Out of several predicted epitopes, two synthetic peptides, STEAP281-296 and EZH295-109, were effective in inducing CD4 T-cell responses that were restricted by HLA-DR1, DR15, or DR53 molecules, indicating that the peptides function as promiscuous T-cell epitopes. Moreover, STEAP281-296 and EZH295-109-reactive T-cells could directly recognize STEAP or EZH2 expressing LC cells in an HLA-DR restricted manner. In addition, some STEAP-reactive T-cells responded to STEAP+ tumor cell lysates presented by autologous dendric cells. Most significantly, both of these peptides were capable of stimulating in vitro T-cell responses in patients with LC. CONCLUSIONS Peptides STEAP281-296 and EZH295-109 function as strong CD4 T-cell epitopes that can elicit effective anti-tumor T-cell responses against STEAP or EZH2 expressing LC. These observations may facilitate the translation of T-cell based immunotherapy into the clinic for the treatment of LC.
Collapse
Affiliation(s)
- Satoshi Hayashi
- Department of Surgery, Asahikawa Medical University, Asahikawa, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Reis OTG, Raini JC, Coradi ST, Constantino DHJ. Effect of L-Arginine and L-NAME treatments on polymorphonuclear leukocytes and mononuclear cells influx during tumor growth. Acta Cir Bras 2009; 24:107-11. [PMID: 19377778 DOI: 10.1590/s0102-86502009000200006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 01/14/2009] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Evaluate polymorphonuclear leukocytes (PMN's) and mononuclear cells (MN's) involvement in the Ehrlich s solid tumor (ET) growth. METHODS 90 Swiss mice were inoculated with 10(7) tumor cells (sc), distributed in three groups and treated once a day, via intraperitoneal (ip), with 0.1ml of diluent, L-Arginine (20mg/Kg) or L-NAME (20mg/Kg). After 7, 15 and 30 days of treatment, ten animals of each group were euthanized, the tumor mass was removed, processed and fixed for HE. Later, a morphometric analysis of the total area, parenchyma, necrosis, tumor stroma and PMN's leukocytes and MN's cells influx was performed. RESULTS The L-Arginine treatment increased PMN's influx in the initial stage, whereas L-NAME reduced it. Our data suggests that NO effect on PMN's migration is dose-dependent. On the other hand, the MN s cells influx was reduced by L-NAME treatment at all evaluated periods and at the same periods an increase in tumor growth was observed. CONCLUSION At initial stages of tumor implantation, both PMN's leukocytes and MN's cells act together to control ET development.
Collapse
|
7
|
Harao M, Hirata S, Irie A, Senju S, Nakatsura T, Komori H, Ikuta Y, Yokomine K, Imai K, Inoue M, Harada K, Mori T, Tsunoda T, Nakatsuru S, Daigo Y, Nomori H, Nakamura Y, Baba H, Nishimura Y. HLA-A2-restricted CTL epitopes of a novel lung cancer-associated cancer testis antigen, cell division cycle associated 1, can induce tumor-reactive CTL. Int J Cancer 2008; 123:2616-25. [DOI: 10.1002/ijc.23823] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|