1
|
Meng J, Gao X, Liu X, Zheng W, Wang Y, Wang Y, Sun Z, Yin X, Zhou X. Effects of xenogeneic transplantation of umbilical cord-derived mesenchymal stem cells combined with irbesartan on renal podocyte damage in diabetic rats. Stem Cell Res Ther 2024; 15:239. [PMID: 39080783 PMCID: PMC11289925 DOI: 10.1186/s13287-024-03844-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND The leading cause of end-stage renal disease (ESRD) is diabetic nephropathy (DN). Podocyte damage is an early event in the development of DN. Currently, there is no effective treatment strategy that can slow the progression of DN or reverse its onset. The role of mesenchymal stem cells (MSCs) transplantation in diabetes and its complications has been extensively studied, and diabetic nephropathy has been a major focus. Irbesartan exerts reno-protective effects independent of lowering blood pressure, can reduce the incidence of proteinuria in rats, and is widely used clinically. However, it remains undetermined whether the combined utilization of the angiotensin II receptor antagonist irbesartan and MSCs could enhance efficacy in addressing DN. METHODS A commonly used method for modeling type 2 diabetic nephropathy (T2DN) was established using a high-fat diet and a single low-dose injection of STZ (35 mg/kg). The animals were divided into the following 5 groups: (1) the control group (CON), (2) the diabetic nephropathy group (DN), (3) the mesenchymal stem cells treatment group (MSCs), (4) the irbesartan treatment group (Irb), and (5) the combined administration group (MSC + Irb). MSCs (2 × 106 cells/rat) were injected every 10 days through the tail vein for a total of three injections; irbesartan (30 mg/kg/d) was administered by gavage. Additionally, the safety and homing of mesenchymal stem cells were verified using positron emission tomography (PET) imaging. RESULTS The combination treatment significantly reduced the UACR, kidney index, IGPTT, HOMA-IR, BUN, serum creatine, and related inflammatory factor levels and significantly improved renal function parameters and the expression of proteins related to glomerular podocyte injury in rats. Moreover, MSCs can homing target to damaged kidneys. CONCLUSIONS Compared to the administration of MSCs or irbesartan alone, the combination of MSCs and irbesartan exerted better protective effects on glomerular podocyte injury, providing new ideas for the clinical application of mesenchymal stem cells.
Collapse
Affiliation(s)
- Jing Meng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, College of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Xiao Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, College of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Xiaojuan Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, College of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Wen Zheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, College of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Yang Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, College of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Yinghao Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, College of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Zhenquan Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, College of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, College of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China.
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, College of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China.
| |
Collapse
|
2
|
Zhou J, Gao T, Tang W, Qian T, Wang Z, Xu P, Wang L. Progress in the treatment of neonatal hypoxic-ischemic encephalopathy with umbilical cord blood mononuclear cells. Brain Dev 2023; 45:533-546. [PMID: 37806836 DOI: 10.1016/j.braindev.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a common disease among newborns, which is a leading cause of neonatal death and permanent neurological sequelae. Therapeutic hypothermia (TH) is the only method for the treatment of HIE that has been recognized effective clinically at home and abroad, but the efficacy is limited. Recent research suggests that the cord blood-derived mononuclear cells (CB-MNCs), which the refer to blood cells containing one nucleus in the cord blood, exert anti-oxidative, anti-inflammatory, anti-apoptotic effects and play a neuroprotective role in HIE. This review focuses on safety and efficacy, the route of administration, dose, timing and combination treatment of CB-MNCs in HIE.
Collapse
Affiliation(s)
- Jiayu Zhou
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Ting Gao
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Wan Tang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Tianyang Qian
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Ziming Wang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Pu Xu
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Laishuan Wang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China.
| |
Collapse
|
3
|
Torabi S, Zarrabi M, Hossein-Khannazer N, Lotfinia M, Nouri M, Gramignoli R, Hassan M, Vosough M. Umbilical Cord Blood-Derived Monocytes as A Reliable Source of Functional Macrophages for Biomedical Research. CELL JOURNAL 2023; 25:524-535. [PMID: 37641414 PMCID: PMC10542205 DOI: 10.22074/cellj.2023.1990203.1238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/15/2023] [Accepted: 05/21/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVE Macrophages are multifunctional immune cells widely used in immunological research. While autologous macrophages have been widely used in several biomedical applications, allogeneic macrophages have also demonstrated similar or even superior therapeutic potential. The umbilical cord blood (UCB) is a well-described source of abundant allogenic monocytes and macrophages that is easy to collect and can be processed without invasive methods. Current monocyte isolation procedures frequently result in heterogenous cell products, with limited yields, activated cells, and high cost. This study outlines a simple isolation method that results in high yields and pure monocytes with the potential to differentiate into functional macrophages. MATERIALS AND METHODS In the experimental study, we describe a simple and efficient protocol to isolate highpurity monocytes. After collection of human UCB samples, we used a gradient-based procedure composed of three consecutive gradient steps: i. Hydroxyethyl starch-based erythrocytes sedimentation, followed by ii. Mononuclear cells (MNCs) isolation by Ficoll-Hypaque gradient, and iii. Separation of monocytes from lymphocytes by a slight hyperosmolar Percoll gradient (0.573 g/ml). Then the differentiation potential of isolated monocytes to pro- and antiinflammatory macrophages were evaluated in the presence of granulocyte colony-stimulating factor (GM-CSF) and macrophage CSF (M-CSF), respectively. The macrophages were functionally characterized as well. RESULTS A high yield of monocytes after isolation (25 to 50 million) with a high purity (>95%) could be obtained from every 100-150 ml UCB. Isolated monocytes were defined based on their phenotype and surface markers expression pattern. Moreover, they possess the ability to differentiate into pro- or anti-inflammatory macrophages with specific phenotypes, gene/surface protein markers, cytokine secretion patterns, T-cell interactions, and phagocytosis activity. CONCLUSION Here we describe a simple and reproducible procedure for isolation of pure monocytes from UCB, which could be utilized to provide functional macrophages as a reliable and feasible source of allogenic macrophages for biomedical research.
Collapse
Affiliation(s)
- Shukoofeh Torabi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Applied Cell Sciences, Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran
| | - Morteza Zarrabi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- R and D Department, Royan Stem Cell Technology Co, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Lotfinia
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Masoumeh Nouri
- R and D Department, Royan Stem Cell Technology Co, Tehran, Iran
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, Stockholm, Sweden.
- Department of Pathology and Cancer Diagnostic, Karolinska University Hospital, 141 83 Stockholm, Sweden
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, and Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Experimental Cancer Medicine, Institution for Laboratory Medicine, and Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
4
|
Yoshida Y, Takeda Y, Yamahara K, Yamamoto H, Takagi T, Kuramoto Y, Nakano-Doi A, Nakagomi T, Soma T, Matsuyama T, Doe N, Yoshimura S. Enhanced angiogenic properties of umbilical cord blood primed by OP9 stromal cells ameliorates neurological deficits in cerebral infarction mouse model. Sci Rep 2023; 13:262. [PMID: 36609640 PMCID: PMC9822952 DOI: 10.1038/s41598-023-27424-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Umbilical cord blood (UCB) transplantation shows proangiogenic effects and contributes to symptom amelioration in animal models of cerebral infarction. However, the effect of specific cell types within a heterogeneous UCB population are still controversial. OP9 is a stromal cell line used as feeder cells to promote the hematoendothelial differentiation of embryonic stem cells. Hence, we investigated the changes in angiogenic properties, underlying mechanisms, and impact on behavioral deficiencies caused by cerebral infarction in UCB co-cultured with OP9 for up to 24 h. In the network formation assay, only OP9 pre-conditioned UCB formed network structures. Single-cell RNA sequencing and flow cytometry analysis showed a prominent phenotypic shift toward M2 in the monocytic fraction of OP9 pre-conditioned UCB. Further, OP9 pre-conditioned UCB transplantation in mice models of cerebral infarction facilitated angiogenesis in the peri-infarct lesions and ameliorated the associated symptoms. In this study, we developed a strong, fast, and feasible method to augment the M2, tissue-protecting, pro-angiogenic features of UCB using OP9. The ameliorative effect of OP9-pre-conditioned UCB in vivo could be partly due to promotion of innate angiogenesis in peri-infarct lesions.
Collapse
Affiliation(s)
- Yasunori Yoshida
- grid.272264.70000 0000 9142 153XDepartment of Neurosurgery, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Yuki Takeda
- grid.272264.70000 0000 9142 153XDepartment of Neurosurgery, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Kenichi Yamahara
- Laboratory of Molecular and Cellular Therapy, Institute for Advanced Medical Sciences, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Hanae Yamamoto
- grid.272264.70000 0000 9142 153XLaboratory of Molecular and Cellular Therapy, Institute for Advanced Medical Sciences, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Toshinori Takagi
- grid.272264.70000 0000 9142 153XDepartment of Neurosurgery, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Yoji Kuramoto
- grid.272264.70000 0000 9142 153XDepartment of Neurosurgery, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Akiko Nakano-Doi
- Laboratory of Neurogenesis and CNS Repair, Institute for Advanced Medical Sciences, Hyogo Medial University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Takayuki Nakagomi
- Laboratory of Neurogenesis and CNS Repair, Institute for Advanced Medical Sciences, Hyogo Medial University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Toshihiro Soma
- grid.272264.70000 0000 9142 153XDepartment of Hematology, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Tomohiro Matsuyama
- grid.272264.70000 0000 9142 153XDepartment of Therapeutic Progress in Brain Diseases, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Nobutaka Doe
- Laboratory of Neurogenesis and CNS Repair, Institute for Advanced Medical Sciences, Hyogo Medial University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan ,grid.272264.70000 0000 9142 153XDepartment of Occupational Therapy, School of Rehabilitation, Hyogo Medical University, 1-3-6 Minatojima, Chuo-Ku, Kobe, Hyogo 650-8530 Japan
| | - Shinichi Yoshimura
- grid.272264.70000 0000 9142 153XDepartment of Neurosurgery, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| |
Collapse
|
5
|
Efficacy of Cord Blood Cell Therapy for Hutchinson-Gilford Progeria Syndrome-A Case Report. Int J Mol Sci 2021; 22:ijms222212316. [PMID: 34830197 PMCID: PMC8619635 DOI: 10.3390/ijms222212316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023] Open
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is an extremely rare premature aging disorder characterized by short stature and atherosclerosis-induced death within teenage years. A 13-year-old male diagnosed with HGPS was administered three intravenous infusions of allogeneic cord blood (CB) cells from unrelated donors at four-month intervals to evaluate the safety and its therapeutic efficacy. Adverse events were monitored in addition to height, weight, laboratory blood tests, joint range of motion (ROM), and carotid Doppler. Cytokine and receptor assays were also performed. The patient exhibited an increase in growth rate for both height and weight. One year after therapy initiation, evident amelioration in pulse wave velocity, bilateral maximal intima-media thickness, and dyslipidemic status were observed, which were in abrupt aggravation prior to treatment. Further, an increase in flexibility occurred in some joints of the upper extremities. No serious adverse events were observed throughout the study period and one year beyond. A molecular assay revealed downregulation of proinflammatory and atherosclerosis, representing cytokine expressions following the administration of CB cells. This is the first reported case of an allogeneic CB trial in a patient with HGPS showing therapeutic effects of CB with improvements in anthropometric measures, joint ROM with amelioration of atherosclerosis, and dyslipidemia induced by anti-inflammatory and anti-atherosclerotic responses.
Collapse
|
6
|
Rajasingh S, Sigamani V, Selvam V, Gurusamy N, Kirankumar S, Vasanthan J, Rajasingh J. Comparative analysis of human induced pluripotent stem cell-derived mesenchymal stem cells and umbilical cord mesenchymal stem cells. J Cell Mol Med 2021; 25:8904-8919. [PMID: 34390186 PMCID: PMC8435459 DOI: 10.1111/jcmm.16851] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/19/2021] [Accepted: 07/31/2021] [Indexed: 12/11/2022] Open
Abstract
Generation of induced pluripotent stem cells (iPSCs) and their differentiation into mesenchymal stem/stromal cells (iMSCs) have created exciting source of cells for autologous therapy. In this study, we have compared the therapeutic potential of iMSCs generated from urinary epithelial (UE) cells with the available umbilical cord MSCs (UC‐MSCs). For this, adult UE cells were treated with the mRNA of pluripotent genes (OCT4, NANOG, SOX2, KLF4, MYC and LIN28) and a cocktail of miRNAs under specific culture conditions for generating iPSCs. Our non‐viral and mRNA‐based treatment regimen demonstrated a high reprogramming efficiency to about 30% at passage 0. These UE‐iPSCs were successfully differentiated further into ectoderm, endoderm and mesoderm lineage of cells. Moreover, these UE‐iPSCs were subsequently differentiated into iMSCs and were compared with the UC‐MSCs. These iMSCs were capable of differentiating into osteocytes, chondrocytes and adipocytes. Our qRT‐PCR and Western blot data showed that the CD73, CD90 and CD105 gene transcripts and proteins were highly expressed in iMSCs and UC‐MSCs but not in other cells. The comparative qRT‐PCR data showed that the iMSCs maintained their MSC characteristics without any chromosomal abnormalities even at later passages (P15), during which the UC‐MSCs started losing their MSC characteristics. Importantly, the wound‐healing property demonstrated through migration assay was superior in iMSCs when compared to the UC‐MSCs. In this study, we have demonstrated an excellent non‐invasive and pain‐free method of obtaining iMSCs for regenerative therapy. These homogeneous autologous highly proliferative iMSCs may provide an alternative source of cells to UC‐MSCs for treating various diseases.
Collapse
Affiliation(s)
- Sheeja Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Vinoth Sigamani
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Vijay Selvam
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Narasimman Gurusamy
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Shivaani Kirankumar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Jayavardini Vasanthan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Johnson Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Medicine-Cardiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
7
|
Paton MCB, Wall DA, Elwood N, Chiang KY, Cowie G, Novak I, Finch-Edmondson M. Safety of allogeneic umbilical cord blood infusions for the treatment of neurological conditions: a systematic review of clinical studies. Cytotherapy 2021; 24:2-9. [PMID: 34384698 DOI: 10.1016/j.jcyt.2021.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND AIMS Umbilical cord blood (UCB) infusion is being investigated as a treatment for a range of neurological conditions, primarily because of its potent immunomodulatory effects mediated via paracrine signaling. Although initial research mainly utilized autologous UCB, allogeneic samples from a sibling or unrelated donor have now become more common. With the use of allogeneic UCB, questions have arisen surrounding the necessity for human leukocyte antigen (HLA) matching, preparative regimens and immunosuppressant drugs. To investigate the safety of allogeneic UCB for the treatment of neurological conditions and the impact of HLA mismatching and immunosuppresion, the authors conducted a systematic review of the safety of allogeneic UCB infusion for neurological conditions. METHODS A systematic review of published and gray literature was conducted to investigate the safety of allogeneic UCB infusions for neurological conditions. RESULTS Authors identified 10 studies using allogeneic UCB to treat autism spectrum disorder, cerebral palsy, stroke, traumatic brain injury and various other conditions. A total of 361 participants (with at least 442 UCB infusions) received a range of HLA-matched/untyped allogeneic units and cell doses, with the majority not administered post-infusion immunosuppression. There were no reported serious adverse events definitely or probably related to the allogeneic UCB infusion, nor later potential complications such as graft-versus-host disease or teratoma formation. CONCLUSIONS Although variability between studies is high, the available data do not identify safety concerns with allogeneic UCB infusion for the treatment of neurological conditions, even with variable HLA matching or no immunosuppression.
Collapse
Affiliation(s)
- Madison C B Paton
- Cerebral Palsy Alliance Research Institute, Specialty of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| | - Donna A Wall
- Bone Marrow Transplant/Cellular Therapy, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children/University of Toronto, Toronto, Canada; Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Ngaire Elwood
- BMDI Cord Blood Bank, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia; Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - Kuang-Yueh Chiang
- Bone Marrow Transplant/Cellular Therapy, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children/University of Toronto, Toronto, Canada; Department of Pediatrics, University of Toronto, Toronto, Canada
| | | | - Iona Novak
- Cerebral Palsy Alliance Research Institute, Specialty of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Megan Finch-Edmondson
- Cerebral Palsy Alliance Research Institute, Specialty of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| |
Collapse
|
8
|
Cord-Blood-Derived Professional Antigen-Presenting Cells: Functions and Applications in Current and Prospective Cell Therapies. Int J Mol Sci 2021; 22:ijms22115923. [PMID: 34072923 PMCID: PMC8199409 DOI: 10.3390/ijms22115923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/21/2022] Open
Abstract
Human umbilical cord blood (UCB) represents a valuable source of hematopoietic stem cells, particularly for patients lacking a matching donor. UCB provides practical advantages, including a lower risk of graft-versus-host-disease and permissive human leukocyte antigen mismatching. These advantageous properties have so far been applied for stem cell, mesenchymal stromal cell, and chimeric antigen receptor T cell therapies. However, UCB-derived professional antigen-presenting cells are increasingly being utilized in the context of immune tolerance and regenerative therapy. Here, we review the cell-specific characteristics as well as recent advancements in UCB-based cell therapies focusing on dendritic cells, monocytes, B lymphocytes, innate lymphoid cells, and macrophages.
Collapse
|
9
|
Min K, Suh MR, Cho KH, Park W, Kang MS, Jang SJ, Kim SH, Rhie S, Choi JI, Kim HJ, Cha KY, Kim M. Potentiation of cord blood cell therapy with erythropoietin for children with CP: a 2 × 2 factorial randomized placebo-controlled trial. Stem Cell Res Ther 2020; 11:509. [PMID: 33246489 PMCID: PMC7694426 DOI: 10.1186/s13287-020-02020-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Background Concomitant administration of allogeneic umbilical cord blood (UCB) infusion and erythropoietin (EPO) showed therapeutic efficacy in children with cerebral palsy (CP). However, no clinical studies have investigated the effects of UCB and EPO combination therapy using a 2 × 2 four-arm factorial blinded design with four arms. This randomized placebo-controlled trial aimed to identify the synergistic and individual efficacies of UCB cell and EPO for the treatment of CP. Methods Children diagnosed with CP were randomly segregated into four groups: (A) UCB+EPO, (B) UCB+placebo EPO, (C) placebo UCB+EPO, and (D) placebo UCB+placebo EPO. Based on the UCB unit selection criteria of matching for ≥ 4/6 of human leukocyte antigen (HLA)-A, -B, and DRB1 and total nucleated cell (TNC) number of ≥ 3 × 107/kg, allogeneic UCB was intravenously infused and 500 IU/kg human recombinant EPO was administered six times. Functional measurements, brain imaging studies, and electroencephalography were performed from baseline until 12 months post-treatment. Furthermore, adverse events were closely monitored. Results Eighty-eight of 92 children enrolled (3.05 ± 1.22 years) completed the study. Change in gross motor performance measure (GMPM) was greater in group A than in group D at 1 month (△2.30 vs. △0.71, P = 0.025) and 12 months (△6.85 vs. △2.34, P = 0.018) post-treatment. GMPM change ratios were calculated to adjust motor function at the baseline. Group A showed a larger improvement in the GMPM change ratio at 1 month and 12 months post-treatment than group D. At 12 months post-treatment, the GMPM change ratios were in the order of groups A, B, C, and D. These results indicate synergistic effect of UCB and EPO combination better than each single therapy. In diffusion tensor imaging, the change ratio of fractional anisotropy at spinothalamic radiation was higher in group A than group D in subgroup of age ≥ 3 years. Additionally, higher TNC and more HLA-matched UCB units led to better gross motor outcomes in group A. Adverse events remained unchanged upon UCB or EPO administration. Conclusions These results indicate that the efficacy of allogeneic UCB cell could be potentiated by EPO for neurological recovery in children with CP without harmful effects. Trial registration ClinicalTrials.gov, NCT01991145, registered 25 November 2013.
Collapse
Affiliation(s)
- Kyunghoon Min
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, Republic of Korea.,Rehabilitation and Regeneration Research Center, CHA University, Seongnam, Republic of Korea
| | - Mi Ri Suh
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, Republic of Korea
| | - Kye Hee Cho
- Rehabilitation and Regeneration Research Center, CHA University, Seongnam, Republic of Korea.,Department of Rehabilitation Medicine, CHA Ilsan Medical Center, CHA University School of Medicine, Ilsan, Republic of Korea
| | - Wookyung Park
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, Republic of Korea.,Rehabilitation and Regeneration Research Center, CHA University, Seongnam, Republic of Korea
| | - Myung Seo Kang
- Department of Laboratory Medicine, CHA Bundang Medical Center, CHA University School of Medicine and CHA Cord Blood Bank, Seongnam, Republic of Korea
| | - Su Jin Jang
- Department of Nuclear Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Sang Heum Kim
- Department of Radiology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Seonkyeong Rhie
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Jee In Choi
- Rehabilitation and Regeneration Research Center, CHA University, Seongnam, Republic of Korea
| | - Hyun-Jin Kim
- Rehabilitation and Regeneration Research Center, CHA University, Seongnam, Republic of Korea
| | - Kwang Yul Cha
- CHA Hollywood Presbyterian Medical Center, Los Angeles, CA, USA
| | - MinYoung Kim
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, Republic of Korea. .,Rehabilitation and Regeneration Research Center, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
10
|
Liu D, Zheng W, Pan S, Liu Z. Concise review: current trends on applications of stem cells in diabetic nephropathy. Cell Death Dis 2020; 11:1000. [PMID: 33221823 PMCID: PMC7680458 DOI: 10.1038/s41419-020-03206-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
Abstract
Diabetic nephropathy, with high prevalence, is the main cause of renal failure in diabetic patients. The strategies for treating DN are limited with not only high cost but an unsatisfied effect. Therefore, the effective treatment of DN needs to be explored urgently. In recent years, due to their self-renewal ability and multi-directional differentiation potential, stem cells have exerted therapeutic effects in many diseases, such as graft-versus-host disease, autoimmune diseases, pancreatic diseases, and even acute kidney injury. With the development of stem cell technology, stem cell-based regenerative medicine has been tried to be applied to the treatment of DN. Related stem cells include embryonic stem cells, induced pluripotent stem cells, mesenchymal cells, and endothelial progenitor cells. Undoubtedly, stem cell transplantation has achieved certain results in the treatment of DN animal models. However, stem cell therapy still remains certain thorny issues during treatment. For instance, poor engraftment and limited differentiation of stem cells caused by the diabetic microenvironment, differentiation into unwanted cell lineages, and malignant transformation or genetic aberrations of stem cells. At present, various researches on the therapeutic effects of stem cells in DN with different opinions are reported and the specific mechanism of stem cells is still unclear. We review here the potential mechanism of stem cells as new therapeutic agents in the treatment of DN. Also, we review recent findings and updated information about not only the utilization of stem cells on DN in both preclinical and clinical trials but limitations and future expectations of stem cell-based therapy for DN.
Collapse
Affiliation(s)
- Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P.R. China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, P.R. China
| | - Wen Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P.R. China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, P.R. China
| | - Shaokang Pan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P.R. China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, P.R. China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China. .,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P.R. China. .,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P.R. China. .,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, P.R. China.
| |
Collapse
|
11
|
Barilani M, Cherubini A, Peli V, Polveraccio F, Bollati V, Guffanti F, Del Gobbo A, Lavazza C, Giovanelli S, Elvassore N, Lazzari L. A circular RNA map for human induced pluripotent stem cells of foetal origin. EBioMedicine 2020; 57:102848. [PMID: 32574961 PMCID: PMC7322262 DOI: 10.1016/j.ebiom.2020.102848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/28/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Adult skin fibroblasts represent the most common starting cell type used to generate human induced pluripotent stem cells (F-hiPSC) for clinical studies. Yet, a foetal source would offer unique advantages, primarily the absence of accumulated somatic mutations. Herein, we generated hiPSC from cord blood multipotent mesenchymal stromal cells (MSC-hiPSC) and compared them with F-hiPSC. Assessment of the full activation of the pluripotency gene regulatory network (PGRN) focused on circular RNA (circRNA), recently proposed to participate in the control of pluripotency. METHODS Reprogramming was achieved by a footprint-free strategy. Self-renewal and pluripotency of cord blood MSC-hiPSC were investigated in vitro and in vivo, compared to parental MSC, to embryonic stem cells and to F-hiPSC. High-throughput array-based approaches and bioinformatics analyses were applied to address the PGRN. FINDINGS Cord blood MSC-hiPSC successfully acquired a complete pluripotent identity. Functional comparison with F-hiPSC showed no differences in terms of i) generation of mesenchymal-like derivatives, ii) their subsequent adipogenic, osteogenic and chondrogenic commitment, and iii) their hematopoietic support ability. At the transcriptional level, specific subsets of mRNA, miRNA and circRNA (n = 4,429) were evidenced, casting a further layer of complexity on the PGRN regulatory crosstalk. INTERPRETATION A circRNA map of transcripts associated to naïve and primed pluripotency is provided for hiPSC of clinical-grade foetal origin, offering insights on still unreported regulatory circuits of the PGRN to consider for the optimization and development of efficient differentiation protocols for clinical translation. FUNDING This research was funded by Ricerca Corrente 2012-2018 by the Italian Ministry of Health.
Collapse
Affiliation(s)
- Mario Barilani
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy; EPIGET Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Alessandro Cherubini
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy
| | - Valeria Peli
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy
| | - Francesca Polveraccio
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy; Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | | | - Alessandro Del Gobbo
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cristiana Lavazza
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy
| | - Silvia Giovanelli
- Milano Cord Blood Bank, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Nicola Elvassore
- Department of Industrial Engineering, University of Padova, Padova, Italy; Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China; Venetian Institute of Molecular Medicine, Padova, Italy; Stem Cells & Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Lorenza Lazzari
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy.
| |
Collapse
|
12
|
Hassouna A, M. Abd Elgwad M, Fahmy H. Stromal Stem Cells: Nature, Biology and Potential Therapeutic Applications. STROMAL CELLS - STRUCTURE, FUNCTION, AND THERAPEUTIC IMPLICATIONS 2019. [DOI: 10.5772/intechopen.77346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
13
|
Alcayaga-Miranda F, González PL, Lopez-Verrilli A, Varas-Godoy M, Aguila-Díaz C, Contreras L, Khoury M. Prostate tumor-induced angiogenesis is blocked by exosomes derived from menstrual stem cells through the inhibition of reactive oxygen species. Oncotarget 2018; 7:44462-44477. [PMID: 27286448 PMCID: PMC5190111 DOI: 10.18632/oncotarget.9852] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/19/2016] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) secrete exosomes that are capable of modifying the tumor environment through different mechanisms including changes in the cancer-cell secretome. This activity depends on their cargo content that is largely defined by their cellular origin. Endometrial cells are fine regulators of the angiogenic process during the menstrual cycle that includes an angiostatic condition that is associated with the end of the cycle. Hence, we studied the angiogenic activity of menstrual stem cells (MenSCs)-secreted exosomes on prostate PC3 tumor cells. Our results showed that exosomes induce a reduction in VEGF secretion and NF-κB activity. Lower reactive oxygen species (ROS) production in exosomes-treated cells was detected by the DCF method, suggesting that the inhibition of the intracellular ROS impacts both NF-κB and VEGF pathways. We confirmed using tubule formation and plug transplantation assays that MenSCs-exosomes suppress the secretion of pro-angiogenic factors by the PC3 cells in a ROS-dependent manner. The inhibition of the tumor angiogenesis and, consequently, the tumor growth was also confirmed using a xenograft mouse model. Additionally, the anti-tumoral effect was associated with a reduction of tumor hemoglobin content, vascular density and inhibition of VEGF and HIF-1α expression. Importantly, we demonstrate that the exosomes anti-angiogenic effect is specific to the menstrual cell source, as bone marrow MSCs-derived exosomes showed an opposite effect on the VEGF and bFGF expression in tumor cells. Altogether, our results indicate that MenSCs-derived exosomes acts as blockers of the tumor-induced angiogenesis and therefore could be suitable for anti-cancer therapies.
Collapse
Affiliation(s)
- Francisca Alcayaga-Miranda
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile
| | - Paz L González
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile
| | | | - Manuel Varas-Godoy
- Laboratory of Reproductive Biology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Carolina Aguila-Díaz
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Luis Contreras
- Servicio de Anatomía Patológica, Clínica Universidad de los Andes, Santiago, Chile
| | - Maroun Khoury
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile.,Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| |
Collapse
|
14
|
Wang XJ, Xiang BY, Ding YH, Chen L, Zou H, Mou XZ, Xiang C. Human menstrual blood-derived mesenchymal stem cells as a cellular vehicle for malignant glioma gene therapy. Oncotarget 2017; 8:58309-58321. [PMID: 28938558 PMCID: PMC5601654 DOI: 10.18632/oncotarget.17621] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/20/2017] [Indexed: 02/06/2023] Open
Abstract
Despite many advances in conventional treatment strategies, there is no effective treatment modality for malignant gliomas. Gene therapy may offer a promising option for gliomas and several gene therapy approaches have shown anti-tumor efficiency in previous studies. Mesenchymal stem cell-based gene therapies, in which stem cells are genetically engineered to express therapeutic molecules, have shown tremendous potential because of their innate homing ability. In this study, human menstrual blood-derived MSCs (MenSC), a novel type of multipotential MSCs displays tropism for human malignant glioma when used as a gene delivery vehicle for therapeutics. Secretable trimeric TRAIL (stTRAIL) contains the receptor-binding domain of TRAIL, a death ligand that induces apoptosis in tumor cells. To overexpress stTRAIL, MenSCs were infected with efficient adenoviral serotype 35 vectors that had no influence on its broad multipotency and low immunophenotype. The modified MenSCs served as an excellent local drug delivery system for tumor site-specific targeted delivery and demonstrated therapeutic efficacy in an animal xenografts tumor model of U-87 MG cells. The MenSC-stTRAIL cells induced antitumor effects in vitro by significantly increasing apoptosis (P < 0.05). It also significantly reduced tumor burden in vivo (P < 0.05). The results showed that the proliferation of tumor cells was significantly reduced (P < 0.05). The MenSC, as a cellular delivery vehicle has a wide potential therapeutic role, which includes the treatment of tumors.
Collapse
Affiliation(s)
- Xiao-Jun Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Bing-Yu Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Ya-Hui Ding
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou 310014, China.,People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Lu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hai Zou
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou 310014, China.,People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310014, China
| |
Collapse
|
15
|
Huang L, Liu Y, Lu J, Cerqueira B, Misra V, Duong TQ. Intraarterial transplantation of human umbilical cord blood mononuclear cells in hyperacute stroke improves vascular function. Stem Cell Res Ther 2017; 8:74. [PMID: 28330501 PMCID: PMC5361847 DOI: 10.1186/s13287-017-0529-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/18/2017] [Accepted: 03/04/2017] [Indexed: 12/20/2022] Open
Abstract
Background Human umbilical cord blood (hUCB) cell therapy is a promising treatment for ischemic stroke. The effects of hyperacute stem cell transplantation on cerebrovascular function in ischemic stroke are, however, not well understood. This study evaluated the effects of hyperacute intraarterial transplantation of hUCB mononuclear cells (MNCs) on cerebrovascular function in stroke rats using serial magnetic resonance imaging (MRI). Methods HUCB MNCs or vehicle were administered to stroke rats via the internal carotid artery immediately after reperfusion at 60 min following ischemia onset. Lesion volumes were longitudinally evaluated by MRI on days 0, 2, 14, and 28 after stroke, accompanied by behavioral tests. Cerebral blood flow (CBF) and cerebrovascular reactivity were measured by perfusion MRI and CO2 functional MRI (fMRI) at 28 days post-stroke; corresponding vascular morphological changes were also detected by immunohistology in the same animals. Results We found that CBF to the stroke-affected region at 28 days was improved (normalized CBF value: 1.41 ± 0.30 versus 0.49 ± 0.07) by intraarterial transplantation of hUCB MNCs in the hyperacute stroke phase, compared to vehicle control. Cerebrovascular reactivity within the stroke-affected area, measured by CBF fMRI, was also increased (35.2 ± 3.5% versus 12.8 ± 4.3%), as well as the corresponding cerebrovascular density. Some engrafted cells appeared with microvascular-like morphology and stained positive for von Willebrand Factor (an endothelial cell marker), suggesting they differentiated into endothelial cells. Some engrafted cells also connected to host endothelial cells, suggesting they interacted with the host vasculature. Compared to the vehicle group, infarct volume at 28 days in the stem cell treated group was significantly smaller (160.9 ± 15.7 versus 231.2 ± 16.0 mm3); behavioral deficits were also markedly reduced by stem cell treatment at day 28 (19.5 ± 1.0% versus 30.7 ± 4.7% on the foot fault test; 68.2 ± 4.6% versus 86.6 ± 5.8% on the cylinder test). More tissue within initial perfusion-diffusion mismatch was rescued in the treatment group. Conclusions Intraarterial hUCB MNC transplantation during the hyperacute phase of ischemic stroke improved cerebrovascular function and reduced behavioral deficits and infarct volume.
Collapse
Affiliation(s)
- Lei Huang
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Yichu Liu
- Department of Biomedical Engineering, University of Texas, San Antonio, Texas, USA
| | - Jianfei Lu
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Bianca Cerqueira
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas, USA.,Department of Biomedical Engineering, University of Texas, San Antonio, Texas, USA
| | - Vivek Misra
- Department of Neurology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Timothy Q Duong
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas, USA. .,Radiology, Stony Brook Medicine, Stony Brook, NY, USA.
| |
Collapse
|
16
|
Barilani M, Lavazza C, Viganò M, Montemurro T, Boldrin V, Parazzi V, Montelatici E, Crosti M, Moro M, Giordano R, Lazzari L. Dissection of the cord blood stromal component reveals predictive parameters for culture outcome. Stem Cells Dev 2015; 24:104-14. [PMID: 25046283 DOI: 10.1089/scd.2014.0160] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In regenerative medicine, human cord blood-derived multipotent mesenchymal stromal cells (CBMSCs) stand out for their biological peculiarities demonstrated in in vitro and in vivo preclinical studies. Here, we present our 9-year experience for the consistent isolation of CBMSCs. Although nearly one CB unit out of two retains the potential to give rise to MSC colonies, only 46% of them can be cultured till low passages (P≥4), but one-fourth of those reaches even higher passages (P≥8). Subsequent characterization for morphological, clonal, differentiation, and proliferation properties revealed two divergent CBMSC behaviors. In particular, a cumulative population doublings cut-off (CPD=15) was identified that undoubtedly distinguishes two growth curves, and different degrees of commitment toward osteogenesis were observed. These data clearly show the existence of at least two distinct CBMSC subsets: one mainly short-living and less proliferative (SL-CBMSCs), the other long-living, with higher growth rate, and, very importantly, with significantly (P≤0.01) longer telomere (LL-CBMSCs). Moreover, significant differences in the immunoprofile before seeding were found among CB units giving rise to LL-CBMSCs or SL-CBMSCs or showing no colony formation. Finally, all the aforementioned results provided a peculiar and useful set of parameters potentially predictive for CBMSC culture outcome.
Collapse
Affiliation(s)
- Mario Barilani
- 1 Cell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Eiró N, Sendon-Lago J, Seoane S, Bermúdez MA, Lamelas ML, Garcia-Caballero T, Schneider J, Perez-Fernandez R, Vizoso FJ. Potential therapeutic effect of the secretome from human uterine cervical stem cells against both cancer and stromal cells compared with adipose tissue stem cells. Oncotarget 2015; 5:10692-708. [PMID: 25296979 PMCID: PMC4279403 DOI: 10.18632/oncotarget.2530] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/25/2014] [Indexed: 12/28/2022] Open
Abstract
Evidences indicate that tumor development and progression towards a malignant phenotype depend not only on cancer cells themselves, but are also deeply influenced by tumor stroma reactivity. The present study uses mesenchymal stem cells from normal human uterine cervix (hUCESCs), isolated by the minimally invasive method of routine Pap cervical smear, to study their effect on the three main cell types in a tumor: cancer cells, fibroblasts and macrophages. Administration of hUCESCs-conditioned medium (CM) to a highly invasive breast cancer MDA-MB-231 cell line and to human breast tumors with high cell proliferation rates had the effect of reducing cell proliferation, modifying the cell cycle, inducing apoptosis, and decreasing invasion. In a xenograft mouse tumor model, hUCESCs-CM reduced tumor growth and increased overall survival. In cancer-associated fibroblasts, administration of hUCESCs-CM resulted in reduced cell proliferation, greater apoptosis and decreased invasion. In addition, hUCESCs-CM inhibited and reverted macrophage differentiation. The analysis of hUCESCs-CM (fresh and lyophilized) suggests that a complex paracrine signaling network could be implicated in the anti-tumor potential of hUCESCs. In light of their anti-tumor potential, the easy cell isolation method, and the fact that lyophilization of their CM conserves original properties make hUCESCs good candidates for experimental or clinical applications in anticancer therapy.
Collapse
Affiliation(s)
- Noemí Eiró
- Unidad de Investigación, Fundación Hospital de Jove, Gijón, Spain. Fundación para la Investigación con Células Madre Uterinas (FICEMU), Gijón, Spain
| | - Juan Sendon-Lago
- Departamento de Fisiología-CIMUS, Universidad de Santiago de Compostela, Spain
| | - Samuel Seoane
- Departamento de Fisiología-CIMUS, Universidad de Santiago de Compostela, Spain
| | - María A Bermúdez
- Departamento de Fisiología-CIMUS, Universidad de Santiago de Compostela, Spain
| | | | | | - José Schneider
- Universidad Rey Juan Carlos, Facultad de Ciencias de la Salud, Spain. Fundación para la Investigación con Células Madre Uterinas (FICEMU), Gijón, Spain
| | - Roman Perez-Fernandez
- Departamento de Fisiología-CIMUS, Universidad de Santiago de Compostela, Spain. Fundación para la Investigación con Células Madre Uterinas (FICEMU), Gijón, Spain
| | - Francisco J Vizoso
- Unidad de Investigación, Fundación Hospital de Jove, Gijón, Spain. Fundación para la Investigación con Células Madre Uterinas (FICEMU), Gijón, Spain
| |
Collapse
|
18
|
Abstract
Stem cells are cells specialized cell, capable of renewing themselves through cell division and can differentiate into multi-lineage cells. These cells are categorized as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells. Mesenchymal stem cells (MSCs) are adult stem cells which can be isolated from human and animal sources. Human MSCs (hMSCs) are the non-haematopoietic, multipotent stem cells with the capacity to differentiate into mesodermal lineage such as osteocytes, adipocytes and chondrocytes as well ectodermal (neurocytes) and endodermal lineages (hepatocytes). MSCs express cell surface markers like cluster of differentiation (CD)29, CD44, CD73, CD90, CD105 and lack the expression of CD14, CD34, CD45 and HLA (human leucocyte antigen)-DR. hMSCs for the first time were reported in the bone marrow and till now they have been isolated from various tissues, including adipose tissue, amniotic fluid, endometrium, dental tissues, umbilical cord and Wharton's jelly which harbours potential MSCs. hMSCs have been cultured long-term in specific media without any severe abnormalities. Furthermore, MSCs have immunomodulatory features, secrete cytokines and immune-receptors which regulate the microenvironment in the host tissue. Multilineage potential, immunomodulation and secretion of anti-inflammatory molecules makes MSCs an effective tool in the treatment of chronic diseases. In the present review, we have highlighted recent research findings in the area of hMSCs sources, expression of cell surface markers, long-term in vitro culturing, in vitro differentiation potential, immunomodulatory features, its homing capacity, banking and cryopreservation, its application in the treatment of chronic diseases and its use in clinical trials.
Collapse
|
19
|
Romanov YA, Tarakanov OP, Radaev SM, Dugina TN, Ryaskina SS, Darevskaya AN, Morozova YV, Khachatryan WA, Lebedev KE, Zotova NS, Burkova AS, Sukhikh GT, Smirnov VN. Human allogeneic AB0/Rh-identical umbilical cord blood cells in the treatment of juvenile patients with cerebral palsy. Cytotherapy 2015; 17:969-78. [PMID: 25791070 DOI: 10.1016/j.jcyt.2015.02.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/26/2015] [Accepted: 02/09/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND AIMS The term "cerebral palsy" (CP) encompasses many syndromes that emerge from brain damage at early stages of ontogenesis and manifest as the inability to retain a normal body position or perform controlled movements. Existing methods of CP treatment, including various rehabilitation strategies and surgical and pharmacological interventions, are mostly palliative, and there is no specific therapy focused on restoring injured brain function. METHODS During a post-registration clinical investigation, the safety and efficacy of intravenous infusion of allogeneic human leukocyte antigen (HLA)-unmatched umbilical cord blood (UCB) cells were studied in 80 pediatric patients with cerebral palsy and associated neurological complications. Patients received up to 6 intravenous infusions of AB0/Rh-identical, red blood cell-depleted UCB cells at an average dose of 250 × 10(6) viable cells per infusion. RESULTS Patients were followed for 3-36 months, and multiple cell infusions did not cause any adverse effects. In contrast, in most patients who received four or more UCB cell infusions, positive dynamics related to significant improvements in neurological status and/or cognitive functions were observed. CONCLUSIONS The results confirm that multiple intravenous infusions of allogeneic AB0/Rh-identical UCB cells may be a safe and effective procedure and could be included in treatment and rehabilitation programs for juvenile patients with cerebral palsy.
Collapse
Affiliation(s)
- Yury A Romanov
- Laboratory of Human Stem Cells, National Cardiology Research Center, Moscow, Russian Federation.
| | | | | | | | | | | | | | | | | | - Nelli S Zotova
- Kulakov Federal Center of Obstetrics, Gynecology and Perinatology, Moscow, Russian Federation
| | - Anna S Burkova
- Kulakov Federal Center of Obstetrics, Gynecology and Perinatology, Moscow, Russian Federation
| | - Gennady T Sukhikh
- Kulakov Federal Center of Obstetrics, Gynecology and Perinatology, Moscow, Russian Federation
| | - Vladimir N Smirnov
- Laboratory of Human Stem Cells, National Cardiology Research Center, Moscow, Russian Federation
| |
Collapse
|
20
|
Jaing TH. Umbilical cord blood: a trustworthy source of multipotent stem cells for regenerative medicine. Cell Transplant 2015; 23:493-6. [PMID: 24816446 DOI: 10.3727/096368914x678300] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It is conservatively estimated that one in three individuals in the US might benefit from regenerative medicine therapy. However, the relation of embryonic stem cells (ESCs) to human blastocysts always stirs ethical, political, moral, and emotional debate over their use in research. Thus, for the reasonably foreseeable future, the march of regenerative medicine to the clinic will depend upon the development of non-ESC therapies. Current sources of non-ESCs easily available in large numbers can be found in the bone marrow, adipose tissue, and umbilical cord blood (UCB). UCB provides an immune-compatible source of stem cells for regenerative medicine. Owing to inconsistent results, it is certainly an important and clinically relevant question whether UCB will prove to be therapeutically effective. This review will show that UCB contains multiple populations of multipotent stem cells, capable of giving rise to hematopoietic, epithelial, endothelial, and neural tissues both in vitro and in vivo. Here we raise the possibility that due to unique immunological properties of both the stem cell and non-stem cell components of cord blood, it may be possible to utilize allogeneic cells for regenerative applications without needing to influence or compromise the recipient immune system.
Collapse
Affiliation(s)
- Tang-Her Jaing
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
21
|
Habibollah S, Forraz N, McGuckin CP. Application of Umbilical Cord and Cord Blood as Alternative Modes for Liver Therapy. Regen Med 2015. [DOI: 10.1007/978-1-4471-6542-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
22
|
Yao Y, Song Q, Chu Y, Gong H, Li N, Hu Q, Xu X. Infusion of allogeneic umbilical cord blood hematopoietic stem cells in patients with chemotherapy-related myelosuppression. Exp Ther Med 2014; 8:1946-1950. [PMID: 25371761 PMCID: PMC4218683 DOI: 10.3892/etm.2014.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 09/29/2014] [Indexed: 11/05/2022] Open
Abstract
Chemotherapy-induced myelosuppression is one of the main problems in the treatment of cancer. In the present study, the effects of allogeneic umbilical cord blood hematopoietic stem cell (UCB-HSC) infusion were investigated on the treatment of chemotherapy-related myelosuppression. In total, 65 patients (male, 42; female, 23) diagnosed with chemotherapy-related myelosuppression were included in the study. The majority of the patients were classified with stage II myelosupression at enrolment, and an average concentration of 7.07×109/l UCB-HSCs were transfused through the peripheral vein. The minimum values of the white blood cell (WBC) count, hemoglobin (Hb) level, platelet (PLT) count and Karnofsky performance status (KPS) scores were recorded prior to and between days 7 and 14 following UCB-HSC infusion. When assessing the overall data, the results revealed that the mean WBC and PLT counts increased significantly following UCB-HSC infusion. However, the subgroup analyses based on gender and KPS score revealed that UCB-HSC infusion was more successful in male patients and those with a higher KPS score. Spearman's correlation analysis revealed a linear correlation between the number of transfused UCB-HSCs and the changes in the WBC and PLT counts following treatment. In conclusion, the results indicated that peripheral vein infusion of non-human leukocyte antigen matched UCB-HSCs can markedly improve chemotherapy-related myelosuppression in a safe and effective manner.
Collapse
Affiliation(s)
- Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yuxin Chu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hongyun Gong
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Na Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qinyong Hu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaotao Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
23
|
Clinical applications of mesenchymal stem cells in chronic diseases. Stem Cells Int 2014; 2014:306573. [PMID: 24876848 PMCID: PMC4021690 DOI: 10.1155/2014/306573] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 12/13/2022] Open
Abstract
Extraordinary progress in understanding several key features of stem cells has been made in the last ten years, including definition of the niche, and identification of signals regulating mobilization and homing as well as partial understanding of the mechanisms controlling self-renewal, commitment, and differentiation. This progress produced invaluable tools for the development of rational cell therapy protocols that have yielded positive results in preclinical models of genetic and acquired diseases and, in several cases, have entered clinical experimentation with positive outcome. Adult mesenchymal stem cells (MSCs) are nonhematopoietic cells with multilineage potential to differentiate into various tissues of mesodermal origin. They can be isolated from bone marrow and other tissues and have the capacity to extensively proliferate in vitro. Moreover, MSCs have also been shown to produce anti-inflammatory molecules which can modulate humoral and cellular immune responses. Considering their regenerative potential and immunoregulatory effect, MSC therapy is a promising tool in the treatment of degenerative, inflammatory, and autoimmune diseases. It is obvious that much work remains to be done to increase our knowledge of the mechanisms regulating development, homeostasis, and tissue repair and thus to provide new tools to implement the efficacy of cell therapy trials.
Collapse
|
24
|
Meregalli M, Farini A, Sitzia C, Torrente Y. Advancements in stem cells treatment of skeletal muscle wasting. Front Physiol 2014; 5:48. [PMID: 24575052 PMCID: PMC3921573 DOI: 10.3389/fphys.2014.00048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/25/2014] [Indexed: 01/01/2023] Open
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of inherited disorders, in which progressive muscle wasting and weakness is often associated with exhaustion of muscle regeneration potential. Although physiological properties of skeletal muscle tissue are now well known, no treatments are effective for these diseases. Muscle regeneration was attempted by means transplantation of myogenic cells (from myoblast to embryonic stem cells) and also by interfering with the malignant processes that originate in pathological tissues, such as uncontrolled fibrosis and inflammation. Taking into account the advances in the isolation of new subpopulation of stem cells and in the creation of artificial stem cell niches, we discuss how these emerging technologies offer great promises for therapeutic approaches to muscle diseases and muscle wasting associated with aging.
Collapse
Affiliation(s)
- Mirella Meregalli
- Stem Cell Laboratory, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Centro Dino Ferrari, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano Milano, Italy
| | - Andrea Farini
- Stem Cell Laboratory, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Centro Dino Ferrari, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano Milano, Italy
| | - Clementina Sitzia
- Stem Cell Laboratory, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Centro Dino Ferrari, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano Milano, Italy
| | - Yvan Torrente
- Stem Cell Laboratory, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Centro Dino Ferrari, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano Milano, Italy
| |
Collapse
|
25
|
Meregalli M, Farini A, Belicchi M, Parolini D, Cassinelli L, Razini P, Sitzia C, Torrente Y. Perspectives of stem cell therapy in Duchenne muscular dystrophy. FEBS J 2013. [DOI: 10.1111/febs.12083] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mirella Meregalli
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Andrea Farini
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Marzia Belicchi
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Daniele Parolini
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Letizia Cassinelli
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Paola Razini
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Clementina Sitzia
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Yvan Torrente
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| |
Collapse
|
26
|
|
27
|
Darlington D, Deng J, Giunta B, Hou H, Sanberg CD, Kuzmin-Nichols N, Zhou HD, Mori T, Ehrhart J, Sanberg PR, Tan J. Multiple low-dose infusions of human umbilical cord blood cells improve cognitive impairments and reduce amyloid-β-associated neuropathology in Alzheimer mice. Stem Cells Dev 2012; 22:412-21. [PMID: 22816379 DOI: 10.1089/scd.2012.0345] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease (AD) is the most common progressive age-related dementia in the elderly and the fourth major cause of disability and mortality in that population. The disease is pathologically characterized by deposition of β-amyloid plaques neurofibrillary tangles in the brain. Current strategies for the treatment of AD are symptomatic only. As such, they are less than efficacious in terms of significantly slowing or halting the underlying pathophysiological progression of the disease. Modulation by cell therapy may be new promising disease-modifying therapy. Recently, we showed reduction in amyloid-β (Aβ) levels/β-amyloid plaques and associated astrocytosis following low-dose infusions of mononuclear human umbilical cord blood cells (HUCBCs). Our current study extended our previous findings by examining cognition via (1) the rotarod test, (2) a 2-day version of the radial-arm water maze test, and (3) a subsequent observation in an open pool platform test to characterize the effects of monthly peripheral HUCBC infusion (1×10(6) cells/μL) into the transgenic PSAPP mouse model of cerebral amyloidosis (bearing mutant human APP and presenilin-1 transgenes) from 6 to 12 months of age. We show that HUCBC therapy correlates with decreased (1) cognitive impairment, (2) Aβ levels/β-amyloid plaques, (3) amyloidogenic APP processing, and (4) reactive microgliosis after a treatment of 6 or 10 months. As such, this report lays the groundwork for an HUCBC therapy as potentially novel alternative to oppose AD at the disease-modifying level.
Collapse
Affiliation(s)
- Donna Darlington
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, Florida 33613, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Roura S, Pujal JM, Bayes-Genis A. Umbilical cord blood for cardiovascular cell therapy: from promise to fact. Ann N Y Acad Sci 2012; 1254:66-70. [PMID: 22548571 DOI: 10.1111/j.1749-6632.2012.06515.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endothelial recovery and cell replacement are therapeutic challenges for cardiovascular medicine. Initially employed in the treatment of blood malignancies due to its high concentration of hematological precursors, umbilical cord blood (UCB) is now a non-controversial and accepted source of both hematopoietic and non-hematopoietic progenitors for a variety of emerging cell therapies in clinical trials. Here, we review the current therapeutic potential of UCB, focusing in recent evidence demonstrating the ability of UCB-derived mesenchymal stem cells to differentiate into the endothelial lineage and to develop new vasculature in vivo.
Collapse
Affiliation(s)
- Santiago Roura
- ICREC Research Group, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Barcelona, Spain
| | | | | |
Collapse
|
29
|
Intravenous administration of human umbilical cord blood-mononuclear cells dose-dependently relieve neurologic deficits in rat intracerebral hemorrhage model. Ann Anat 2012; 195:39-49. [PMID: 22770555 DOI: 10.1016/j.aanat.2012.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 05/05/2012] [Accepted: 05/07/2012] [Indexed: 01/01/2023]
Abstract
Human umbilical cord blood (HUCB) is now considered as a valuable source for stem cell-based therapies. Previous studies showed that intravascular injection of the HUCB significantly improves neurological functional recovery in a model of intracerebral hemorrhage (ICH). To extend these findings, we examined the behavioral recovery and injured volume in the presence of increasing doses of human umbilical cord blood derived mononuclear cells (HUC-MCs) after intracerebral hemorrhage in rats. The experimental ICH was induced by intrastriatal administration of bacterial collagenase IV in adult rats. One day after the surgery, the rats were randomly divided into 4 groups to receive intravenously either BrdU positive human UC-MCs (4 × 10(6), 8 × 10(6) and 16 × 10(6) cells in 1 ml saline, n=10, respectively) as treated groups or the same amount of saline as lesion group (n=10). There was also one group (control n=10) that received only the vehicle solution of collagenase. The animals were evaluated for 14 days with modified limb placing and corner turn tests. The transplanted human UC-MCs were also detected by immunohistochemistry with labeling of BrdU. Two weeks after infusion, there was a significant recovery in the behavioral performance when 4 × 10(6) or more UC-MCs were delivered (P<0.05-0.001). Injured volume measurements disclosed an inverse relationship between UC-MCs dose and damage reaching significance at the higher UC-MCs doses. Moreover, human UC-MCs were localized by immunohistochemistry only in the injured area. Intravenously transplanted UC-MCs can accelerate the neurological function recovery of ICH rat and diminish the striatum lesion size by demonstrating a dose relationship between them.
Collapse
|
30
|
Li J, Zhang L, Zhou L, Yu ZP, Qi F, Liu B, Zi SX, Li L, Li Y, Wang SB, Cui ZJ, Pan XH. Beneficial effects of non-matched allogeneic cord blood mononuclear cells upon patients with idiopathic osteoporosis. J Transl Med 2012; 10:102. [PMID: 22613677 PMCID: PMC3408346 DOI: 10.1186/1479-5876-10-102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/21/2012] [Indexed: 01/22/2023] Open
Abstract
Background Immunological arguments and historical examples have shown that treatment with cord blood for non-hematopoietic activities, such as growth factor production and stimulation of angiogenesis, may not require matching or immune suppression. Methods To study the benefit of blood mononuclear cell therapy, 8 patients with idiopathic osteoporosis were given intermittent treatments with non-matched allogeneic cord blood mononuclear cells for 3 months. Morning fasting samples were collected for measuring urine N telopeptide of type-1 collagen, serum bone-specific alkaline phosphatase, and insulin-like growth factor 1 during one-year study. Results Clinical response was striking. Serum insulin-like growth factor 1 significantly increased in all patients at 3 months compared with baseline values, from 264.1 ± 107.0 to 384.4 ± 63.1 ng/mL (P = 0.002), with a tendency to return to baseline values at 12 months (312.9 ± 75.5 ng/mL, P = 0.083). In contrast, differences in serum bone-specific alkaline phosphatase and urine N telopeptide of type-1 collagen were not significant at 3 (P = 0.765, P = 0.057) or 12 months (P = 0.889, P = 0.122). A beneficial effect on bone density was observed in all patients at the lumbar spine. The mean bone mineral density calculated during therapy (0.6811 ± 0.1442 g/cm2) tended higher than baseline values (0.6239 ± 0.1362 g/cm2, P < 0), and percentage change (median) varied from 8.85% at 3 months to 7.85% at one year. All patients are now well after one year. Conclusions The findings indicate that for these patients with idiopathic osteoporosis, treatment with cord blood mononuclear cells led to a significant increase in insulin-like growth factor 1 levels, which favors the increase in bone mineral density.
Collapse
Affiliation(s)
- Jun Li
- Stem cell, Tissue and Organ Engineering Research Center, Kunming General, Hospital of Chinese People's Liberation Army, Kunming 650032, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Seghatoleslam M, Jalali M, Nikravesh MR, Hosseini M, Hamidi Alamdari D, Fazel A. Therapeutic benefit of intravenous administration of human umbilical cord blood- mononuclear cells following intracerebral hemorrhage in rat. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2012; 15:860-72. [PMID: 23492836 PMCID: PMC3586889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 12/20/2011] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Human umbilical cord blood (HUCB) is now considered as a valuable source for stem cell-based therapies. Previous studies showed that intravascular injection of the HUCB significantly improves neurological functional recovery in a rat model of intracerebral hemorrhage (ICH). In the present study, we hypothesize transplanted HUCB derived mononuclear cells (UC-MCs) can decrease injured volume and also ameliorate neurological function in ICH rats. MATERIALS AND METHODS Experimental ICH was induced by intrastriatal administration of collagenase in rats. One day after surgery, the rats were divided into 3 groups to receive intravenously either BrdU positive human UC-MCs [(4×10(6) and 8×10(6) cells in 1 ml saline, n=10 respectively) as treated groups] or the same amount of saline [as lesion group (n=10)]. There was also one group (control) that received only vehicle solution of collagenase. The animals were evaluated for 14 days with behavioral tests. Transplanted UC-MCs were detected by immunohistochemistry. Histological data and scores of functional tests were analyzed using ANOVA. Cellular co-localization of BrdU+ cells in the histological slides was determined by software Image J. RESULTS Intravenously transplanted UC-MCs migrated selectively to the hematomal area and reduce injured volume. The UC-MCs transplanted groups showed better performance on functional tests after 2 weeks compared with the lesion and control groups (P< 0.05). There was no difference in the functional recovery and injured volume improvement between the 2 treated groups. CONCLUSION Intravenously transplanted UC-MCs accelerate neurological function recovery of ICH rat and diminish the striatum lesion size. Thus these cells may provide a potential cell candidate for cell-based therapy in ICH.
Collapse
Affiliation(s)
- Masoumeh Seghatoleslam
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Jalali
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Nikravesh
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Daryoush Hamidi Alamdari
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Fazel
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
32
|
Yang WZ, Zhang Y, Wu F, Zhang M, Cho SC, Li CZ, Li SH, Shu GJ, Sheng YX, Zhao N, Tang Y, Jiang S, Jiang S, Gandjian M, Ichim TE, Hu X. Human umbilical cord blood-derived mononuclear cell transplantation: case series of 30 subjects with hereditary ataxia. J Transl Med 2011; 9:65. [PMID: 21575250 PMCID: PMC3112442 DOI: 10.1186/1479-5876-9-65] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 05/16/2011] [Indexed: 12/27/2022] Open
Abstract
Background The differential diagnosis for hereditary ataxia encompasses a variety of diseases characterized by both autosomal dominant and recessive inheritance. There are no curative treatments available for these neurodegenerative conditions. This open label treatment study used human umbilical cord blood-derived mononuclear cells (CBMC) combined with rehabilitation training as potential disease modulators. Methods 30 patients suffering from hereditary ataxia were treated with CBMCs administered systemically by intravenous infusion and intrathecally by either cervical or lumbar puncture. Primary endpoint measures were the Berg Balance Scale (BBS), serum markers of immunoglobulin and T-cell subsets, measured at baseline and pre-determined times post-treatment. Results A reduction of pathological symptoms and signs was shown following treatment. The BBS scores, IgG, IgA, total T cells and CD3+CD4 T cells all improved significantly compared to pre-treatment values (P < 0.01~0.001). There were no adverse events. Conclusion The combination of CBMC infusion and rehabilitation training may be a safe and effective treatment for ataxia, which dramatically improves patients' functional symptoms. These data support expanded double blind, placebo-controlled studies for these treatment modalities.
Collapse
Affiliation(s)
- Wan-Zhang Yang
- Shenzhen Beike Cell Engineering Research Institution, Shenzhen, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Raoufi MF, Tajik P, Dehghan MM, Eini F, Barin A. Isolation and differentiation of mesenchymal stem cells from bovine umbilical cord blood. Reprod Domest Anim 2011; 46:95-9. [PMID: 20345587 DOI: 10.1111/j.1439-0531.2010.01594.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Currently, mesenchymal stem cells (MSCs) are used in veterinary clinical applications. Bone marrow and adipose tissue are the most common sources of stem cells derived from adult animals. However, cord blood which is collected non-invasively is an alternative source of stem cells other than bone marrow and adipose tissue. Moreover, high availability and lower immunogenicity of umbilical cord blood (UCB) haematopoietic stem cells compared to other sources of stem cell therapy such as bone marrow have made them a considerable source for cell therapy, but MSCs is not highly available in cord blood and their immunogenicity is poorly understood. In this study, the cells with spindle morphology from 7 of 9 bovine UCB samples were isolated and cultured. These mesenchymal stromal cells were successfully differentiated to osteocytes, chondrocytes and adipocytes. In addition, Oct-4 and SH3 were determined by RT-PCR assay. It is the first report of isolation, culture, characterization and differentiation of bovine umbilical stem cells.
Collapse
Affiliation(s)
- M F Raoufi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | | | | | | |
Collapse
|
34
|
Yang WZ, Zhang Y, Wu F, Min WP, Minev B, Zhang M, Luo XL, Ramos F, Ichim TE, Riordan NH, Hu X. Safety evaluation of allogeneic umbilical cord blood mononuclear cell therapy for degenerative conditions. J Transl Med 2010; 8:75. [PMID: 20682053 PMCID: PMC2922090 DOI: 10.1186/1479-5876-8-75] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 08/03/2010] [Indexed: 08/30/2023] Open
Abstract
Background The current paradigm for cord blood transplantation is that HLA matching and immune suppression are strictly required to prevent graft versus host disease (GVHD). Immunological arguments and historical examples have been made that the use of cord blood for non-hematopoietic activities such as growth factor production, stimulation of angiogenesis, and immune modulation may not require matching or immune suppression. Methods 114 patients suffering from non-hematopoietic degenerative conditions were treated with non-matched, allogeneic cord blood. Doses of 1-3 × 107 cord blood mononuclear cells per treatment, with 4-5 treatments both intrathecal and intravenously were performed. Adverse events and hematological, immunological, and biochemical parameters were analyzed for safety evaluation. Results No serious adverse effects were reported. Hematological, immunological, and biochemical parameters did not deviate from normal ranges as a result of therapy. Conclusion The current hematology-based paradigm of need for matching and immune suppression needs to be revisited when cord blood is used for non-hematopoietic regenerative purposes in immune competent recipients.
Collapse
Affiliation(s)
- Wan-Zhang Yang
- Nanshan Affiliated Hospital of Guangdong Medical College, Shenzhen, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Liedtke S, Buchheiser A, Bosch J, Bosse F, Kruse F, Zhao X, Santourlidis S, Kögler G. The HOX Code as a “biological fingerprint” to distinguish functionally distinct stem cell populations derived from cord blood. Stem Cell Res 2010; 5:40-50. [DOI: 10.1016/j.scr.2010.03.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 03/03/2010] [Accepted: 03/18/2010] [Indexed: 12/20/2022] Open
|
36
|
Ichim TE, Alexandrescu DT, Solano F, Lara F, Campion RDN, Paris E, Woods EJ, Murphy MP, Dasanu CA, Patel AN, Marleau AM, Leal A, Riordan NH. Mesenchymal stem cells as anti-inflammatories: implications for treatment of Duchenne muscular dystrophy. Cell Immunol 2010; 260:75-82. [PMID: 19917503 DOI: 10.1016/j.cellimm.2009.10.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 10/13/2009] [Indexed: 01/01/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked musculodegenerative condition consisting of an underlying genetic defect whose manifestation is augmented by inflammatory mechanisms. Previous treatment approaches using gene replacement, exon-skipping or allogeneic cell therapy have been relatively unsuccessful. The only intervention to mediate improvement in survival, albeit minor, is glucocorticoid treatment. Given this modality appears to function via suppression of underlying inflammation; we focus this review on the inflammatory response as a target for mesenchymal stem cell (MSC) therapy. In contrast to other cell based therapies attempted in DMD, MSC have the advantages of (a) ability to fuse with and genetically complement dystrophic muscle; (b) possess anti-inflammatory activities; and (c) produce trophic factors that may augment activity of endogenous repair cells. We conclude by describing one practical scenario of stem cell therapy for DMD.
Collapse
|
37
|
Greco N, Laughlin MJ. Umbilical cord blood stem cells for myocardial repair and regeneration. Methods Mol Biol 2010; 660:29-52. [PMID: 20680811 DOI: 10.1007/978-1-60761-705-1_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cardiovascular disease remains a major cause of morbidity and mortality with substantial economic cost. There remains a need for therapeutic improvement for patients refractory to revascularization and those who redevelop occlusions following revascularization. Early evidence linked age-associated reductions in the levels of circulating marrow-derived hematopoietic stem cells (HSC), characterized by expression of early HSC markers CD133 and CD34, with the occurrence of cardiovascular events and associated death. Heart tissue has the endogenous ability to regenerate through the activation of resident cardiac stem cells or through recruitment of a stem cell population from other tissues, such as bone marrow. A number of clinical trials have utilized patient-derived autologous bone marrow-derived cells or whole BM uncultured mononuclear cells (MNC) infused or injected locally to augment angiogenesis. In most cases of treating animal models with human cells, the frequency of stem cell engraftment, the subsequent number of newly generated cardiomyocytes and vascular cells, and the augmentation of endogenous microvascular collateralization, either by deposition, transdifferentiation, and/or by cell fusion, appear to be too low to explain the significant cardiac improvement. Initially, it was hypothesized that cell therapy may work by cell replacement mechanisms, but recent evidence suggests alternatively that cell therapy works by providing trophic support to the injured tissues. An alternative hypothesis is that the transplanted stem cells release soluble cytokines and growth factors (i.e., paracrine factors) that function in a paracrine fashion, contributing to cardiac repair and regeneration by inducing cytoprotection and neovascularization. Another hypothesis which may also be operative is that cell therapy may mediate endogenous regeneration by the activation of resident cardiac stem cell. Well-established clinical trials have used cord blood for the treatment of hematological malignances (e.g., leukemia, lymphoma, myeloma) and nonmalignancies (e.g., in born errors of metabolism, sickle cells anemia, autoimmune diseases), but further advances in other areas of regenerative medicine (e.g., cardiac repair) will directly benefit with the use of cord blood. These clinical outcomes demonstrate that effector cells may be delivered by an allogeneic approach, where strict tissue matching may not be necessary and treatment may be achieved by making use of the trophic support capability of cell therapy and not by a cell replacement mechanism.
Collapse
Affiliation(s)
- Nicholas Greco
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | | |
Collapse
|
38
|
Kögler G, Critser P, Trapp T, Yoder M. Future of cord blood for non-oncology uses. Bone Marrow Transplant 2009; 44:683-97. [PMID: 19802027 DOI: 10.1038/bmt.2009.287] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
For the last 5 years cord blood (CB) has been under intense experimental investigation in in vitro differentiation models and in preclinical animal models ranging from bone to muscle regeneration, cardiovascular diseases including myocardial and peripheral arterial disease, stroke and Parkinson's disease. On the basis of its biological advantages, CB can be an ideal source for tissue regeneration. However, in the hype of the so-called 'plasticity', many cell types have been characterized either on cell surface Ag expression alone or by RNA expression only, and without detailed characterization of genetic pathways; frequently, cells are defined without analysis of cellular function in vitro and in vivo, and the definition of the lineage of origin and cells have not been defined in preclinical studies. Here, we explore not only the most consistent data with regard to differentiation of CB cells in vitro and in vivo, but also show technical limitations, such as why in contrast to cell populations isolated from fresh CB, cryopreserved CB is not the ideal source for tissue regeneration. By taking advantage of numerous CB units discarded due to lack of sufficient hematopoietic cells for clinical transplantation, new concepts to produce off-the-shelf products are presented as well.
Collapse
Affiliation(s)
- G Kögler
- Institute for Transplantation Diagnostics and Cell Therapeutics, University of Duesseldorf Medical School, Duesseldorf, Germany.
| | | | | | | |
Collapse
|
39
|
Kim DS, Kim JH, Kwon Lee J, Choi SJ, Kim JS, Jeun SS, Oh W, Yang YS, Chang JW. Overexpression of CXC Chemokine Receptors Is Required for the Superior Glioma-Tracking Property of Umbilical Cord Blood-Derived Mesenchymal Stem Cells. Stem Cells Dev 2009; 18:511-9. [DOI: 10.1089/scd.2008.0050] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Dal-Soo Kim
- Biomedical Research Institute, MEDIPOST Co., Ltd., Republic of Korea
| | - Ji Hyun Kim
- Biomedical Research Institute, MEDIPOST Co., Ltd., Republic of Korea
| | - Jae Kwon Lee
- Department of Science Education (Biology), College of Education, Chungbuk National University, Chungcheongbuk-Do, Republic of Korea
| | - Soo Jin Choi
- Biomedical Research Institute, MEDIPOST Co., Ltd., Republic of Korea
| | - Jae-Sung Kim
- Laboratory of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, The Catholic University of Korea, Seoul, Republic of Korea
| | - Wonil Oh
- Biomedical Research Institute, MEDIPOST Co., Ltd., Republic of Korea
| | - Yoon Sun Yang
- Biomedical Research Institute, MEDIPOST Co., Ltd., Republic of Korea
| | - Jong Wook Chang
- Biomedical Research Institute, MEDIPOST Co., Ltd., Republic of Korea
| |
Collapse
|
40
|
Abstract
Despite improvements in supportive care, patients with beta-thalassaemia major or sickle cell disease (SCD) may benefit from haematopoietic stem cell transplantation at some point during their lives. Human leucocyte antigen (HLA)-matched sibling bone marrow donors are not always available and alternative sources of stem cells have been sought, including related and unrelated donor cord blood transplants (CBT). The outcome of CBT from related donors for the treatment of both thalassaemia major and SCD is now approaching that for bone marrow transplantation, with around 90% of patients surviving disease-free. The main complication is graft rejection, which may be reduced by increasing pretransplant immune suppression. Transplant-related mortality following HLA-identical matched related donor CBT is extremely low but is significant in the small series of unrelated and/or mis-matched donor CBT. The principal limitation to extending the use of CB stem cells for the cure of haemoglobinopathies is the need to better understand the mechanisms of action and optimal conditioning regimens used to secure long-term engraftment while minimizing morbidity and mortality. Further biological studies and clinical trials are needed to address this aim.
Collapse
Affiliation(s)
- Fernando O Pinto
- Department of Paediatric Haematology, Imperial College Healthcare NHS Trust, London, UK
| | | |
Collapse
|
41
|
Ichim TE, Solano F, Glenn E, Morales F, Smith L, Zabrecky G, Riordan NH. Stem cell therapy for autism. J Transl Med 2007; 5:30. [PMID: 17597540 PMCID: PMC1914111 DOI: 10.1186/1479-5876-5-30] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 06/27/2007] [Indexed: 12/18/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions whose incidence is reaching epidemic proportions, afflicting approximately 1 in 166 children. Autistic disorder, or autism is the most common form of ASD. Although several neurophysiological alterations have been associated with autism, immune abnormalities and neural hypoperfusion appear to be broadly consistent. These appear to be causative since correlation of altered inflammatory responses, and hypoperfusion with symptology is reported. Mesenchymal stem cells (MSC) are in late phases of clinical development for treatment of graft versus host disease and Crohn's Disease, two conditions of immune dysregulation. Cord blood CD34+ cells are known to be potent angiogenic stimulators, having demonstrated positive effects in not only peripheral ischemia, but also in models of cerebral ischemia. Additionally, anecdotal clinical cases have reported responses in autistic children receiving cord blood CD34+ cells. We propose the combined use of MSC and cord blood CD34+cells may be useful in the treatment of autism.
Collapse
Affiliation(s)
| | - Fabio Solano
- Institute for Cellular Medicine, San Jose, Costa Rica
| | - Eduardo Glenn
- Institute for Cellular Medicine, San Jose, Costa Rica
| | - Frank Morales
- Institute for Cellular Medicine, San Jose, Costa Rica
| | - Leonard Smith
- Institute for Cellular Medicine, San Jose, Costa Rica
| | | | - Neil H Riordan
- Medistem Laboratories Inc, Tempe, Arizona, USA
- 2027 E. Cedar Street Suite 102 Tempe, AZ 85281, USA
| |
Collapse
|